
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2013.33.987
DYNAMICAL SYSTEMS
Volume 33, Number 3, March 2013 pp. 987–1008

HORSESHOE PERIODIC ORBITS WITH ONE SYMMETRY IN

THE GENERAL PLANAR THREE-BODY PROBLEM

Abimael Bengochea and Manuel Falconi

Departamento de Matemáticas
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Abstract. Using collinear reversible configurations and some properties of
symmetry we obtain horseshoe periodic orbits in the general planar three-
body problem with masses m1 ! m2 ≥ m3, which usually represents a
system formed by a planet and two small satellites; for instance, the system
Saturn-Janus-Epimetheus. For the numerical analysis we have taken the values
m2/m1 = 3.5×10−4 and m3/m1 = 9.7×10−5 corresponding to 105 times the
mass ratios of Saturn-Janus and Saturn-Epimetheus, respectively.

1. Introduction. In the classical three-body problem there are several kinds of
families of periodic orbits, the well known Euler and Lagrange relative equilibria,
the figure eight orbits, the Shubart orbits (periodic orbits with binary collisions)
and the horseshoe periodic orbits among many others.

A mechanism which generates these kind of orbits appears when, for instance, we
find co-orbital trajectories in a system formed by a big planet and two small moons
orbiting around it on very similar trajectories. The masses of the moons are similar,
so that at the close encounter between them, there is a significant influence on each
other which permits avoid the collision, and the moons interchange trajectories; the
inner body becomes outer and vice versa until the next close encounter where the
same phenomena occurs and so on. In a rotating frame with an adequate constant
angular velocity the shape of the moons trajectories looks like a horseshoe.

Several people have studied the horseshoe orbits, usually they start their an-
alytical analysis with the study of the restricted three-body problem. Some of
the approaches that they have used are a combination of perturbation theory and
numerical integration [5, 6], an analytic approximation to the motion around the
planet in resonance 1 : 1 [17, 18], a singular perturbation treatment because of the
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regions of small or big interaction between the satellites [16], [19], or a theoretical
and numerical approach in the Hill’s model [14], [8]. In the general model, this prob-
lem has been studied by means of introducing small parameters in the equations of
motion and the retention of the dominant part in order to obtain dynamical infor-
mation of the system [4], or as an adiabatic perturbation of the classical equilateral
triangle Lagrange solution and of the collinear Euler solution [2]. The existence of
stable planar horseshoe periodic orbits for the Saturn-Janus mass parameter in the
restricted circular three-body problem has been proved in [11]. Also in the restricted
circular three-body problem, in [1] were determined families of periodic orbits of
horseshoe type, for the planar and spatial case. In the same model, in [9] were
studied some properties of the symmetric horseshoe periodic families according to
their bifurcation features.

This paper is the continuation of a study of horseshoe periodic orbits in the
general planar three-body problem [3], which we refer as Paper I. In that study we
considered horseshoe orbits with two equal masses, for a mass ratio equals 3.5×10−4.
The symmetric horseshoe periodic orbits were determined by means of reversible
properties of the equations of motion. We focused on the horseshoe orbits that pass
through two reversible configurations, namely collinear and isosceles, or in other
words horseshoe orbits of type collinear-isosceles (at this point we must remark that
the isosceles reversible configuration only exists if at least two of the three masses
of the bodies are equal). These horseshoe periodic orbits display two symmetries in
the rotating frame.

In this paper we show the existence of horseshoe orbits for mass ratios m2/m1 =
3.5×10−4, m3/m1 = 9.7×10−5, nevertheless this procedure can be applied to other
problems (for instance the Saturn-Janus-Epimetheus system). We have used similar
tools as Paper I, but here we do not have an isosceles reversible configuration any
more, so we have managed the problem using a collinear reversible configuration.
In other words, we study those horseshoe orbits which start at a collinear reversible
configuration and after some time reach a configuration of the same type. Some
families of the periodic orbits (in the sense of the Cylinder Theorem; see p. 136 in
[12]) that we find are similar to the ones found using collinear and isosceles reversible
configurations, but in addition, in this paper we also find families of periodic orbits
with different behavior.

The paper is organized as follows: In Section 2 we describe the planar horseshoe
motion and we give the equations of motion of the three-body problem. In Section
3 we study the orbits which start at a collinear reversible configuration and reach
another collinear reversible configuration. In Section 4 we present the procedure to
obtain horseshoe orbits which pass through two collinear reversible configurations
as we pointed out in Section 3. We also give the numerical results. We finish the
paper with the conclusions of this work.

2. Description of the planar horseshoe motion and equations of motion.
We consider three point particles that by short we call as particles 1, 2, 3 with
corresponding masses m1 >> m2 ≥ m3, whose motion takes place in a fixed plane.
Usually, it is said that 1 is the primary body or planet, and 2 and 3 are called
satellites or minor bodies.

2.1. Horseshoe motion. Circular case. We begin at a point P of the orbit
where the three bodies are aligned with the particle of mass m1 between the other
two. Since we are considering that the planet has a significantly bigger mass than
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the corresponding of the satellites, the description also applies to a frame of reference
with origin at the center of mass of the three bodies.

