Vladimir V. Tkachuk

A Cp-Theory Problem Book

Special Features of Function Spaces

Problem Books in Mathematics

Series Editors:
Peter Winkler
Department of Mathematics
Dartmouth College
Hanover, NH 03755
USA

For further volumes:

http://www.springer.com/series/714

Vladimir V. Tkachuk

A C*p*-Theory Problem Book

Special Features of Function Spaces

Vladimir V. Tkachuk Departamento de Matematicas Universidad Autonoma Metropolitana-Iztapalapa San Rafael Atlixco, Mexico City, Mexico

ISSN 0941-3502 ISBN 978-3-319-04746-1 ISBN 978-3-319-04747-8 (eBook) DOI 10.1007/978-3-319-04747-8 Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933677

Mathematics Subject Classification (2010): 54C35

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This is the second volume of the series of books of problems in C_p -theory entitled A C_p -Theory Problem Book, i.e., this book is a continuation of the first volume subtitled Topological and Function Spaces. The series was conceived as an introduction to C_p -theory with the hope that each volume will also be used as a reference guide for specialists.

The first volume provides a self-contained introduction to general topology and C_p -theory and contains some highly nontrivial state-of-the-art results. For example, Sect. 1.4 presents Shapirovsky's theorem on the existence of a point-countable π -base in any compact space of countable tightness and Sect. 1.5 brings the reader to the frontier of the modern knowledge about realcompactness in the context of function spaces.

This present volume introduces quite a few topics from scratch but dealing with topology and C_p -theory is already a professional endeavour. The objective is to study the behaviour of general topological properties in function spaces and establish the results on duality of cardinal functions and classes with respect to the C_p -functor. The respective background includes a considerable amount of topnotch results both in topology and set theory; the author's obsession with keeping this work self-contained implied that an introduction to advanced set theory had to be provided in Sect. 1.1. The methods developed in this section made it possible to present a very difficult example of Todorčevič of a compact strong S-space.

Of course, it was impossible to omit the famous Baturov's theorem on coincidence of the Lindelöf number and extent in subspaces of $C_p(X)$ for any Lindelöf Σ -space X and the result of Christensen on σ -compactness of X provided that $C_p(X)$ is analytic. The self-containment policy of the author made it obligatory for him to give a thorough introduction to Lindelöf Σ -spaces in Sect. 1.3 and to the descriptive set theory in Sect. 1.4.

We use all topological methods developed in the first volume, so we refer to its problems and solutions when necessary. Of course, the author did his best to keep *every* solution as independent as possible, so a short argument could be repeated several times in different places.

vi Preface

The author wants to emphasize that if a postgraduate student mastered the material of the first volume, it will be more than sufficient to understand every problem and solution of this book. However, for a concrete topic, much less might be needed. Finally, let me outline some points which show the potential usefulness of the present work:

- The only background needed is some knowledge of set theory and real numbers; any reasonable course in calculus covers everything needed to understand this book.
- The student can learn all of general topology required without recurring to any textbook or papers; the amount of general topology is strictly minimal and is presented in such a way that the student works with the spaces $C_p(X)$ from the very beginning.
- What is said in the previous paragraph is true as well if a mathematician working outside of topology (e.g., in functional analysis) wants to use results or methods of C_p-theory; he (or she) will find them easily in a concentrated form or with full proofs if there is such a need.
- The material we present here is up to date and brings the reader to the frontier of knowledge in a reasonable number of important areas of C_p -theory.
- This book seems to be the first self-contained introduction to C_p -theory. Although there is an excellent textbook written by Arhangel'skii (1992a), it heavily depends on the reader's good knowledge of general topology.

Mexico City, Mexico

Vladimir V. Tkachuk

Contents

1	Dua	lity Theorems and Properties of Function Spaces	1
	1.1	Some Additional Axioms and Hereditary Properties	2
	1.2	Monolithity, Stability and Their Generalizations	11
	1.3	Whyburn Spaces, Calibers and Lindelöf Σ -Property	19
	1.4	A Glimpse of Descriptive Set Theory	27
	1.5	Additivity of Properties: Mappings Between Function Spaces	35
	1.6	Bibliographic Notes	42
2	Solu	tions of Problems 001–500	45
3	Bon	us Results: Some Hidden Statements	527
	3.1	Standard Spaces	528
	3.2	Metrizable Spaces	529
	3.3	Compact Spaces and Their Generalizations	530
	3.4	Properties of Continuous Maps	531
	3.5	Completeness and Convergence Properties	532
	3.6	Product Spaces	533
	3.7	Cardinal Invariants and Set Theory	535
	3.8	Raznoie (Unclassified Results)	536
4	Ope	n Problems	539
	4.1	Analyticity and Similar Properties	540
	4.2	Whyburn Property in Function Spaces	541
	4.3	Uniformly Dense Subspaces	542
	4.4	Countable Spread and Similar Properties	544
	4.5	Metacompactness and Its Derivatives	547
	4.6	Mappings Which Involve C_p -Spaces	551
	4.7	Additivity of Topological Properties	552
	48	Raznoie (Unclassified Questions)	554

viii		Contents

Bibliography	557
List of Special Symbols	573
Index	577

Detailed Summary of Exercises

1.1. Tampering with Additional Axioms: Some Hereditary	Properties
Equivalent conditions for $hl(X) \le \kappa$	Problem 001.
Characterizing hereditarily/perfectly normal spaces	. Problems 002–003.
Right-separated and left-separated spaces	
Invariants s , hl , hd in finite and countable powers	. Problems 010–013.
Spread of $X \times X$ is an upper bound for $\min\{hd(X), hl(X)\}$	Problem 014.
A bound on cardinality of X using $hl(X)$	
$\theta(X \times X) \le \varphi(C_p(X))$ if $\varphi \in \{s, hl, hd\}$ and θ is its dual	Problems 016–018.
Hedgehogs and duality theorems for s^* , hl^* , hd^*	Problems 019–035.
Properties $s \le \omega$ and $hl \le \omega$ can be multiplicative in $C_p(X)$	Problem 036.
Non-separable spaces of countable spread	Problem 037.
The Delta-lemma	
CH constructions for distinguishing s , hl and hd	Problems 039–040.
Compact spaces and their points of $\chi \leq \omega$ under CH	Problem 041.
There are P -points in $\beta\omega\setminus\omega$ under CH	Problem 042.
Some results on Luzin spaces	
Martin's axiom and its applications	Problems 047–063.
Stationary and club subsets of ω_1	
Trees and Jensen's axiom	
Souslin tree and Souslin continuum	Problems 072–076.
Condensing onto hereditarily separable spaces	
Around perfect normality in function spaces	
Metrizability and perfect normality of compact spaces	
Preparing ground for example of a compact strong S -space	
Todorcevic's example and its applications	Problems 098–100.
1.2. Monolithity, Stability and Their Generalizations	
Monolithity and stability in metrizable spaces	. Problems 101–106.
Monolithity and stability in general spaces	
Scattered spaces, P -spaces and κ -simple spaces	. Problems 127–130.
Versions of ω -stability and to pseudocompactness	

Versions of ω -monolithity in $C_p(X)$ implying that X is finite.	Problem 132.
Scattered spaces and Fréchet–Urysohn property in $C_p(X)$	Problems 133-136.
On ω -relativization of Čech-completeness in $C_p(X)$	Problems 137-138.
On ω -relativization of normality in $C_p(X)$	Problems 139-142.
Stability and monolithity in $C_p(X)$ vs those in $C_p(X, \mathbb{I})$	Problems 143–144.
$\theta(\omega)$ -stability in X and vX	
Some generic duality theorems	. Problems 146–151.
Some applications of generic duality theorems	. Problems 152–177.
$\varphi(\omega)$ -monolithity in $C_p(X)$ for $\varphi \in \{iw, \Delta, \psi\}$	Problems 178-180.
Duality for relativizations of tightness and similar properties .	. Problems 181–184.
Relativizations of tightness and Fréchet-Urysohn property	
A dual property for being κ -scattered	
A property of $C_p(X)$ for Hurewicz* $d(\omega)$ -stable spaces X	
Some monolithity properties and countable spread	
Free sequences in $C_p(X)$ under MA+ \neg CH	
ω -monolithity and countable spread in X under MA+ \neg CH	
Hereditary stability of $C_p(X)$ can imply $nw(X) = \omega$	
1.3. Whyburn Spaces, Calibers and Lindelöf Σ -Property	
Two statements about hereditarily normal compact spaces	Problems 201–202
If X is compact and $X^2 \setminus \Delta$ is paracompact, then X is metrizab	
Whyburn spaces and weakly Whyburn spaces	
Hereditarily <i>k</i> -spaces are Fréchet–Urysohn	
More of Whyburn spaces and weakly Whyburn spaces	
p -spaces vs Σ -spaces	
Some characterizations of Lindelöf Σ -property by extensions	
Σ -property in $C_p(X)$	
Compact-valued maps and Lindelöf Σ -property	
Categorical properties of Lindelöf Σ -spaces	
Lindelöf Σ -spaces and with small compact subsets	
Baire property together with Lindelöf (Σ -)property of $C_p(X)$	
Stability in Lindelöf Σ -spaces and their products	
Baturov's theorem	
Hereditary Lindelöf Σ -property implies countable netweight .	
Basic properties of calibers and precalibers	
The Souslin property and caliber ω_1 under additional axioms.	
Duality results for small diagonals and calibers	
Compact spaces and Lindelöf Σ -spaces with small diagonal	
1.4. A Glimpse of Descriptive Set Theory	
Zero-dimensional spaces and their properties	. Problems 301–314.
A theorem on continuous selections and its applications	
Universal Borel sets of given class	
Borel complexity of subsets of uncountable Polish spaces	
A countable space not embeddable into any C_p (Borel set)	

