On some nonclassical fullerenes with several heptagonal rings

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/410/1/012164)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 148.206.47.115
This content was downloaded on 21/01/2014 at 22:29

Please note that terms and conditions apply.
On some nonclassical fullerenes with several heptagonal rings

Francisco J. Sánchez-Bernabe

1 Department of Mathematics, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, México, D.F., 09340, Mexico
E-mail: fjsb@xanum.uam.mx

Abstract. Several works on nonclassical fullerenes with heptagons have mainly considered the case with just one heptagon. In this context the isolated pentagon rule is not satisfied. The study of nonclassical fullerenes is important because some of them are more stable than the corresponding classical isomers with the same number of pentagonal bonds. We present several nonclassical fullerenes with pentagons, hexagons and two, three, or more heptagons.

1. Introduction
Classical fullerenes are those carbon cage molecules with exactly 12 pentagons and \(n/2 - 10 \) hexagons, Patrick Fowler and David Manolopoulos [1]. All classical fullerenes satisfy the so-called isolated pentagon rule IPR, Harold Kroto [2]. On the other hand, nonclassical fullerenes are those carbon cage molecules embedded with one or more squares or heptagons. In this last case, sometimes pentagon-pentagon adjacencies appear, and the most stable structure allows for the least pentagon-pentagon adjacencies, which is known as the pentagon adjacency penalty rule PAPR, Eleanor Campbell et al [3]. Actually, the IPR or PAPR has been an efficient criterion for explaining the stability of fullerenes.

2. Background
An amount of work has been done to study nonclassical fullerenes. For instance, Andrés Ayuela et al [4] show theoretical evidence for the existence of a nonclassical fullerene \(C_{62} \) with one heptagonal, 13 pentagonal and 19 hexagonal rings. Jie An et al [5] study the isomers of fullerene \(C_{26} \) composed of square, pentagonal, hexagonal, and heptagonal faces. Yuan-Zhi Tan et al [6] consider the fullerene \(C_{68} \) which contains one heptagonal ring. Furthermore, Li-Hua Gan et al [7] study fullerenes \(C_{46}, C_{48}, C_{50}, \) and \(C_{52}, \) some of them composed of one heptagonal ring.

3. Calculations
We have obtained the graphs of our results by running the V0.3 version of (Carbon Generator) CaGe software, Gunnar Brinkmann [8], [9]. Schlegel diagrams [10] are also provided for each considered fullerene. Our first example of nonclassical fullerene contains 68 carbons with two heptagonal rings, 14 pentagons, and 20 hexagons. Therefore, this polyhedron has a total number of 36 faces, 102 edges, and of course 68 vertexes. It is shown the 2-dimensional representation (Schlegel diagram) of this fullerene in Figure 1, and its 3-dimensional graph in Figure 2.
The second example of nonclassical fullerene has 80 carbons, three heptagonal rings, 15 pentagons, and 24 hexagons. This polyhedron has a total number of 42 faces, 120 edges, and of course 80 vertexes. The Schlegel diagram of this fullerene is shown in Figure 3, and its 3-dimensional graph in Figure 4.
Next, the third example of nonclassical fullerene contains 82 carbons with four heptagonal rings, 16 pentagons, and 23 hexagons. Therefore, this polyhedron has a total number of 43 faces, 123 edges, and of course 82 vertexes. It is shown the 2-dimensional representation of this fullerene in Figure 5, and its 3-dimensional graph in Figure 6.

![Figure 6. Fullerene with 82 carbons, 4 heptagons, 23 hexagons, and 16 pentagons.](image)

Finally, the fourth example of nonclassical fullerene contains 76 carbons with six heptagonal rings, 18 pentagons, and 16 hexagons. Therefore, this polyhedron has a total number of 40 faces, 114 edges, and of course 76 vertexes. The 2-dimensional representation of this fullerene is shown in Figure 7, and its 3-dimensional graph in Figure 8.

Obtained results are summarized in Table 1.

<table>
<thead>
<tr>
<th>carbons</th>
<th>edges</th>
<th>heptagons</th>
<th>hexagons</th>
<th>pentagons</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>102</td>
<td>2</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>80</td>
<td>120</td>
<td>3</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>82</td>
<td>123</td>
<td>4</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>76</td>
<td>114</td>
<td>6</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

4. Conclusions
We have considered four nonclassical fullerenes with two, three, four, and six heptagonal rings. In the first case, the 68 carbons fullerene contains 2 heptagonal rings. One of them is surrounded by 4 pentagons next to each other, and one pentagon lies between 2 hexagons. The other heptagonal ring is surrounded by a couple of pentagons, which lies between two hexagons; the border is
completed by one hexagon in the middle of 2 pentagons. With respect to the 80 carbons case, the structure of the pentagons and hexagons surrounding each one of the 3 heptagonal rings follows one of the patrons of the 68 carbons fullerene. A similar situation occurs with the 82 carbons case. But, the 76 carbon fullerene, presents two new cases: a couple of pentagons, then a hexagon, followed by another couple of pentagons, and the boundary of this heptagonal ring is completed by 2 hexagons next to each other. The other type boundary surrounding a heptagonal ring is: a couple of hexagons, which lies between two pentagons; the border is completed by one pentagon in the middle of 2 hexagons.

Acknowledgments
The author thanks Berenice Sánchez and Óscar del Valle for installation of CaGe software.

References
[2] Krotó H W 1986 The stability of the fullerenes \(C_n \) with \(n = 24, 28, 32, 36, 50, 60 \) and 70 Nature 329 529-531