Close to the point P , the interaction between the satellites is negligible and
their motions are dominated by the force exerted by the primary body, then the
trajectory of each satellite is approximately elliptic. Nevertheless, for this case we
assume that the eccentricities of the elliptic motions are zero. At the starting point
P , we consider that the semimajor axis associated to the particle 3 is smaller than
the corresponding to 2, and therefore it is said that 3 is in an inner orbit, and 2 is
an outer orbit. The satellites go around the primary and eventually the distance
between the satellites decreases and their interaction is not longer negligible. Due
to this strong interaction, a change in the orbits occur: 3 follows an outer orbit, and
2 an inner one. It means that a close encounter between the satellites has happened.
An important feature during the exchange of orbits is that the alignment of the three
bodies does not occur. After that, the separation between them will increase until
the three bodies reach an alignment where 2 is the inner body and 3 is the outer
one, and the process is repeated, interchanging 2 and 3 in the above discussion.
The evolution of this orbit is shown in Figure 1. The whole orbit can be seen
in a rotating frame with an adequate constant angular velocity. In this frame of
reference the trajectory of each satellite takes the form of a smooth horseshoe, and
its size depends on the mass ratio of the satellites, as is shown in Figure 2. Notice
that during a “horseshoe cycle” (rotating frame), the orbit passes only through two
alignments; it is outlined in items (a) and (c) of Figures 1 and 2.

2.2. Horseshoe motion. Non-circular case. In the previous description we
have assumed that in some part of the orbit of the three bodies the trajectory of each
satellite can be approached by a circular one, that is, the osculating eccentricities
of the satellites’ orbits are close to zero. Now, if instead of that we consider non-
zero osculating eccentricities (but small, in order to keep the horseshoe shape), new
features appear:

• In the rotating frame the trajectory of each satellite is also horseshoe shaped,
but now it is formed by many curls; each one corresponds to one revolution
around the planet by the satellite.

• The horseshoe orbit may pass through consecutive alignments. That is, more
than two alignments in a “horseshoe cycle”, on which the temporal separation
between neighboring alignments is less than half of the time required by any
of the minor bodies to go once around the planet (this point will be revisited
in Section 4).

According to the description given above, we could define the horseshoe motion
in the following way. Consider two minor bodies 2, 3 orbiting around a primary
body 1, and denote the angle (non constant) between the minor bodies at time
t, measured in counterclockwise sense with origin at 1, by θ23(t). If there is no
overtake between the minor bodies for any time, that is θ23(t) #= 0 mod 2π, t ∈ R,
we say that the orbit of the three bodies is of horseshoe type.

Consider particles 1, 2, 3 with masses m1, m2, m3, and the planar vectors of
position, and velocity

ri =




xi

yi



 , vi = ṙi, i = 1, 2, 3,
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Figure 1. Evolution of the horseshoe orbit. (a) Initial alignment
with the body 3 in an inner orbit. (b) Interchange of orbits during
the encounter. (c) Second alignment with the body 2 in an inner
orbit. (d) The encounter after the alignment in (c).

Figure 2. Horseshoe orbits in a rotating frame with constant an-
gular velocity, for the mass ratio m2/m3 = 4. At the right side are
indicated the six configurations that make up the Figure 1. It was
used a symbol per configuration. The correspondence is as follows:
(a) bold circle, (b)1 bold square, (b)2 bold triangle, (c) blank circle,
(d)1 blank square and (d)2 blank triangle.

in an inertial frame. The kinetic energy of the system is

T =
1

2

3∑

i=1

miv
2
i ,
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and the gravitational potential is

U = −
Gm2m3

r23
−

Gm3m1

r31
−

Gm1m2

r12
,

where G is the universal gravitational constant, and rij = |ri − rj | denotes the
distance between the bodies i and j. The equations of motion are defined by the
Lagrangian of the system

L = T − U,

by means of the Lagrange equations

d

dt

∂L

∂ṙi
−

∂L

∂ri
= 0, i = 1, 2, 3. (1)

After some computations (1) becomes

r̈1 =
Gm2(r2 − r1)

r312
+

Gm3(r3 − r1)

r331
,

r̈2 =
Gm3(r3 − r2)

r323
+

Gm1(r1 − r2)

r312
,

r̈3 =
Gm1(r1 − r3)

r331
+

Gm2(r2 − r3)

r323
.

3. Reversible configurations and periodic motions. In the study of periodic
orbits in the n-body problem is often useful to consider the time-reversal symmetry
of the equations of motion [10]. For our purpose we precise the following terms:
given a planar orbit in an inertial frame we say that the configuration of the bodies
is collinear if their positions lie on a common line at a certain time, and in addition is
called reversible if the velocities are perpendicular to the direction of the alignment.
We measure the reversible configurations modulo rotations, that is, if ri, vi, i =
1, 2, 3 defines a collinear reversible configuration then Rri, Rvi, i = 1, 2, 3, where R
is any rotation, specifies the same configuration.

In the case of n bodies, the periodicity of orbits which pass through two collinear
reversible configurations has been studied in [15], which is applicable to our model.
In Paper I [3], for the study of horseshoe periodic orbits with two equal masses,
together with collinear reversible configurations, we have used isosceles reversible
configurations, which exist if at least two of the three masses are equal to each
other. Any orbit which passes through a reversible configuration has an interesting
property: the part of the orbit previous to the reversible configuration is related
with the posterior one by means of a linear transformation.

In the following we will show under what conditions an orbit (not necessarily
of horseshoe type) which passes through two collinear reversible configurations is
periodic (unless otherwise stated, we refer to periodicity in the inertial frame). From
here on we consider a frame of reference with origin at the center of mass of the
three bodies.

Theorem 3.1. Consider an orbit of three bodies ri(t), i = 1, 2, 3, t ∈ R, with
collinear reversible configurations at times t = 0, t = Tθ. Define θ as the angle
measured from the vector r2(0) to r2(Tθ) in the counterclockwise sense. The orbit
is periodic if and only if

θ =
p

q
π, for some p, q ∈ N.
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If p and q are relative primes, the period of the orbit T is

T = 2qTθ.

Proof. Consider an inertial frame such that r2(0) lies on the x axis, at the positive
side. Given a counterclockwise rotationRθ, we introduce a primed frame of reference
by means of

s′ = R−θs.