	. Problems 323–324.
Open, closed and perfect maps on Polish spaces	Problems 325–329.
Capturing all Borel sets	Problem 330.
Categorical properties of Borel sets	. Problems 331–333.
Some trivial properties of analytic spaces	Problems 334–337.
Inverse images of analytic sets	Problem 338.
Separation theorem and Borel sets as analytic+coanalytic	
Condensations of Borel sets	
A non-analytic subspace of the reals	
Some properties of <i>K</i> -analytic spaces	
Axiomatic characterizations for the Cantor set, \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q} \dots$	
Q is a universal space for countable metrizable spaces	
Closed embeddings of $\mathbb Q$ in non-Polish spaces	Problem 351.
Closed embeddings in analytic spaces	Problems 352–353.
Pytkeev's theorem on condensations of Borel sets	Problem 354.
Condensations and continuous maps onto nice spaces	Problems 355–359.
σ -compactness of X and analyticity of $C_p(X)$	
A countable space X with $C_p(X)$ non-analytic	
Countable spaces X with $C_p(X)$ of any Borel complexity	
Some results on absolute $F_{\sigma\delta}$ -property	
Embedding second countable spaces into C_p (compactum)	
The functions of first Baire class and Rosenthal compacta	
K -analytic spaces and \mathbb{P} -directed compact covers	
<i>K</i> -analytic spaces with small compact subsets	
P-directed sets and metrization of a compact space	
K -analyticity in general and in spaces $C_p(X)$	
- 1 · · ·	
1.5. Additivity of Properties: Mappings Between Function S	_
Some properties are not finitely/countably additive	Problems 401–407.
Additivity in squares and countable powers	. Problems 408–418.
A metric which generates the uniform topology on $C^*(X)$. Problems 408–418 Problem 419.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands	. Problems 408–418 Problem 419 Problems 420–421.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions	. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions	Problems 408–418. Problem 419. . Problems 420–421. . Problems 422–430. . Problems 431–432. Problem 433.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions Closed countable additivity of hereditary properties	. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432 Problems 434–450.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions Closed countable additivity of hereditary properties Some properties are countably additive in arbitrary $C_p(X)$. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432 Problems 434–450 Problems 451–455.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions Closed countable additivity of hereditary properties Some properties are countably additive in arbitrary $C_p(X)$ Some properties are countably additive in "nice" $C_p(X)$. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432 Problems 434–450 Problems 451–455. Problems 456–461.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions Closed countable additivity of hereditary properties Some properties are countably additive in arbitrary $C_p(X)$ Some properties are countably additive in "nice" $C_p(X)$ Some results on uniformly dense subspaces of $C_p(X)$ Extent* of X and tightness of compact subspaces of $C_p(X)$ Around the theorem of Gerlits–Pytkeev	. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432 Problems 434–450 Problems 451–455 Problems 456–461 Problems 462 Problems 463–466.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions Closed countable additivity of hereditary properties Some properties are countably additive in arbitrary $C_p(X)$ Some properties are countably additive in "nice" $C_p(X)$ Some results on uniformly dense subspaces of $C_p(X)$ Extent* of X and tightness of compact subspaces of $C_p(X)$ Around the theorem of Gerlits–Pytkeev	. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432 Problems 434–450 Problems 451–455 Problems 456–461 Problems 462 Problems 463–466.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions Closed countable additivity of hereditary properties Some properties are countably additive in arbitrary $C_p(X)$ Some properties are countably additive in "nice" $C_p(X)$ Some results on uniformly dense subspaces of $C_p(X)$ Extent* of X and tightness of compact subspaces of $C_p(X)$ Around the theorem of Gerlits–Pytkeev Extending continuous maps from X to $C_p(C_p(X))$ When $C_p(X)$ maps continuously onto $C_p(Y)$?	. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432 Problems 434–450 Problems 451–455 Problems 456–461 Problems 463–466. Problems 467–469 Problems 470–491.
A metric which generates the uniform topology on $C^*(X)$ Finite additivity in $C_p(X)$: reduction to dense summands Some properties are finitely additive in $C_p(X)$ Decompositions of $C_p(X)$ into countable unions Closed countable additivity of hereditary properties Some properties are countably additive in arbitrary $C_p(X)$ Some properties are countably additive in "nice" $C_p(X)$ Some results on uniformly dense subspaces of $C_p(X)$ Extent* of X and tightness of compact subspaces of $C_p(X)$ Around the theorem of Gerlits–Pytkeev Extending continuous maps from X to $C_p(C_p(X))$. Problems 408–418 Problem 419 Problems 420–421 Problems 422–430 Problems 431–432 Problems 434–450 Problems 451–455 Problems 456–461 Problems 463–466. Problems 467–469 Problems 470–491.

Introduction

The term " C_p -theory" was invented to abbreviate the phrase "The theory of function spaces endowed with the topology of pointwise convergence". The credit for the creation of C_p -theory must undoubtedly be given to Alexander Vladimirovich Arhangel'skii. The author is proud to say that Arhangel'skii also was the person who taught him general topology and directed his Ph.D. thesis. Arhangel'skii was the first to understand the need to unify and classify a bulk of heterogeneous results from topological algebra, functional analysis and general topology. He was the first to obtain crucial results that made this unification possible. He was also the first to formulate a critical mass of open problems which showed this theory's huge potential for development.

Later, many mathematicians worked hard to give C_p -theory the elegance and beauty it boasts nowadays. The author hopes that the work he presents for the reader's judgement will help to attract more people to this area of mathematics.

The main text of this volume consists of 500 statements formulated as problems; it constitutes Chap. 1. These statements provide a gradual development of many popular topics of C_p -theory to bring the reader to the frontier of the present-day knowledge. A complete solution is given to every problem of the main text.

The material of Chap. 1 is divided into five sections with 100 problems in each one. The sections start with an introductory part where the definitions and concepts to be used are given. The introductory part of any section *never exceeds two pages and covers everything that was not defined previously.* Whenever possible, we try to save the reader the effort of ploughing through various sections, chapters and volumes, so we give the relevant definitions in the current section not caring much about possible repetitions.

Chapter 1 ends with some bibliographical notes to give the most important references related to its results. The selection of references is made according to the author's preferences and by no means can be considered complete. However, a complete list of contributors to the material of Chap. 1 can be found in our bibliography of 300 items. It is my pleasant duty to acknowledge that I consulted the paper of Arhangel'skii (1998a) to include quite a few of its 375 references in my bibliography.

xiv Introduction

Sometimes, as we formulate a problem, we use without reference definitions and constructions introduced in other problems. The general rule is to try to find the relevant definition *not more than ten problems before*.

The first section of Chap. 1 deals with hereditary properties in $C_p(X)$. To understand the respective results, the reader needs a topological background including the ability to manage additional axioms of ZFC and apply strong and difficult methods of set theory. The pursuit of self-containment obliged the author to give an introduction to advanced set theory. In this section the reader can find the applications of continuum hypothesis, Martin's axiom, Jensen's axiom, Souslin trees and Luzin spaces.

The non- C_p material presented in Chap. 1 also includes an introduction to descriptive set theory and Lindelöf Σ -spaces. This helped to keep this work self-contained when we gave the proofs of Baturov's theorem on $C_p(X)$ for a Lindelöf Σ -space X and Christensen's theorem on σ -compactness of X provided that $C_p(X)$ is analytic. There are many topics in Chap. 1 which are developed up to the frontier of the present-day knowledge. In particular, Sect. 1.5 includes the famous Gerlits–Pytkeev theorem about coincidence of the Fréchet–Urysohn property and k-property in any space $C_p(X)$.

The complete solutions of all problems of Chap. 1 are given in Chap. 2. Chapter 3 begins with a selection of 100 statements which were proved as auxiliary facts in the solutions of the problems of the main text. This material is split into six sections to classify the respective results and make them easier to find. Chapter 4 consists of 100 open problems presented in ten sections with the same idea: to classify this bulk of problems and make the reader's work easier.

Chapter 4 also witnesses an essential difference between the organization of our text and the book of Arhangel'skii and Ponomarev (1974): we never put unsolved problems in the main text as is done in their book. All problems formulated in Chap. 1 are given complete solutions in Chap. 2 and the unsolved ones are presented in Chap. 4.

There is little to explain about how to use this book as a reference guide. In this case the methodology is not that important and the only thing the reader wants is to find the results he (or she) needs as fast as possible. To help with this, the titles of chapters and sections give the first approximation. To better see the material of a chapter, one can consult the second part of the Contents section where a detailed summary is given; it is supposed to cover all topics presented in each section. Besides, the index can also be used to find necessary material.

To sum up the main text, I believe that the coverage of C_p -theory will be reasonably complete and many of the topics can be used by postgraduate students who want to specialize in C_p -theory. Formally, this book can also be used as an introduction to general topology. However, it would be a somewhat biased introduction, because the emphasis is always given to C_p -spaces and the topics are only developed when they have some applications in C_p -theory.

To conclude, let me quote an old saying which states that the best way for one to learn a theorem is to prove it oneself. This text provides a possibility to do this. If the reader's wish is to read the proofs, then they are concentrated immediately after the main text.

Chapter 1 Duality Theorems and Properties of Function Spaces

This chapter presents some fundamental aspects of set theory, descriptive set theory, general topology and C_p -theory.

Section 1.1 introduces some advanced concepts of set theory. We give the statements and applications of the continuum hypothesis, Martin's axiom and Jensen's axiom. The next thing under the study is the behavior of spread, hereditary Lindelöf number and hereditary density in function spaces. The most important results of this section are the duality theorems for s^* , hd^* and hl^* (Problems 025–030) and Todorcevic's example of a strong S-space (Problem 098).

In Sect. 1.2 we deal with monolithity, stability and their generalizations. The principal results are presented as several generic theorems on duality between $\eta(\kappa)$ -monolithity and $\theta(\kappa)$ -stability, formulated in Problems 146–151.

Section 1.3 starts with Whyburn spaces and their properties. Next, we introduce Lindelöf Σ -spaces and their most important characterizations. The rest of the section is devoted to calibers, precalibers and small diagonals. The most important results include Baturov's theorem on extent in subspaces of $C_p(X)$ for a Lindelöf Σ -space X (Problem 269) and Gruenhage's theorem on Lindelöf Σ -spaces with a small diagonal (Problem 300).

In Sect. 1.4 we introduce the basic notions of descriptive set theory and give their applications to C_p -theory. This section features three main results: Christensen's theorem on analyticity of $C_p(X)$ (Problem 366), Fremlin's theorem on K-analytic spaces whose compact subspaces are metrizable (Problem 395) and Pytkeev's theorem on condensations of Borel sets (Problem 354).

The first part of Sect. 1.5 comprises some results on decompositions of $C_p(X)$ into a finite or countable union of subspaces with "nice" properties. The second part is devoted to the study of the existence of good mappings between $C_p(X)$ and $C_p(Y)$ and the simplest implications this has for the spaces X and Y. We also have two main results in this section: Gerlits–Pytkeev theorem on k-property in $C_p(X)$ (Problem 465) and Tkachuk's theorem on discreteness of X if $C_p(X)$ is homeomorphic to a retract of a $G_{\delta\sigma}$ -subspace of \mathbb{R}^X (Problem 500).

1.1 Some Additional Axioms and Hereditary Properties

A space X is *left-separated* (*right-separated*) if there exists a well-order < on X such that the set $\{y \in X : y < x\}$ is closed (open) in X for any $x \in X$. A space X is *scattered* if any subspace $Y \subset X$ has an isolated point. Recall that $\varphi^*(X) = \sup\{\varphi(X^n) : n \in \mathbb{N}\}$ and $h\varphi(X) = \sup\{\varphi(Y) : Y \subset X\}$ for any cardinal invariant φ . All results of this book are proved assuming that ZFC axioms hold. The abbreviation ZFC stands for Zermelo–Fraenkel–Choice. This axiomatic system is the most accepted one at the present moment. We won't need to have the knowledge of what the axioms of ZFC exactly say. It is sufficient to know that all they do is to postulate some very natural properties of sets. For the reader who wants to learn more, the book of Kunen (1980) is an excellent introduction to this subject.

In the twentieth century topologists and set-theorists discovered that there were some very natural problems which could not be solved using ZFC axioms only; to fix this, quite a few additional axioms have been created. Practically all of those axioms are proved to be *consistent with ZFC* which means that if ZFC has no contradiction, then ZFC, together with the axiom in question, does not have one. In this section we formulate the most popular additional axioms and their applications. All results of this book are proved in ZFC if no additional assumptions are formulated explicitly; however, we sometimes emphasize this.

The statement CH (called *Continuum Hypothesis*) says that the first uncountable ordinal is equal to the continuum, i.e., $\omega_1 = \mathfrak{c}$. The statement " $\kappa^+ = 2^{\kappa}$ for any infinite cardinal κ " is called *Generalized Continuum Hypothesis (GCH)*.

A partial order on a set \mathcal{P} is a relation \leq on \mathcal{P} with the following properties:

- (PO1) $p \le p$ for any $p \in \mathcal{P}$;
- (PO2) $p \le q$ and $q \le r$ imply $p \le r$;
- (PO3) $p \le q$ and $q \le p$ imply p = q.

The pair (\mathcal{P}, \leq) is called *a partially ordered set*. If the order is clear, we will write \mathcal{P} instead of (\mathcal{P}, \leq) . Let (\mathcal{P}, \leq) be a partially ordered set. The elements $p, q \in P$ are called *compatible* if there is $r \in P$ such that $r \leq p$ and $r \leq q$. If p and q are not compatible, they are called *incompatible*. A set $A \subset \mathcal{P}$ is an antichain if the elements of A are pairwise incompatible. We say that (\mathcal{P}, \leq) has the property ccc if any antichain of \mathcal{P} is countable. A set $D \subset \mathcal{P}$ is called *dense* in \mathcal{P} if, for every $p \in \mathcal{P}$, there is $q \in D$ such that $q \leq p$.

A non-empty set $F \subset \mathcal{P}$ is a filter if it has the following properties:

- (F1) for any $p, q \in F$, there is $r \in F$ such that r < p and r < q;
- (F2) if $p \in F$ and $p \le q$, then $q \in F$.

Given an infinite cardinal κ , we denote by $MA(\kappa)$ the following statement: for any ccc partial order \mathcal{P} and any family \mathcal{D} of dense subsets of \mathcal{P} with $|\mathcal{D}| \leq \kappa$, there is a filter $F \subset \mathcal{P}$ such that $F \cap D \neq \emptyset$ for any $D \in \mathcal{D}$. Now, *Martin's axiom*, *MA*, says that $MA(\kappa)$ holds for any infinite $\kappa < \mathfrak{c}$.

A subset $C \subset \omega_1$ is called *club* (\equiv *closed and unbounded*) if C is uncountable and closed in the order topology on ω_1 . A set $S \subset \omega_1$ is *stationary* if $S \cap C \neq \emptyset$

for any club $C \subset \omega_1$. *Jensen's axiom* \diamondsuit is the statement: for each $\alpha < \omega_1$, there is a set $A_\alpha \subset \alpha$ such that, for any $A \subset \omega_1$, the set $\{\alpha \in \omega_1 : A \cap \alpha = A_\alpha\}$ is stationary. The principle \diamondsuit^+ is the following statement: for each $\alpha \in \omega_1$, there is a countable family $\mathcal{A}_\alpha \subset \exp(\alpha)$ such that, for any $A \subset \omega_1$, there is a club $C \subset \omega_1$ for which $A \cap \alpha \in \mathcal{A}_\alpha$ and $C \cap \alpha \in \mathcal{A}_\alpha$ for any $\alpha \in C$. The sequence $\{\mathcal{A}_\alpha : \alpha < \omega_1\}$ is called $a \diamondsuit^+$ -sequence.

A space X is called *zero-dimensional* if X has a base consisting of clopen sets. A point $x \in X$ is called a P-point if any countable intersection of neighborhoods of x is a neighborhood of x. An uncountable dense-in-itself space X is called Luzin (also written Lusin) if any nowhere dense subspace of X is countable. Say that X is an L-space if $hl(X) = \omega < d(X)$; if $hd(X) = \omega < l(X)$, then X is called an S-space. The axiom SA says that there are no S-spaces, i.e., that every regular hereditarily separable space is Lindelöf. Furthermore, X is a strong S-space if $hd^*(X) = \omega < l(X)$; if $hl^*(X) = \omega < d(X)$, then X is called strong L-space.