Since we have a collinear reversible configuration on the x′ axis at t = Tθ, we get
the equations (for details see appendix)

r′i(t) = Kr′i(2Tθ − t), i = 1, 2, 3, t ∈ R,

v′

i(t) = −Kv′

i(2Tθ − t), i = 1, 2, 3, t ∈ R,
(2)

with

K =




1 0

0 −1



 .

In terms of the coordinate system (x, y) the relation (2) becomes

ri(t) = R2θKri(2Tθ − t), i = 1, 2, 3, t ∈ R,

vi(t) = −R2θKvi(2Tθ − t), i = 1, 2, 3, t ∈ R,
(3)

where it was used KR−θ = RθK. Due to the collinear reversible configuration at
t = 0 we have Kri(0) = ri(0), −Kvi(0) = vi(0), i = 1, 2, 3. Thus, at t = 2Tθ the
solution (3) takes the form

ri(2Tθ) = R2θri(0), i = 1, 2, 3,

vi(2Tθ) = R2θvi(0), i = 1, 2, 3.

Notice that the collinear reversible configurations of the three bodies at t = 0 and at
t = 2Tθ are equal to each other, and that their angles with respect to the horizontal
axis are 0, 2θ respectively. Since the system is invariant under rotations, it follows

ri(2Tθ + t) = R2θri(t), i = 1, 2, 3, t ∈ R,

vi(2Tθ + t) = R2θvi(t), i = 1, 2, 3, t ∈ R.
(4)

Using (4) we get

ri(2mTθ + t) = R2mθri(t), i = 1, 2, 3, m ∈ Z, t ∈ R,

and the same happens for the velocities.
The angle θ determines the periodicity of the orbit, whereas the pair (θ, Tθ)

defines the period. A necessary and sufficient condition for the periodicity is

θ =
p

q
π, for some p, q ∈ N. (5)

The period T of the orbit can be calculated considering the irreducible form of
the fraction that appears in the relation (5). If p and q are relative primes, then

T = 2qTθ.
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In Figure 3 are outlined the first three collinear reversible configurations of the
above process.

Figure 3. Collinear reversible configurations in an inertial frame
of reference with origin at the center of mass of the three bodies.

Using the equations (3) and (4), some properties of the orbits can be obtained.
For example, the shape is 2Tθ periodic (for instance, see [15]) and the relative dis-
tances between the bodies present periodicity and symmetry. For any permutation
i, j, k ∈ {1, 2, 3}, m ∈ Z, ∆ ∈ R holds rij(∆ + 2mTθ) = rij(∆), rij(∆ + mTθ) =
rij(−∆+mTθ).

4. Numerical study of horseshoe periodic orbits. Along this section we give
the necessary elements to expose a procedure for obtaining horseshoe periodic orbits
with different masses. We use it to calculate families of horseshoe periodic orbits,
in the sense of the Cylinder Theorem [12], for mass ratios m2/m1 = 3.5 × 10−4,
m3/m1 = 9.7× 10−5.

Due to its frequent use, we introduce the following notation: we denote by Ci,
i = 2, 3 a collinear configuration with i as the inner body, and we use RC instead of
C if in addition the collinear configuration is reversible. We also use ordered time
intervals Ij ⊂ R and natural numbers Nj ≥ 1, for j ∈ N (by ordered time intervals
we mean the following: suppose we have In, Im with n > m, then for all t ∈ In,
t∗ ∈ Im holds t > t∗). Finally, we denote by Γ an initial condition of type RC3 (at
time t = 0, according to section 3) that gives rise to a horseshoe orbit, by S a set
of initial conditions of horseshoe orbits which pass through a RC3 at t = 0, and
SR ⊂ S for the subset which consists of the initial conditions of horseshoe orbits
which pass through a RC2 at Tθ.

Before stating the problem of study, we review the description of a horseshoe
orbit (non-zero eccentricities) in terms of Ci, i = 2, 3. In a certain time interval I1
the horseshoe orbit passes through N1 configurations C3. After that, an encounter
happens (3 goes to an exterior orbit and 2 goes to an interior one), and later,
in a time interval I2, the horseshoe orbit passes through N2 configurations C2.
Subsequently a new encounter appears (2 goes to an exterior orbit and 3 goes to an
interior one), and later, in a time interval I3, the horseshoe orbit passes through N3

configurations C3, and so on. Notice that these time intervals depend on the orbit.

4.1. Statement of the problem and solution. Now we state the problem of
numerical study as follows: determine horseshoe periodic orbits which pass through
two collinear reversible configurations: RC3 in I1 and RC2 in I2. Being more precise,
RC3 at t = 0 and RC2 at Tθ. Notice that these horseshoe orbits pass through RC3,
an encounter, and RC2, in [0, Tθ].
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In the following we present, roughly speaking, the main steps to follow in order to
obtain horseshoe periodic orbits (in later subsections we give the details of each one).
First, reduce the possible initial conditions that lead to RC3. Second, determine
an initial condition Γ which, by definition, is of type RC3 and defines a horseshoe
orbit, not necessarily periodic. To obtain convenient candidates for Γ we use an
analytical approximation of two decoupled Kepler problems forming a RC3 at t = 0.
From here we obtain several initial conditions which, by numerical integration of
the corresponding orbits, we examine in order to determine horseshoe orbits. In
principle, there exist neighborhoods of Γ that could be used as S. Third, determine
the subset SR ⊂ S, or at least some part of it (for this we introduce the D subsets;
their intersections belong to SR). Finally, the set SR only has initial conditions
of horseshoe orbits which pass through RC3 at t = 0 and RC2 at Tθ, thus the
periodicity of each orbit is determined by the corresponding angle θ, according to
Theorem 3.1.