A tree is a partially ordered set (\mathcal{T}, \leq) such that, for every $x \in \mathcal{T}$, the set $L_x = \{y \in \mathcal{T} : y < x\}$ is well ordered by \leq . We will often write \mathcal{T} instead of (\mathcal{T}, \leq) . If \mathcal{T} is a tree and $x \in \mathcal{T}$, then the height of x in \mathcal{T} or $\operatorname{ht}(x, \mathcal{T})$ is the ordinal isomorphic to L_x . For each ordinal α , the α -th level of \mathcal{T} or $\operatorname{Lev}_{\alpha}(\mathcal{T})$ is the set $\{x \in \mathcal{T} : \operatorname{ht}(x, \mathcal{T}) = \alpha\}$. The height $\operatorname{ht}(\mathcal{T})$ of the tree \mathcal{T} is the least α such that $\operatorname{Lev}_{\alpha}(\mathcal{T}) = \emptyset$. A subset $\mathcal{T}' \subset \mathcal{T}$ is called a subtree of \mathcal{T} if $L_x \subset \mathcal{T}'$ for every $x \in \mathcal{T}'$. A subset $C \in \mathcal{T}$ is called a chain if C is linearly ordered by \leq , i.e., every two elements of C are comparable. An antichain of \mathcal{T} is a set $A \subset \mathcal{T}$ such that $x, y \in A$ and $x \neq y$ implies $x \not\leq y$ and $y \not\leq x$. For every infinite cardinal κ , a κ -Souslin tree is a tree \mathcal{T} such that $|\mathcal{T}| = \kappa$ and every chain and every antichain have cardinality $< \kappa$. An ω_1 -Souslin tree is called Souslin tree. If κ is a regular cardinal, a κ -tree is a tree of height κ with levels of cardinality $< \kappa$. A κ -Aronszajn tree is a κ -tree with no chains of cardinality κ . An ω_1 -Aronszajn tree is called Aronszajn tree.

If $f: X \to Y$ and $Z \subset X$, we denote the restriction of f to Z by $f|_Z$ or $f|_Z$. If we have maps $f, g: X \to Y$, then $f \approx g$ if the set $\{x \in X : f(x) \neq g(x)\}$ is finite. Given functions $f: X \to Y$ and $g: X_1 \to Y_1$, we say that $f \subset g$ if $X \subset X_1, Y \subset Y_1$ and $g|_X = f$. Now, ω^α is the set of all maps from α to ω and $\omega^{<\omega_1} = \bigcup \{\omega^\alpha : \alpha < \omega_1\}$. Any ω_1 -sequence $\{s_\alpha : \alpha < \omega_1\} \subset \omega^{<\omega_1}$ such that $s_\alpha \in \omega^\alpha$ is an injective map and $s_\beta|_\alpha \approx s_\alpha$ for all $\alpha < \beta < \omega_1$ is called Aronszajn coding. Denote by \mathbf{P} the set of all monotonically increasing functions from ω^ω , i.e., $\mathbf{P} = \{f \in \omega^\omega : f(i) < f(j) \text{ whenever } i < j\}$. Given $f, g \in \omega^\omega$, we say that $f <^* g$ if there exists $m \in \omega$ such that f(n) < g(n) for all $n \geq m$. A sequence $\{f_\alpha : \alpha < \gamma\} \subset \omega^\omega$ is called $strictly <^*$ -increasing if $f_\alpha <^* f_\beta$ for all $\alpha < \beta < \gamma$. A set $S \subset \omega^\omega$ is $<^*$ -cofinal in ω^ω if, for any $f \in \omega^\omega$, we have $f <^* g$ for some $g \in S$.

- **001.** Given an infinite cardinal κ prove that the following properties are equivalent for any space X:
 - (i) $hl(X) \leq \kappa$;
 - (ii) $l(X) \le \kappa$ and every $U \in \tau(X)$ is a union of $\le \kappa$ -many closed subsets of X;
 - (iii) $l(X) \le \kappa$ and every closed $F \subset X$ is a G_{κ} -set in X;
 - (iv) $l(U) < \kappa$ for any open $U \subset X$.

In particular, a space *X* is hereditarily Lindelöf if and only if it is Lindelöf and perfect.

- **002.** Prove that a space *X* is hereditarily normal if and only if any open subspace of *X* is normal.
- **003.** Prove that if X is perfectly normal, then any $Y \subset X$ is also perfectly normal.
- **004.** Let X be any space. Prove that $hd(X) = \sup\{|A| : A \text{ is a left-separated subspace of } X\}$. In particular, the space X is hereditarily separable if and only if every left-separated subspace of X is countable.
- **005.** Let X be any space. Prove that $hl(X) = \sup\{|A| : A \text{ is a right-separated subspace of } X\}$. In particular, the space X is hereditarily Lindelöf if and only if every right-separated subspace of X is countable.
- **006.** Prove that a space is right-separated if and only if it is scattered.
- **007.** Let *X* be a left-separated space. Prove that $hl(X) \le s(X)$. In particular, any left-separated space of countable spread is hereditarily Lindelöf.
- **008.** Let *X* be a right-separated space. Prove that $hd(X) \le s(X)$. In particular, any right-separated space of countable spread is hereditarily separable.
- **009.** Prove that any space has a dense left-separated subspace.
- **010.** Suppose that $s(X) = \omega$. Prove that X has a dense hereditarily Lindelöf subspace.
- **011.** Prove that for any space X, we have $hl^*(X) = hl(X^{\omega})$. In particular, if all finite powers of X are hereditarily Lindelöf, then X^{ω} is hereditarily Lindelöf.
- **012.** Prove that for any space X, we have $hd^*(X) = hd(X^{\omega})$. In particular, if all finite powers of X are hereditarily separable, then X^{ω} is hereditarily separable.
- **013.** Prove that for any space X, we have $s^*(X) = s(X^{\omega})$.
- **014.** Suppose that $s(X \times X) \le \kappa$. Prove that $hl(X) \le \kappa$ or $hd(X) \le \kappa$. In particular, if $s(X \times X) = \omega$, then X is hereditarily separable or hereditarily Lindelöf.
- **015.** Prove that $|X| \leq 2^{hl(X)}$ for any space X. In particular, any hereditarily Lindelöf space has cardinality $\leq c$.
- **016.** Prove that $s(X \times X) \le s(C_p(X)) \le s^*(X)$ for any space X.
- **017.** Prove that $hd(X \times X) \leq hl(C_p(X)) \leq hd^*(X)$ for any space X.
- **018.** Prove that $hl(X \times X) \leq hd(C_p(X)) \leq hl^*(X)$ for any space X.
- **019.** For an arbitrary $n \in \mathbb{N}$, let $J_n = J(n)$ be the hedgehog with n spines. Prove that $s(X^n) \le s(C_p(X, J_n)) \le s(C_p(X) \times C_p(X))$ for any space X.
- **020.** For an arbitrary $n \in \mathbb{N}$, let $J_n = J(n)$ be the hedgehog with n spines. Prove that $hd(X^n) \leq hl(C_p(X, J_n)) \leq hl(C_p(X) \times C_p(X))$ for any space X.

Every problem is short, so it won't be difficult to find a reference in it. An introductory part *is never longer than two pages* so, hopefully, it is not hard to find a reference in it either. Please keep in mind that a solution of a problem can be pretty long, but its definitions *are always given in the beginning*.

The symbols are arranged in alphabetical order; this makes it easy to find the expressions B(x, r) and βX , but it is not immediate what to do if we are looking for $\bigoplus_{t \in T} X_t$. I hope that the placement of the expressions which start with Greek letters or mathematical symbols is intuitive enough to be of help to the reader. Even if it is not, then there are only three pages to plough through. The alphabetic order is *by line* and not by column. For example, the first three lines contain symbols which start with "A" or something similar and lines 3–5 are for the expressions beginning with "B", " β " or " \mathbb{B} ".

$A(\kappa)$ · · · · · · · TFS-1.2	$a(X) \cdot \cdots \cdot TFS-1.5$
$AD(X) \cdots TFS-1.4$	$\bigwedge \mathcal{A} \cdots T.300$
A Y · · · · · · · · · · · · · · · · · · ·	$B_d(x,r) \cdot \cdot \cdot \cdot \cdot \cdot $ TFS-1.3
B(x,r) · · · · · · · · TFS-1.3	(B1)–(B2)···· TFS-006
$\beta X \cdots TFS-1.3$	$\mathbb{B}(X) \cdot \cdot$
$\operatorname{cl}_X(A) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \operatorname{TFS-1.1}$	$cl_{\tau}(A)$ · · · · · · · · · TFS-1.1
$C(X) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{TFS-1.1}$	$C^*(X) \cdot \cdots \cdot \mathbf{TFS-1.1}$
$C(X,Y) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{TFS-1.1}$	$C_p(X,Y)$ · · · · · · · · TFS-1.1
$C_u(X) \cdot \cdots \cdot TFS-084$	$C_p(Y X) \cdots \mathbf{TFS-1.5}$
$C_p(X) \cdot \cdots \cdot \mathbf{TFS-1.1}$	$C_p^*(X) \cdot \cdot \cdot \cdot \cdot \cdot $ TFS-1.1
$c(X) \cdot \cdots \cdot TFS-1.2$	$conv(A) \cdot \cdots \cdot 1.2$
CH · · · · · · · · · · · 1.1	$\chi(X) \cdot \cdots \cdot \text{TFS-1.2}$
$\chi(A,X)$ · · · · · · · · · · · · · · · · · · ·	$\chi(x,X)$ · · · · · · · · · · · · · · · · · · ·
$D(\kappa) \cdot \cdots \cdot TFS-1.2$	$d(X) \cdot \cdots \cdot TFS-1.2$
$dom(f) \cdot \cdot$	$diam(A) \cdot \cdot \cdot \cdot \cdot \cdot \cdot TFS-1.3$
$\mathbb{D} \cdots \cdots 1.4$	$\Delta \mathcal{F} \cdot \cdot \cdot \cdot \cdot \text{TFS-1.5}$
$\Delta_X \cdots \mathbf{TFS-1.2}$	$\Delta(X) \cdot \cdot \cdot \cdot \cdot $ TFS-1.2
$\Delta_n(Z) \cdot \cdot$	$\Delta_n^{ij}(Z) \cdots T.019$
♦ · · · · · · · · · · · · · · · · · · ·	\$ ⁺ · · · · · · · · 1.1
$\Delta_{t \in T} f_t \cdots \mathbf{TFS-1.5}$	ext(X) · · · · · · · TFS-1.2
$\exp X \cdots \mathbf{TFS-1.1}$	$Fin(A) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot S.326$
$f < g \cdots \cdots 1.1$	$f \subset g \cdots \cdots 1.4$

$f_n \Rightarrow f \cdot \cdots \cdot \mathbf{TFS-1.1}$	f Y · · · · · · TFS-022
$F_{\sigma} \cdot TFS-1.3$	F_{κ} · · · · · · · TFS-1.3
$\varphi^*(X)$ for a card. inv. $\varphi \cdot \cdot \cdot \cdot \cdot 1.1$	$F_{\sigma\delta}$ · · · · · · · · · · · · · · · · · · ·
$G_{\delta} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $ TFS-1.3	G_{κ} · · · · · · · TFS-1.3
$G_{\delta\sigma}$ · · · · · TFS-1.5	GCH · · · · · · · · · 1.1
$h^{\#}(U) \cdots \cdots \mathbf{S.228}$	HFD T.040
$h\varphi(X)$ for a card. inv. $\varphi \cdot \cdot \cdot \cdot \cdot 1.1$	$\mathbb{I} \cdot \cdots \cdot TFS-1.1$
$Int(A) \cdots TFS-1.1$	$Int_X(A) \cdots TFS-1.1$
$iw(X) \cdot \cdots \cdot \mathbf{TFS-1.2}$	$J(\kappa)$ · · · · · · · TFS-1.5
K · · · · · · · · · · · · · · · · 1.4	$K_{\sigma\delta} \cdot \cdot$
$l(X) \cdots TFS-1.2$	$L(\kappa)$ · · · · · · TFS-1.2
$\lim S \text{ for } S = \{A_n : n \in \omega\} \cdots 1.5$	(LB1)–(LB3)····· TFS-007
$\max(f,g) \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{TFS-1.1}$	$min(f, g) \cdot \cdot \cdot \cdot \cdot \cdot TFS-1.1$
$(MS1)$ - $(MS3) \cdot \cdot \cdot \cdot \cdot TFS-1.3$	m(X) · · · · · · · · TFS-1.5
$MA(\kappa) \cdot \cdot$	MA · · · · · · · · · · · · · · · 1.1
$nw(X) \cdot \cdots \cdot \mathbf{TFS-1.2}$	\mathbb{N} · · · · · · · TFS-1.1
$O(f, K, \varepsilon) \cdots S.321$	$O(f, x_1, \ldots, x_n, \varepsilon) \cdot \cdots $ TFS-1.2
$\bigoplus_{t \in T} X_t \cdots \mathbf{TFS-1.4}$	$\bigoplus \{X_t : t \in T\} \cdots \mathbf{TFS-1.4}$
$p(X) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{TFS-1.2}$	(PO1)–(PO3)····· TFS-1.4
$p_S:\prod_{t\in T}X_t\to\prod_{t\in S}X_t$ TFS-1.4	$p_t: \prod_{s\in T} X_s \to X_t \cdot \cdots \mathbf{TFS-1.2}$
$\prod_{t \in T} X_t \cdot \cdots \cdot \mathbf{TFS-1.2}$	$\prod \{X_t : t \in T\} \cdots \mathbf{TFS-1.2}$
$\prod_{t\in T} g_t \cdot \cdots \cdot \mathbf{TFS-1.5}$	$\Pi_{\xi}^0(X) \cdot \cdot \cdot \cdot \cdot \cdot $ TFS-2.4
$\psi(A,X)\cdots$ TFS-1.2	$\psi(x,X)$ · · · · · · · TFS-1.2
$\psi(X) \cdot \cdots \cdot \mathbf{TFS-1.2}$	$\pi\chi(x,X)$ · · · · · · · TFS-1.4
$\pi w(X) \cdot \cdots \cdot \mathbf{TFS-1.4}$	$\pi\chi(X)$ · · · · · · TFS-1.4
$\pi_Y: C_p(X) \to C_p(Y) \cdot \cdot \mathbf{TFS-1.5}$	P · · · · · · · · · 1.1
P · · · · · · · · · · · · · · · · · · ·	\mathbb{Q} · · · · · · · TFS-1.1
$q(X) \cdot \cdots \cdot TFS-1.5$	\mathbb{R} · · · · · · · TFS-1.1
r^* for $r: X \to Y \cdots$ TFS-1.5	$\langle S \rangle \cdots S.489$
$s(X) \cdots TFS-1.2$	SA TFS-2.1

$St(x, \mathcal{U}) \cdot \cdots \cdot TFS-1.3$	$St(A, \mathcal{U}) \cdot \cdot \cdot \cdot \cdot \cdot TFS-1.3$
$\Sigma_*(\kappa)$ · · · · · · · TFS-1.5	$\Sigma^0_{\xi}(X) \cdot \cdot$
$\sigma(\kappa)$ · · · · · · · TFS-1.5	$\Sigma(\kappa)$ · · · · · · · TFS-1.5
$t_0(X) \cdot \cdot \cdot \cdot \cdot \cdot \cdot $ TFS-1.5	$t_m(X) \cdots TFS-1.5$
$t(X) \cdots TFS-1.2$	$\tau(x,X)$ · · · · · · · · TFS-1.1
$\tau(X)$ · · · · · · · · TFS-1.1	$\tau(A,X)$ · · · · · · · · TFS-1.1
$\tau^*(X) \cdot \cdots \cdot TFS-1.2$	$\tau(d)$ · · · · · · · TFS-1.3
$vX \cdots TFS-1.5$	$\bigcup \{f_i: i \in I\} \cdot \cdots \cdot \cdot \cdot \cdot \cdot \cdot 1.4$
$\omega^{<\omega}$ · · · · · · · · · · · · · · · · · · ·	$\mathcal{U}_1 \wedge \ldots \wedge \mathcal{U}_n \cdots \mathbf{S.144}$
ω^* TFS-370	$w(X) \cdot \cdots \cdot \mathbf{TFS-1.1}$
$[x_1,\ldots,x_n;O_1,\ldots,O_n]$ • TFS-1.1	$X_1 \times \ldots \times X_n \cdot \cdots \cdot \mathbf{TFS-1.2}$
$X^T \cdot TFS-1.2$	$(Z)_{\omega} \cdot \cdots \cdot \mathbf{S.493}$
$(Z)_{\kappa} \cdots \cdots S.493$	