4.2. Reduction of the space of initial conditions of type RC3. Given the
masses m1, m2, m3, and choosing an inertial frame of reference with origin at the
center of mass of the three bodies, the initial condition xi0, yi0, vxi0, vyi0, i = 2, 3
determines RC3 and the respective orbit. Since the potential is homogeneous we
can fix the magnitude of one coordinate; so, we choose |x30| = 1, and due to the
invariance of the Lagrangian under rotations we can assume that the alignment at
the initial time is along the x axis, with 3 at the left, therefore x30 = −1, yi0 = 0,
vxi0 = 0, i = 2, 3, letting x20, vy20, vy30 to be determined. From here on we use
without loss of generality Γ and the ordered triple (x20, vy20, vy30), and consider S
as a subset of a three dimensional space.

4.3. Initial conditions of type RC3 for horseshoe orbits. Since at collinear
configurations the interaction between satellites is negligible, for arbitrary mass
ratios m2/m1, m3/m1 (they must be small enough in order to horseshoe motion
takes place) we obtain candidates for Γ using two decoupled Kepler systems, namely
1-2 and 1-3. For simplicity we consider that in each system the mass of the satellite is
negligible, and that the motion of each satellite is circular. Choosing the alignment
along the x axis with the second body at positive side, and the evolution of the
movement in counterclockwise sense, the initial condition results

r̃10 = 0, r̃20 = ı̂a2, r̃30 = −ı̂a3, ṽ10 = 0, ṽ20 = ̂

√
Gm1

a2
, ṽ30 = −̂

√
Gm1

a3
,

(6)
where ai is the semimajor axis of the orbit of the body i = 2, 3, and ı̂, ̂ denote the
usual canonical unit vectors. There are two things to take into account, in order to
determine the semimajor axes. First, since (6) must define a RC3 the third body
follows an inner orbit, that is a3 < a2. Second, in order to get the horseshoe shape
of the orbit, the semimajor axes should not be very different between them.

About the initial condition (6), we make relevant comments. For positive masses
mi, i = 1, 2, 3, the initial condition (6) does not define a motion in an inertial system
with origin at the center of mass of the three bodies, and in general x̃30 #= −1, that
is, the initial condition is not “normalized”, in the sense of subsection 4.2. To solve
this we only have to subtract the corresponding vectors of the center of mass and
later use the homogeneity of the potential.

Since the mass ratios m2/m1, m3/m1 are very similar with the given in Paper I
[3] (in fact m2/m1 has the same value in both cases), and the corresponding initial
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conditions of Paper I define a RC3 configuration at t = 0, we have used these initial
conditions as candidates for Γ.

Remark 1. If Γ is an initial condition of a horseshoe orbit then, by the Theorem
of continuity with respect to initial conditions and parameters, the same happens
for the points in a small enough neighborhood of Γ.

4.4. Algorithms and determination of SR. In this section we describe in detail
the procedure to obtain a set of initial conditions SR ⊂ S of horseshoe orbits which
pass through RC3 at t = 0 and RC2 at t = Tθ.

Let N2 be the number of configurations C2 for which a horseshoe orbit passes
through in I2, and T̂θ the time when the ith configuration C2 is reached (1 ≤ i ≤
N2). We define the sets

DN2,i,j = {(x20, vy20, vy30) ∈ S | rj(T̂θ) · vj(T̂θ) = 0}, j = 2, 3. (7)

A necessary and sufficient condition for Γ ∈ S defines a horseshoe orbit which
passes through N2 configurations C2, where the ith is reversible, is that Γ belongs
to DN2,i,2 ∩DN2,i,3 (for the ith term holds C2 = RC2, T̂θ = Tθ). We remark that
the set SR is composed of all possible intersections of this type, that is

SR =
⋃

N2,i

DN2,i,2 ∩DN2,i,3. (8)

Depending on S, the sets that appear in the previous equation, or their intersections,
may be empty.

4.4.1. Units, algorithms and determination of DN2,i,2 ∩ DN2,i,3. In the following
circular items we introduce choice of units and algorithm for the numerical integra-
tion of the orbits. According to subsection 4.3, the evolution of the orbits is chosen
in counterclockwise sense.

• For the numerical study we choose units of mass Um = m1, distance Ud = d0,

and time Ut = t0 =
√

d3
0

G0m1
, where G = G0m3/s2kg, G0 = 6.67 × 10−11.

Since we are using “normalized” initial conditions (see subsection 4.2), the
important point is the relation between d0 and t0, not their particular values.
In these units G = 1.

• Let F be the projection of the vector r3 × r2 on the k̂ direction, that is
F = x3y2 − x2y3 (its value is zero at collinear configurations). To determine
numerically the orbits we consider the algorithm RK54 [7], with double preci-
sion variables and tolerance of 1× 10−12 for the distances and velocities. We
start using the adaptive stepsize suggested in the above reference. One step
before reaching the configuration C2 in which we are interested, we control
the step size to diminish F , until we get a value less than 1× 10−12.

In these units, considering the system of 1 and 3 as a Kepler system, where m3 is
negligible in comparison to m1, and 3 in a circular orbit, 2π is the time required by
the body 3 to go once around the planet.

Before introducing the steps to follow in order to determine DN2,i,2 ∩DN2,i,3 we
make two comments. First, for the determination of DN2,i,2 ∩DN2,i,3 it is useful to
introduce Qj(x20, vy20, vy30) = rj(T̂θ) · vj(T̂θ), j = 2, 3. According to (7), the set
DN2,i,2 ∩DN2,i,3 is conformed by the points (x20, vy20, vy30) ∈ S which meet

Q2(x20, vy20, vy30) = 0, Q3(x20, vy20, vy30) = 0. (9)
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In principle, each equation of (9) defines a two dimensional manifold, thus the solu-
tion set has to be a curve in S. Second, concerning to periodicity, we are considering
horseshoe orbits which pass through two collinear reversible configurations. These
orbits satisfy θ23(t) #= 0 mod 2π, t ∈ R (see definition of horseshoe orbit in subsec-
tion 2.2). However, according to Theorem 3.1, the periodicity is related only with
collinear reversible configurations, not with the shape of the orbit (by means of θ23).
Thus, there is no guarantee that in a whole periodic family all its orbits have horse-
shoe shape. Evidently, since we have restricted our numerical study to the set S,
then by definition, all computed periodic orbits have such shape. In a wider study,
for instance the determination of an entire periodic family, you could follow similar
steps to those listed below. The only difference is that once you have determined a
point of DN2,i,2 ∩DN2,i,3 (the corresponding orbit has a horseshoe shape), that is
the seed for the periodic family, you must drop the restriction θ23(t) #= 0 mod 2π,
t ∈ R for the subsequent orbits.

Now we describe the steps to follow in order to obtain DN2,i,2 ∩ DN2,i,3, thus
some part of SR.

1. Determine Γ = (x20, vy20, vy30), that is, an initial condition of a horseshoe
orbit which forms a RC3 at t = 0. With this, we have implicitly a set of
initial conditions S.

2. Pick k1 initial conditions for different values of the second coordinate, that
is (x20, vy20 + n1∆2, vy30) ∈ S for n1 = 1, 2, 3, · · · , k1, and a small enough
∆2 ∈ R, and follow each orbit until the ith configuration C2. Check the
quantities Qj = rj(T̂θ) · vj(T̂θ), j = 2, 3; if a change of sign occurs in Qj

for consecutive initial conditions we have identified approximately a point of
DN2,i,j (we take the average of these consecutive initial conditions to represent
such point), consequently DN2,i,j . In the numerical analysis, we used the
points which give rise to |Qj | < 1× 10−12 as for DN2,i,j .

3. Check the difference between all the points Γ2 ∈ DN2,i,2 and Γ3 ∈ DN2,i,3,
that is Γ2 − Γ3, since we are interested in DN2,i,2 ∩DN2,i,3. Identify some of
the pairs with minimum distance and pick one of them. If the selected pair
Γ20 = (x20, vy′20, vy30), Γ30 = (x20, vy′′20, vy30) leads to |vy′20 − vy′′20| < 2∆2

then reduce ∆2 and perform a better approximation of Γ20 and Γ30. For the
next computations we can use the same value (or less) of ∆2.

4. Repeat the second step for Γ20 + (0, 0, n2∆3), Γ30 + (0, 0, n2∆3) ∈ S where
n2 = −k2,−k2 + 1, · · · , k2 − 1, k2, for some k2 ∈ N, and a small enough
∆3 ∈ R. Considering only terms with the same index at a time, determine
pairs “originating” from Γ20, Γ30, namely Γ20,n2

= (x20, vy′20,n2
, vy30,n2

) ∈
DN2,i,2, Γ30,n2

= (x20, vy′′20,n2
, vy30,n2

) ∈ DN2,i,3. Finally, make the sequence
conformed by the difference of each pair, being n2 the index; it is enough to
consider only the second coordinate, that is vy′20,n2

− vy′′20,n2
. If a change of

sign occurs in consecutive terms, namely n′

2 and n′

2 + 1, we have identified
approximately a point of DN2,i,2 ∩DN2,i,3, for instance (Γ20,n′

2
+Γ30,n′

3
)/2. If

the chosen pair is not useful then select one of its two adjacent pairs and back
to the step 3.

5. Apply the second and fourth steps to Γ20,n′

2
, Γ30,n′

3
, with lower values ∆2, ∆3,

to get a better approximation of the intersection. For the numerical analysis
we have used Γ = (Γ2 + Γ3)/2, with |Γ2 − Γ3| < 1 × 10−12 as points of
DN2,i,2 ∩DN2,i,3.
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6. Once determined a point (x20, v̂y20, v̂y30) ∈ DN2,i,2 ∩DN2,i,3, use x
′

20 = x20 +
∆1, for some small enough ∆1 ∈ R, instead of x20, and repeat the above
steps, until to get a new point (x′

20, v̂y
′

20, v̂y
′

30) ∈ DN2,i,2 ∩ DN2,i,3. If the
new pair Γ20, Γ30 of the third step is close enough to (x20, v̂y20, v̂y30), then
(x20, v̂y20, v̂y30) and (x′

20, v̂y
′

20, v̂y
′

30) belong to the same branch of DN2,i,2 ∩
DN2,i,3.

According to (8), if DN2,i,2 ∩ DN2,i,3 #= ∅ then some part of SR has been de-
termined. Evidently, repeating the previous process for new values N2, i, a more
complete set SR could be obtained. Once we have obtained SR, the angle θ of the
corresponding horseshoe orbits determines the periodicity, according to Theorem
3.1. Such Theorem shows that θ/π ∈ Q is a necessary and sufficient condition for
the periodicity of the orbit. Nevertheless, in a numerically sense, the case θ/π ∈ I

is also represented by the other one, due to the finite precision of the numerical
calculations. Thus, at least numerically, the most interesting horseshoe periodic
orbits are those where the corresponding quotient θ/π is a “simple” fraction, for
instance 1/2 or 2/3.