A absolute Borel set of class ξ , 1.4, 323, 324, 373–375 almost closed set, 1.3 almost disjoint family of sets, 1.5, 053 analytic space, 1.4, 334–340, 352, 353, 360, 361, 363, 366, 368–371, 385–387, 392, 395, 397, 399, 460, T.132, T.341, T.363 antichain, 1.1 Aronszajn tree, 1.1, 068 Aronszajn coding, 1.1, 068	centered family, T.058, T.280 chain, 1.1, 068 character at a point, 1.2, 054, T.092 character of a set, T.222, T.487, T.489 character of a space, 131, 158, 444, T.489 clopen set, T.063, T.126, T.203, T.219, T.298,
	club (closed unbounded subset of an ordinal),
В	1.1, 064, 065, T.069
Baire property, 263–265, 406, 441, T.046,	cofinal set, 1.1, 097, T.285
T.371 Baturov's theorem, 269	collectionwise normality, 139, 140, 437 041, 045, 058, 060–062, 072–076, 082–083,
Booth lemma, 052	085, 090–096, 099, 118–120, 128–131,
Borel set, 1.4, 322, 330–334, 339–342, 354,	134, 201–204, 211, 220, 225, 233, 237,
368, 372, T.322, T.333, T.339, T.372	241, 248, 254, 259, 260, 262, 273, 279,
300, 372, 1.322, 1.333, 1.337, 1.372	287, 294–299, 306, 347, 348, 355–357,
	359, 365, 375, 377, 381, 383–389,
C	391–396, 398, 413, 454, 462, 468,
caliber, 1.3, 275–294, 299, T.281, T.285	482, 495
Cantor set (see also <i>space</i> \mathbb{K}), 348, 353, 376,	T.041, T.045, T.062, T.073, T.082,
T.250	T.090, T.098, T.131, T.211, T.218,
cardinal function, 1.2, 1.5, 145-151, 405	T.222, T.227, T.229, T.235, T.250,
cardinal invariant, 1.1	T.270, T.272, T.298, T.309, T.346,
category of a set in a space, 057, T.351, T.371	T.357, T.372, T.377, T.384, T.385,
ccc property, 1.1	T.391, T.395, T.465, T.468, T.487,
Čech-complete space, 137, 138, 210, 232, 272,	T.489, T.493
273, 324, 402, 443, T.210, T.272, T.385,	compactification, 1.3, 233, T.224
T.500	compact-valued map, 1.3, 1.4., 240-242, 249,
Cech–Stone compactification, 042, 238, 286,	388
371, 386, 387, 403, 439, 491 T.126,	compatible elements of a partially ordered set,
T.131, T.244, T.322, T.371, T.385	1.1
C-embedded subspace, T.218, T.455, T.468	complete family of covers, 1.4
	1.

completely metrizable space, 315, 316, 373, 419, 493, 494, 498, 499, T.132, T.313, T.333, T.348, T.357, T.368 completely regular space, T.139 condensation, 045, 077–079, 102, 341, 354–359, 392, T.139, T.250, T.357, T.363	density degree, 037, 095, 177, 188, 216, 405, 457, 483, 487, T.285 depending on a set of coordinates, map, T.109, T.268, T.298 diagonal of a space, 028, 029, 087, 091, 203, 235, 290, 293–298, 300, 396, T.019, T.020, T.021, T.028, T.029, T.030,
connected space, 1.3, T.309, T.312	T.062, T.078, T.081, T.087, T.089,
consistency with ZFC, 1.1, 047 continuous map, 094, 104, 105, 121–123, 133, 148, 150, 201, 206, 243, 245–249, 253, 254, 277, 305, 315–317, 332, 338, 360, 361, 363, 364, 390, 463, 467–473, 479–482, 486, 491, T.063, T.069, T.104, T.109, T.131, T.132, T.139, T.237, T.245, T.250, T.252, T.266, T.268, T.294, T.298, T.316, T.318, T.333, T.354, T.368, T.372, T.384, T.459, T.468, T.500 Continuum Hypothesis (CH), 1.1, 039, 040,	T.098, T.173, T.203, T.294 diagonal number, 028, 029, 091, 178, 179, 180, 449, T.087, T.173, T.235 diagonal product of maps, T.266 diameter of a set, T.055, T.348, T.358, T.368 diamond principle (♦), 1.1, 069, 070, 073, 079, 289 Dieudonné complete space, 430 disconnected space, 1.3, T.219 discrete family of sets, T.132, T.217, T.373 discrete space, 424, 443, 486, 492 494, 498–500, T.371
041, 042, 046, 047, 069, 089, 097-100, 237, 238, 298, 300	discrete subspace, 188, 401, T.007, T.098, T.219, T.500
convex hull, 1.2, 104, T.104	discrete union, T.219, T.250
convex set, 1.2, T.104	domain of a map, 1.4
cosmic space, 107–111, 192, 195, 198–200, 218, 225, 228, 244, 263, 270, 300, 346, 363, 364, 395, 451, T.109, T.250, T.270, T.300, T.363, T.368	domination by irrationals, T.391 double arrow space, 383 Dugundji system, 103, T.104
countably additive class (or property), 1.5, 405, 406, 441, 442, 445–450	E
countably compact space, 092, 133, 204, 218, 226, 417, T.126, T.203, T.235, T.391	embedding 250, 303, 322, 370, 371, 376–378, 387, T.019, T.132, T.250, T.298, T.333, T.372, T.385
countably paracompact space, 141	extent, 1.3, 1.5
cozero set (see also functionally open set), T.080, T.252	external base, T.092 extremal disconnectedness, T.219
D	F
Δ-system, 038	face of a product, T.109, T.110, T.268, T.298, T.415, T.455, T.500
Δ -system lemma, 038 Δ -root, 038	factorization of a map defined on a subspace of
dense subset of a partially ordered set, 1.1	a product, T.109, T.268
dense subspace, 009, 010, 039, 040, 072, 080,	faithfully indexed set, T.089
237, 239, 278, 368, 385–387, 420, 431,	filter, T.372
495	filter on a partially ordered set, 1.1
dense subspace T.058, T.063, T.074, T.078, T.080, T.081	finite intersection property (see the entry for centered family)
dense subspace (see also the previous page), T.109, T.187, T.309, T.312, T.333, T.349, T.351, T.368, T.406, T.416, T.421, T.500	finitely additive class (or property or cardinal function), 1.5, 401–403, 406, 407 finite-to-one map, 1.5, 498, 499, T.498 first category set, 057, T.351
dense-in-itself, space, 057, 358, T.045, T.046, T.219, T.272, T.358	first countable space, 099, 202, 329, 401, 408, 415, T.045, T.205, T.351

Fodor's lemma, 067 free sequence, 198, T.198 free union (see <i>discrete union</i>) Fréchet–Urysihn space, 1.5, 120, 131, 134–136, 186, 204, 205, 210, 214, 384, 398, 402, 450, 464–466, T.045 F_{σ} -set, 1.4, 323, 379, 420, T.422 G Generalized Continuum Hypothesis (GCH), 1.1 generating topology by a base, 1.3	hereditarily weakly Whyburn space, 215, 220 hereditary cardinal function, 146, 147 hereditary density, 004, 008, 012, 014, 017, 018, 020, 021, 024, 030, 032, 036, 039, 040, 043, 059, 169, 171, 172, 173, 174, 405, 428, 458, T.020, T.029, T.030, T.036, T.166, T.173 hereditary Lindelöf number, 001, 005, 007, 011, 014, 015, 017, 018, 020, 021, 023, 029, 033, 035–037, 039, 040, 043, 059, 166, 167–171, 190, 193, 194, 405, 429, 458, T.021, T.029, T.030, T.036, T.166, T.173, T.368, T.490
generating topology by a closure operator, 1.3 generating topology by a family of local bases, 1.3	hereditary property, 420, 421, 433, T.455 Hewitt realcompactification, 145 HFD space, T.040
generating topology by a family of maps, 1.3 generating topology by a linear order, 072 generating topology by a metric 419 generating topology by a subbase, 1.3, T.363 generating topology by an interior operator, 1.3 Gerlits property, 1.5, 463, 464 Gerlits-Pytkeev theorem, 465 G_δ -diagonal (or diagonal G_δ), 028, 029, 087, 235, 300, T.087, T.235 G_δ -set, 055, 091, T.041, T.062, T.090, T.333, T.500, T.429 G_κ -set, 1.2, 001, T.078	homeomorphic spaces, 313, 330, 347–353, 386, 424, 432, 500, T.132, T.217, T.219, T.250, T.313, T.322, T.348, T.351, T.363, T.415, T.457 homeomorphism, T.217, T.333, T.349 homeomorphism (see also previous column), T.357, T.371, T.372, T.421, T.498, T.500 homogeneous space, 1.5, T.371 Hurewicz space, 1.2, 1.3, 132, 188, 216 Hurewicz space (see also the previous page), 217, T.132, T.188
H Hausdorff space, T.098, T.372 hedgehog space, 019, 020, 021 height of a tree, 1.1 height of an element of a tree, 1.1 hereditarily analytic space, 400 hereditarily Čech-complete space, 272, 273 hereditarily irresolvable space, T.219 hereditarily <i>K</i> -analytic space, 400 hereditarily <i>K</i> -analytic space, 400 hereditarily <i>k</i> -space, 214 hereditarily <i>k</i> -space, 214 hereditarily 010, 100, 100, 100, 107, 076, 085, 076, 076, 076, 076, 076, 076, 076, 076	I identity map, T.357 induced topology, 072, T.357 invariance under operation, 1.3, 254, T.250 irrationals, 4, 313, 317, 328, 329, 341, 347, 352, 358, 359, 365, 367, 370, 371, 388, 390, T.132, T.346, T.395 irreducible map, 492, T.246, T.493, T.494 irresolvable space, T.219 isomorphism of linearly ordered sets, 072 <i>i</i> -weight, 177, 178, 244, 425, 451, 471
086, 099, 100, 190, 198, T.073, T.270 hereditarily normal space, 002, 090, 142, 201, 202, T.090 hereditarily <i>p</i> -space, 272	J Jensen's axiom (see diamond principle (\diamondsuit))
hereditarily p-space, 272 hereditarily realcompact space, 404, 425, 451 hereditarily separable space, 1.1, 004, 008, 012, 014, 040, 060, 073, 077–079, 082, 088, 089, 098, 198, 237, T.040, T.082, T.099 hereditarily sequential space, 214	K <i>K</i> -analytic space, 1.4, 343–346, 388, 389, 390, 391, 393–395, 397–400, 460, T.250, T.346, T.391 <i>κ</i> -Aronszajn tree, 1.1
hereditarily stable space, 200	κ -modification of a space, 1.2, 128