4.5. Numerical results. According to the previous subsection, the initial condi-
tions in DN2,i,2 ∩DN2,i,3 define horseshoe orbits which pass through N2 configura-
tions C2 in I2, with the ith term reversible. In terms of F = x3y2 − x2y3, each C2

corresponds to a root, that is for these motions F has N2 roots in I2. Nevertheless,
we are only interested in the root corresponding to RC2, that is the ith root. We
shall refer to such root according to its temporal appearance: first, second, · · · , or
for short root i. Once the root is specified, we use Tθ to denote the time that the
three bodies need to come from RC3 to RC2.

The function F has a similar structure for any horseshoe orbit. In figure 4 is
shown an example of the function F over the time interval [0, 2Tθ), which covers the
whole shape of the horseshoe orbit. In Figures 5 and 6 we have plotted enlargements
of F for the cases of one and three roots, respectively.

We have studied a region S which provides up to three consecutive roots in I2. In
order to use (8) for the determination of SR, it is necessary to distinguish all possible
values of N2 and i. For our case we have (N2, i) = (1, 1), (2, 1), (2, 2), (3, 1), (3, 2),
(3, 3). From the numerical analysis we have obtained that only (N2, i) = (1, 1),
(3, 2) lead to non-empty intersections, then we focus on them.

The numerical study shows that in the studied region S each set DN2,i,2 or
DN2,i,3, (N2, i) = (1, 1), (3, 2) is conformed approximately by several parallel flat
surfaces, then the intersection DN2,i,2 ∩ DN2,i,3 looks like a set of straight lines
with the same inclination. On each straight line l(x20, vy20, vy30) the points which
generates orbits with θ/π ∈ Q form a family of periodic orbits P̂ . Notice that S is
small (for reference see Figures 7 and 8); it could lead to the appearance of such
patterns (flat or linear). In principle, except for a situation of bifurcation (see Figure
15 and related paragraph), it is expected that for all orbits within a whole periodic
family the corresponding numbers N2, i do not change, that is, are constant in the
entire periodic family.

To classify the periodic families P̂ , in addition to N2, i, it is necessary one more
label; we use the number n of complete revolutions that, in a horseshoe orbit, the
second body gives around the planet while the three bodies come from RC3 to RC2.
We remark that n does not change in a common periodic family defined on S, which
is the case studied along this paper. We observe that if we continue the periodic
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Figure 4. Temporal evolution of F corresponding to the orbit
O(1, 41, 0.9997), 2Tθ ≈ 528 (for notation see subsection 4.5).

Figure 5. An amplified view of F of the orbit O(1, 41, 0.9997),
Tθ ≈ 264.

family beyond S then such property could not hold, since the second body might
complete more revolutions in the new orbits; in this case n would require a slight
modification. To simplify the notation we omit N2, since each case can be identified
with the number i, thus we use P̂i,n, i = 1, 2 to denote the periodic family P̂ with
the corresponding N2, i, n; we say that i is the root number and n the class number.
Also we stand O(i, n, x20) for the orbit in P̂i,n with x20 coordinate at RC3.
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Figure 6. An amplified view of F of the orbit O(2, 41, 0.9997),
Tθ ≈ 260.9.

Table 1. Initial conditions vy20, vy30, and values θ, Tθ for the
orbits O(i, n, 0.9997), i = 1, 2, n = 41, · · · , 46.

i, n vy20 vy30 θ Tθ

1, 41 1.00033074231 −0.999672669671 6.261056 263.9551723
1, 42 1.00039743319 −0.999851955870 6.262949 270.3164151
1, 43 1.00023330925 −0.999782352900 6.256888 276.4782610
1, 44 1.00030800576 −0.999948704381 6.260236 282.8463259
1, 45 1.00015533946 −0.999871704482 6.252373 289.0064551
1, 46 1.00023607195 −1.00002723997 6.257733 295.3814054
2, 41 1.00040765179 −0.999690533672 3.123549 260.8667477
2, 42 1.00038005827 −0.999780710537 3.118758 267.1469371
2, 43 1.00030453375 −0.999805643661 3.120520 273.3911836
2, 44 1.00028722446 −0.999884233192 3.114997 279.6741658
2, 45 1.00022217224 −0.999899629817 3.117557 285.9215129
2, 46 1.00021303708 −0.999968625862 3.111125 292.2066777

To depict P̂i,n, i = 1, 2 we choose x20 as parameter. Consider the projection of

P̂i,n, i = 1, 2 onto the plane (x20, vy20); by moving along the line x = x20, for an
starting value of vy20 big enough, the families are found when vy20 decreases. If vy20
keeps decreasing and gets a sufficiently small value the families P̂i,n, i = 1, 2 are not
longer present and appear the periodic families where the second body follows an
inner orbit at the initial time. The description in the plane (x20, vy30) is similar to
the one given above, by using vy30 instead of vy20 in the discussion. In Figures 7,
8 are shown the families P̂i,n, i = 1, 2, n = 41, · · · , 46. Since all the characteristic
curves of the periodic families have the same shape, it is enough to plot one point
per family to see their distribution (see Figures 9 and 10). The corresponding initial
conditions O(i, n, 0.9997) are listed in Table 1.
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Figure 7. Projection of the families P̂i,n, i = 1, 2, n = 41, · · · , 46
onto the plane (x20, vy20). The second root data is denoted by the
bold series.

Figure 8. Projection of the families P̂i,n, i = 1, 2, n = 41, · · · , 46
onto the plane (x20, vy30). The second root data is denoted by the
bold series.

In terms of x20, the times Tθ are increasing functions and the difference between
the mean values of Tθ of neighboring families is approximately equal to 2π. The



HORSESHOE ORBITS IN THE PLANAR 3-BODY PROBLEM 1001

Figure 9. Value vy20 of the initial conditions of the orbits
O(i, n, 0.9997), i = 1, 2, n = 41, · · · , 46. The second root data
is denoted by the bold series.

Figure 10. Value vy30 of the initial conditions of the orbits
O(i, n, 0.9997), i = 1, 2, n = 41, · · · , 46. The second root data
is denoted by the bold series.

first property indicates that in each family the three bodies need more time to come
from RC3 to RC2 as x20 grows. On the other hand, the angle θ can be an increasing
or decreasing function of x20. In fact, at least in the studied region, the root and
class numbers determine the behavior of θ. Only the families with first root and
odd class number present a decreasing angle θ as function of x20 (see Figure 11).
Concerning the horseshoe orbits belonging to periodic families with increasing or
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decreasing θ, we also noticed the following property. For each horseshoe orbit in
P̂1,n ∪ P̂2,n, n = 41, · · · , 46, and osculating eccentricity ej of the body j = 2, 3 at
t = 0, holds: if the angle θ decreases (increases) as x20 grows then e2 is less (bigger)
than e3.

Figure 11. Values θ of the families P̂1,n, n = 41, · · · , 46. At
x20 = 0.99965, from top to bottom the values appear according to
the following class numbers: 42, 41, 44, 46, 43, 45.

A rotating frame with an adequate constant angular velocity ω is useful to show
symmetric and periodic properties. The position vector g in the rotating frame is
related to its counterpart r in the inertial frame by means of

g =




cos(ωt) sin(ωt)

− sin(ωt) cos(ωt)



 r.

Remark 2. Note that in our case the minor bodies carry out an angular displace-
ment equals 2(2nπ + θ) in a time of 2Tθ, then for the orbits in P̂i,n, i = 1, 2,
n = 41, · · · , 46 the adequate frequency of the rotation frame is

ω =
2nπ + θ

Tθ
.

In the rotating frame any of these horseshoe orbits is symmetric with respect to
the horizontal axis independently of θ, with period equals 2Tθ (see Figure 12).

According to the beginning of this Section, the horseshoe periodic orbits with root
number i = 1 pass through N2 = 1 configurations C2 in I2. From the numerical
results it is obtained N1 = 3 (see Figure 13), that is, the periodic families P̂i,n,
i = 1, n = 41, · · · , 46 are conformed by horseshoe orbits which pass through N1 = 3
configurations C3 in I1 and N2 = 1 configurations C2 in I2. In a similar way, the
other case is characterized by i = 2, N1 = 3, N2 = 3 (see Figure 14).
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Figure 12. Trajectories of the satellites in a rotating frame
with constant angular velocity, corresponding to the orbit
O(1, 41, 0.9997). The left horseshoe denotes the trajectory of the
third body.

To describe the properties of the horseshoe orbits according to their root number,
we are going to remember two aspects of the collinear configurations in these orbits.
First, the orbits of the minor bodies near collinear configurations are approximately
elliptic, since they are relatively distant, and second, at collinear configurations the
vectors of position are perpendicular to the vectors of velocity, that is ri · vi =
0, i = 1, 2, 3. Therefore the satellites present two types of positions at collinear
configurations of the three bodies in the horseshoe orbits: apocentre or pericentre,
which we denote respectively by AC and PC. The root number i determines the
type of position of the satellites (AC or PC) at RC3 and RC2. For reference see
Table 2 and Figures 13, 14.

4.6. Comparison with the case of two equal masses. In the space of initial
conditions (x20, vy20, vy30), as function of the class number, the arrangement of
P̂2,n and the periodic families of Paper I [3], namely Pn, is similar. In contrast,

the distribution of the families P̂1,n does not show that pattern, and the distance

between neighboring families, that is P̂i,n and P̂i,n+1 with i = 1, 2, n = 41, · · · , 45,
increases and decreases alternately as the class number grows.

The times Tθ of the current work and Paper I present similar features, al-
though they correspond to different reversible configurations: collinear-collinear
and collinear-isosceles, respectively.
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Table 2. Positions of the satellites (apocentre or pericentre, for
short respectively AC, PC) at configurations RC3, RC2 for horse-
shoe orbits O(i, n, x20) in P̂i,n, i = 1, 2, n = 41, · · · , 46. We stand
Ni for the body N = 2, 3 whose horseshoe orbit possesses root
number i.

body root\configuration RC3 RC2

21 PC PC
31 AC AC
22 PC AC
32 AC PC

Figure 13. Trajectories of the minor bodies in a rotating
frame with constant angular velocity, corresponding to the orbit
O(1, 41, 0.9997). From left to right, the first plot shows the inner
and outer trajectories of the body 3, whereas the second and third
display respectively the inner and outer trajectories of the body 2
(for reference see Figure 2).

To establish a clear correspondence between the results of both studies, it is useful
to remember other issues concerning the periodic families of Paper I. In order to
obtain periodic orbits Pn, we used a similar procedure to the one considered here,
but instead of RC2 we chose an isosceles reversible configuration that only exists if
at least two of the three masses mi, i = 1, 2, 3 are equal. In the rotating frame these
horseshoe orbits have two mirror symmetries, one in each coordinate axis. Due to
the vertical symmetry, if the position of the third body at RC3 is AC (PC) then the
position of the second body at RC2 is AC (PC). Notice that the previous argument
is still valid if we interchange the bodies 2 and 3 in the discussion (when both cases
are fulfilled we say that propertyR holds). Finally, evaluating these horseshoe orbits
at RC2 we found that the corresponding root in F is second root. We notice that
Pn and P̂2,n share some of the mentioned features. For instance, their horseshoe
orbits possess second root and meet property R, which suggests that, in the sense
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Figure 14. Trajectories of the minor bodies in a rotating
frame with constant angular velocity, corresponding to the orbit
O(2, 41, 0.9997). From left to right, the first plot shows the inner
and outer trajectories of the body 3, whereas the second and third
display respectively the inner and outer trajectories of the body 2
(for reference see Figure 2).