κ-monolithic space, 1.2, 113, 114, 116, 117, 120–122, 144, 152, 154, 157, 190–192, 197, 199, 296, 426, 468, 473 κ-scattered space, 1.2, 133, 187, 477 κ-simple space, 1.2, 127, 129, 130, 157 κ-small diagonal, 1.3, 290, 293, 298, 300,	locally compact space, 1.3, 098, 132, 434, T.203, T.223, T.357, T.434 locally convex space, 1.2, 104, T.105, T.131 locally finite family, 103, 115, T.104, T.244, T.354 locally pseudocompact space, 435
T.294, T.298, T.300	lower semicontinuous map, 1.4, 315
κ -Souslin tree, 1.1, 070, 071, 073, 074, T.073	L-space, 1.1, 039, 059, 074, 099
κ -stable space, 1.2, 106, 108–112, 118,	Luzin space, 1.1, 043–046, 063, T.046, T.063
123–126, 143, 152–154, 156, 192, 195, 200, 266–268, 478, T.112, T.237	24211 37444, 111, 016 016, 006, 11016, 11006
$K_{\sigma\delta}$ -space, 1.3, 250, 261, 262, 362, 367,	M
T.250, T.262, T.377	Martin's Axiom (MA), 1.1, 047, 048–063, 071,
k-space, 1.2, 131, 210, 214, 230, 402, 465, 466, T.131, T.210	083, 088, 099, 140, 197–200, 288, 382, 395 T.050, T.063, T.395
κ -tree (for a regular cardinal κ), 1.1, 068, 070,	maximal almost disjoint family, 053
071, 074, T.073	maximalelement of a partially ordered set,
Kowalsky hedgehog $J(\kappa)$, 019–021, T.019	T.074
	maximal family with a property \mathcal{P} , T.058
	maximal space, T.219
L	measurable map, T.363, T.368, T.384
large inductive dimension, 1.4, 308	metacompact space, 1.5, 437–440 metric space, T.055, T.105, T.313, T.333,
Lavrentieff theorem, T.333	T.348, T.368, T.373
left-separated space, 1.1, 004, 007, 009, 037,	metrizable space 062, 083, 090–094, 099,
T.004, T.078	101–106, 203, 217, 219, 221, 229, 239,
lexicographic order, 1.4	272, 285, 295–299, 315, 316, 348–350,
limit of a sequence, 054, 379, 389, T.055, T.131, T.246, T.316, T.384, T.493	357, 359, 373, 374, 392, 395, 396, 401,
limit of a family of sets, 1.5	402, 412–414, 416–419, 446, 451, 455,
limit of a transfinite sequence, 1.3, T.298	493–499 T.062, T.132, T.203, T.235,
Lindelöf number (degree), 001, 128, 240, 269,	T.285, T.300, T.357, T.385
405, 456 T.490	monolithic space, 1.2, 107, 115–117, 120, 122,
Lindelöf <i>p</i> -space, 1.3, 223, 231, 244–246, 250,	152, 154, 155, 266, 297 Mrowka space, 407, T.130
252, 253, 255, 260, 261, 271	multiplicative class of Borel subsets of a space,
Lindelöf property (see also <i>Lindelöf space</i>), 1.2	1.4 multiplicative class of absolute Borel sets, 1.4
Lindelöf Σ -space, 1.3, 223–228, 230, 231,	multiplicative class of absolute Botel sets, 1.4
233, 234, 236, 239, 242, 243, 248, 249,	
253, 254, 256–259, 261, 263, 265–270,	N
300, 459, T.227, T.237, T.270, T.399 Lindelöf space, 076, 089, 098, 112, 127, 128,	natural projection, T.109, T.110, T.250, T.298,
129, 135–137, 189, 199, 234, 264, 294,	T.455, T.500
306, 422, 438, 452, 454, T.112, T.217,	network, 235
T.223, T.268	network weight, 096, 107-111, 192, 197, 199,
linear homeomorphism, T.217	200, 218, 225, 228, 244, 260, 263 270,
linear map, T.132	300, 346, 363, 364, 395, 405, 451, 457,
linear topological space, 1.2, 104, T.104,	470, 488, T.109, T.250, T.270, T.300
T.105, T.131	network with respect to a cover, 1.3, T.229
linearly ordered space, 072–076, T.073,	normal space, 002, 100, 139–141, 234, 308,
T.075	309, 311, 407, 438, 453–455, T.201, T.203, T.217, T.245, T.311, T.372
linearly homeomorphic vector spaces,	nowhere dense set, 057, 058, T.039, T.042,
T.217 local base, T.416	T.045, T.089, T.219, T.351
10001 0000, 11110	

0	Pressing-Down Lemma, 067
ω-cover, 1.5, T.188, T.217, T.464	product space, 050, 109, 114, 117, 254, 255,
ω -monolithic space, 1.2, 116, 117, 120, 122,	256, 268, 280–282, 302, 333, 335, 343,
190–192, 197, 199, 296, 468, T.468	493, 494–499, T.050, T.089, T.109,
open mapping, 326, 415, 476, 477, 498, 499,	T.110, T.112, T.132, T.250, T.266,
T.110	T.268, T.298, T.363, T.415, T.455,
open-separated sets in a topological space,	T.500
T.309	pseudocompact space, 1.4, 093, 119, 130, 131,
operator on a family of subsets of a set, 1.3	138, 205, 435, 452, 495–497, T.132,
operator on a set, 048, 049, 068, 072, T.004,	T.205, T.391, T.465, T.494
T.005, T.074	pseudocomplete space, 1.5, T.498
ordinal space, 064, 065–069, 273, 491, T.069, T.211	pseudocharacter of a space, 179, 236, 401, 409 448
oscillation of a function, T.368, T.384	pseudometric, 1.4
ω -simple space, 1.2, 127	pseudo-open map, 1.3, 251
ω -stable space, 1.2, 106, 112, 119, 125, 126,	pseudoradial space, 1.3, 211, 212
145, 192, 195, 267, 268, T.112, T.237	<i>p</i> -space, 1.3, 221, 222–224, 230–232
outer base, 396	<i>p</i> -space (continued from the previous page),
	244–247, 250, 251, 252, 253, 255, 260,
n	271, 272, T.222, T.223, T.224, T.245
P	P-space, 1.1, 1.2, 112, 127, 135, 137, T.112
paracompact space, 203, 217, 314, 315, 422, 437, 452, T.104, T.203, T.217, T.244,	π -weight, 131, 406, 442, T.089, T.158, T.187
T.245, T.246, T.422 partially ordered set, 048, 049, 068, T.058	0
π -character, 158, 402, 442, T.131, T.158,	quotient image, 149, 251, 274, 275
T.298	quotient image, 149, 231, 274, 273
P-directed family of sets, 1.4	n
P-dominated space, T.391	R
$\mathcal{P}(\kappa)$ -monolithic space for a property \mathcal{P} , 1.2, 139, 140, 146–151, 158–186, 189, 190,	radial space, 1.3, 209, T.211 rational numbers, the space of, 349–351, 356,
193, 194, 427–429, 475	T.309, T.349, T.351
perfect image (or preimage), 1.2, 243, 245,	real line, 342, 355, 380, 382, T.349
249, 252, 304, 325, 390, 487–492,	realcompact space, 391, 404, 423, 425, 430,
T.245, T.489, T.490, T.492	436, 451, T.436, T.492
perfect map, 326, T.266	resolvable space, T.219
perfect space, 001, T.331, T.363, T.368	restriction map, T.080, T.217, T.218, T.368,
perfectly disconnected space, T.219	T.455, T.500
perfectly normal space, 003, 061, 075, 080,	retract, 1.2, 123, 316, 500, T.132, T.217, T.500
081–087, 089, 095, 096, 142, 202,	retraction, 1.2
T.080, T.081, T.087	right-separated space (this coincides with the
point-countable family of sets, T.203	concept of scattered space), 1.1, 005,
point-finite cellularity, 175, 284, 405, 485,	006, 008, T.005
T.491	Rosenthal compact space, 1.4, 383–385, 387,
pointwise bounded subset of function space,	T.385
T.384	R-quotient map (or image), 147, 149, 150, 181
pointwise countable type, T.222 Polish space, 1.4, 319, 320, 321, 325, 326–330,	183, 184, 469, T.139, T.268
338–340, 347, 351, 358, 365, T.322,	
T.333, T.339, T.357, T.358, T.384,	S
T.385	SA axiom, 1.1, 036, 086, 193, 195, 196
P-point, 1.1, 042	scattered space, 1.1, 006, 098, 099, 128–130,
precaliber, 1.3, 275–280, 283, 284, 286, 288,	133, 134, 136, 213, 272, 273, T.130,
r	