of Poincare’s continuation method of periodic orbits, P̂2,n is the continuation of Pn,
with µ3 ≡ m3/m1 as the continuation parameter. In Paper I we have used the value
µ3 = 3.5× 10−4, then the current value m3/m1 = 9.7× 10−5 can be considered as
a perturbation of the first one, that is µ3 + δµ3, δµ3 = −2.53 × 10−4. Under the
same reasoning, the families P̂1,n, whose horseshoe orbits possess one symmetry in
the rotating frame, should correspond to the continuation of some periodic families
of the case of two equal masses. These families were not calculated in Paper I, since
the collinear-isosceles reversible configurations only allow to see horseshoe orbits
which possess two symmetries. This is consistent with the fact that, in terms of
reversible configurations, collinear-isosceles implies collinear-collinear, nevertheless
the converse is not true.

5. Conclusions. We have computed and analyzed some periodic families of horse-
shoe orbits P̂i,n, i = 1, 2, n = 41, · · · , 46. For the numerical study we used the
values m2/m1 = 3.5 × 10−4, m3/m1 = 9.7 × 10−5. Due to the mass ratios used
here, the satellites exert an important influence on the planet’s movement during
the encounter (notice that the masses of the satellites are not so small to ignore it,
as in the Saturn-Janus-Epimetheus system). Nevertheless, the mass of the planet
is enough to avoid an abrupt separation of the satellites during the encounter and
allow the switch between the role of the small bodies, namely inner or outer. These
orbits possess two collinear reversible configurations RC3, RC2. Due to this, the
horseshoe orbits display a mirror symmetry in the rotating frame.

We conclude mentioning some points that, although have not been studied here,
can be approached with the methods of this work. First, it is interesting the study of
horseshoe periodic orbits with the usual reversible configuration RC3 at t = 0 and a
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second reversible configuration (not necessarily RC2) that belongs to a later interval
In, n > 2. Second, a question about reversible configurations in the horseshoe orbits.
The horseshoe periodic orbits calculated pass through only two different reversible
configurations, namely RC3 at times t = 2lTθ and RC2 at t = (2l+1)Tθ with l ∈ Z.
An interesting open question in this point is about the existence of horseshoe orbits
which pass through more than two different reversible configurations. Finally, with
respect to the bifurcation of the families of horseshoe periodic orbits we have noticed
that the horseshoe orbits with even number N2 play an important role, since they
are not generic. We have calculated horseshoe periodic orbits with numbers N2 = 1
and N2 = 3, thus apparently the orbits corresponding to N2 = 2 are the bridge
between the first ones. It is outlined in Figure 15.

Figure 15. Outline of the function F for horseshoe orbits which
pass through one, two and three configurations C2. These cases
are shown from left to right, respectively.

Appendix A. Time-reversal symmetry. We present some results about the
time-reversal symmetries of the equations of motion of the three-body problem (for
instance, see [15], [13], [10]).

Consider a solution of the three-body problem

ri(t), vi(t), i = 1, 2, 3, t ∈ R,

with the initial condition ri0 = ri(0), vi0 = vi(0), i = 1, 2, 3, and let K be an
orthogonal matrix and c a vector in R2. Then

r̃i(t) = Kri(−t) + c, ṽi(t) = −Kvi(−t), i = 1, 2, 3, (10)

is also a solution of the system with the initial condition r̃i0 = Kri0 + c, ṽi0 =
−Kvi0, i = 1, 2, 3.

To see that (10) is a solution of the three-body problem, we calculate the deriva-
tives and show that they satisfy the equations of motion. Using the change of scale
τ = −t, we obtain

d

dt
r̃i(t) =

d

dt
Kri(−t) = −K

d

dτ
ri(τ) = −Kvi(τ) = ṽi(t).



HORSESHOE ORBITS IN THE PLANAR 3-BODY PROBLEM 1007

For the velocity of the body i, consider the cyclic values j, k, where i, j, k ∈ {1, 2, 3}:

d

dt
ṽi(t) = −

d

dt
Kvi(−t) = K

d

dτ
vi(τ) =

= KG

[
mj(rj(τ)− ri(τ))

|rj(τ) − ri(τ)|3
+

mk(rk(τ) − ri(τ))

|rk(τ) − ri(τ)|3

]
=

=
Gmj(r̃j(t)− r̃i(t))

|rj(τ)− ri(τ)|3
+

Gmk(r̃k(t)− r̃i(t))

|rk(τ) − ri(τ)|3
.

We also use the invariance of the norm under the matrix multiplication of K:

|rs(τ) − ri(τ)| = |K(rs(τ) − ri(τ))| = |r̃s(t)− r̃i(t)| = r̃is,

therefore

d

dt
ṽi(t) =

Gmj(r̃j(t)− r̃i(t))

r̃3ij
+

Gmk(r̃k(t)− r̃i(t))

r̃3ik
.

A.1. Collinear reversible configurations. In the following we use

K =




1 0

0 −1



 , c = 0.

Notice that if

r̃i0 = ri0, ṽi0 = vi0, i = 1, 2, 3 (11)

is fulfilled then, as a consequence of the uniqueness of the solution and (10), we
have ri(t) = Kri(−t), vi(t) = −Kvi(−t), i = 1, 2, 3. Solving the system (11) we
obtain

yi0 = 0, vxi0 = 0, i = 1, 2, 3,

that is, the initial condition corresponds to a collinear reversible configuration (see
Figure 16). We remark that if the collinear reversible configuration happens at
t = α, instead of t = 0, then ri(t) = Kri(2α− t), vi(t) = −Kvi(2α− t), i = 1, 2, 3
holds.

Figure 16. Collinear reversible configuration.
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