σ-compact space, 132, 216, 226, 274, 323, 351, 352, 354, 355, 362, 364, 366, 367, 368, 466, 482, T.132, T.203, T.372,	space \mathbb{D}^{κ} (see also <i>Cantor cube</i>), 039, 040, 089, 303, T.040, T.298, T.372 space \mathbb{I} , 133, 143, 144, 305, T.436, T.500
T.395	space \mathbb{I}^{κ} , 354, 369, T.250, T.298
σ -countably compact space, 132	space $J(\kappa)$ (see Kowalsky hedgehog)
σ-discrete family, 373, T.229, T.235	space \mathbb{K} (see also <i>Cantor set</i>), 1.4, 318, 376,
σ-discrete network, 228, 235, T.229	378, T.250, T.348
σ-disjoint base, T.412	space $L(\kappa)$, 227, 402, 440, T.220
second category set, T.371	space \mathbb{P} (see <i>irrationals</i>)
second countable space, 046, 055, 057, 080, 084, 102, 107, 109–111, 229, 248, 249,	space \mathbb{Q} (see <i>rational numbers</i>) space \mathbb{R} (see <i>real line</i>)
252, 254, 271, 306, 318, 320, 321,	space \mathbb{R}^{κ} (see <i>real line</i>) space \mathbb{R}^{κ} , 117, 330, 354, 360, 361, 367, 371,
323, 324, 329, 332, 333, 341, 351,	381, 382, 424, 492, 494, 500, T.019,
362–365, 367, 368, 376–379, 403, 411,	T.132, T.217, T.312, T.372, T.379,
455, T.055, T.062, T.063, T.080, T.089,	T.384, T.385, T.399, T.434, T.455,
T.092, T.131, T.132, T.220, T.250,	T.500
T.298, T.320, T.322, T.341, T.351,	space $\sigma(A)$, 1.2, T.312
T.354, T.363, T.368, T.377, T.379,	space $\Sigma(A)$, 1.2
T.384, T.455	space ω_1 , 064–069, 491, T.069
separable space, 039, 044, 046, 073-076, 081,	space $\omega_1 + 1, 273, T.211$
084, 088, 089, 217, 282, 287, 385, 397,	spread, 007, 008, 013, 014, 016, 019, 022, 028,
412, 493, 495, T.045, T.073, T.074,	031, 034, 036, 037, 039, 040, 060–062,
T.081, T.082, T.087, T.089	078, 079, 160, 161, 163, 164, 189, 190,
separable metrizable space (in this book this is	191, 192, 193, 195, 196, 197, 199, 405,
the same as second countable space),	427, 458, T.007, T.015, T.019, T.028,
106, 219, 493, 497–499	T.036, T.078, T.082, T.087, T.098,
separating points by a family of maps, T.354	T.160
separating subsets by a family of sets, 1.3,	σ-product, 1.2, T.110, T.268
233	Σ -product, 1.2, T.110, T.268
separating subsets by disjoint open (or Borel)	σ-pseudocompact space, 132, 435
sets, T.309, T.339	σ-space, 228, 235
separation axioms, T.098	Σ -space, 1.3, 221, 223, 224, 226, 228, 229,
sequential space, 041, 131, 210, 211, 214, 402, 465, 466, T.041, T.316	234–236, 238, T.223, T.229 S-space, 1.1, 040, 059, 098, 099
sequentially compact space, T.384	stable space, 1.2, 108–111, 118, 124, 152–154,
Shanin condition, 282	156, 200, 268
simple space, 1.2, 129, 130	stationary set, 1.1, 065, 066, 067, 069
σ -locally compact space, 132	strictly weaker topology, 072
small diagonal (see also κ -small diagonal), 1.3,	strong <i>L</i> -space, 1.1, 059, 099
290, 293, 294, 295, 296–298, T.298,	strong S-space, 1.1, 059, 098, 099
T.300	strong Σ -space, T.223, T.229
Sorgenfrey line, 227	strongly dense subspace, 1.5
Souslin line, T.074	strongly κ -monolithic space, 1.2, 135, 157, 158
Souslin number, 075, 275, 405, 485, T.050,	strongly monolithic space, 1.2, 101, 136
T.089	strongly zero-dimensional space, 1.4, 306–312,
Souslin property, 050, 058, 288, 289, T.039,	314–316, T.306, T.311
T.046, T.050, T.073	subbase of a topology, 1.1
Souslin tree (see κ -Souslin tree)	submaximal space, 1.3, 208, T.219
space $A(\kappa)$, T.203, T.219, T.223	submetrizable space, 1.4, 392
space $\beta\omega$, 042, 238, 371, 386, 387, 403, 439,	
401 TO42 T121 T222 T205	subparacompact space, T.223, T.235
491, T.042, T.131, T.322, T.385 space $D(\kappa)$ (see <i>discrete space</i>)	subparacompact space, T.223, T.235 subtree, 1.1 supremum of a family of topologies, T.139

T	upper semicontinuous map, 1.3, 240-242, 249,
Talagrand space, 234	388, T.346
tightness of a space, 120, 176, 183-185, 207,	
234, 287, 296, 410, 447, 456, 461, 462, 463, T.041, T.173, T.298, T.384 topology of uniform convergence (this is the same as <i>uniform convergence topology</i>) tree, 1.1, 068, 070, 071, 074, T.073	V Vietoris topology, T.372 Velichko's theorem, 030
T_0 -separating family, T.270 T_1 -separating family, T.203, T.270	\mathbf{W}
T_1 -separating family, 1.203, 1.270 T_1 -space, T.219	weak functional tightness, 181, 182, 484
T ₂ -space (see <i>Hausdorff space</i>)	weaker topology, 072
$T_{3\frac{1}{2}}$ -space (see <i>Tychonoff space</i>)	weakly Whyburn space, 1.3, 206, 209, 211,
T_4 -space (in this book this is the same as normal space) two arrows space (see double arrow space) Tychonoff cube (see space \mathbb{I}^{κ}) Tychonoff space T.098, T.139, T.205, T.219, T.245, T.363, T.372	213, 215, 219, 220, T.220 weight, 091, 094, 096, 102, 105, 131, 187, 244, 295, 303, 304, 403, 405, 411, 445, T.039, T.046, T.089, T.092, T.102, T.105, T.109, T.158, T.187, T.250, T.268, T.285, T.322, T.357, T.372, T.412, T.487, T.489, T.490 Whyburn space, 1.3, 204, 205–212, 216–219,
U	T.217, T.219
ultradisconnected space, T.219	
ultrafilter, T.058, T.371	Z
uniform convergence topology, 431, T.357,	zero-set (see also functionally closed set), 1.5,

T.379, T.421

T.459

T.373

uniformly dense set, 1.5, 456-461, T.457,

uniformly discrete set in a metric space,

T.080, T.252

T.309, T.311

zero-dimensional space, 1.1, 034, 035,

301–307, 309, 312, 313, 347, 348, T.063, T.132, T.205, T.298, T.306,