We are happy to inform you that the regular paper you have submitted to ICORES, with number 37, entitled “Network of M/M/1 Cyclic Polling Systems”, has been accepted as a Short Paper. Papers accepted as a Short Paper are assigned a 8-page limit in the conference proceedings.

All reviews performed by the program committee are now available at the PRIMORIS Author's Home http://www.insticc.org/Primoris/. Please login and then click on [UTF-8?]Author%E’s home / Paper Reviews, to access the reviews. The e-mail associated with your account is also your username: cennonder@gmail.com

It is very important that you try to follow the suggestions indicated in the reviews during the preparation of the camera-ready manuscript. Furthermore, it is EXTREMELY important that you follow the camera-ready paper format and preparation guidelines for the proceedings, which are available at the ICORES web site http://www.insticc.org/Guidelines.aspx.

Any non-conformance with the specified format may prevent the proceedings editors team to return the paper to you for re-formatting, and in case of repeated problems it may prevent your paper from being published altogether.

Concerning the presentation of your Short Paper, it was recommended that it should be presented in the format of a poster presentation. Please prepare it according to the instructions available at the conference website.

Please note that the publication of any paper in the conference proceedings requires that:
- we receive the camera ready version of your paper, via Primoris;
- after submitting the camera ready you need to approve the copyright document - an icon named "Copyright" will appear at your [UTF-8?]Author%E’s [UTF-8?]Account;
- one of the authors must be registered as a speaker for this paper before 13 December 2016.

You can only complete your registration after you submit your camera ready, but payment can be made during registration, or afterwards in some cases, using:
- PayPal (using a credit card - a PayPal account is necessary. Creating one may take up to 5 working days due to the verification process);
- Bank transfer (the transfer should be done after the online registration is complete and [UTF-8?]Author%E’s only valid after the bank transfer document is received);
- Bon de commande/Purchase order (the document should be sent to the secretariat after the online registration is complete).

A detailed explanation regarding each option is available in the registration process.

Should you have any question please don't hesitate to contact the secretariat.

Best regards,
Vera Coelho
ICORES Secretariat

INSTICC office
Avenida D. Manuel I, 27A - 2 Esquerdos
28016-695 Setubal
Portugal
Tel: +351 265 520 185
Fax: +351 265 520 186

DISCLAIMER
This message is confidential and intended exclusively for the addressee. If you received this message by mistake please inform the sender and delete the message and attachments. No confidentiality nor any privilege regarding the information is waived or lost by any mistransmission.

OpenWebMail version 2.52 ¿Ayuda?
To whom it may concern,

We are happy to inform that the paper submitted by Carlos Martínez-Rodríguez, Raúl Montes-de-Oca and Patricia Saavedra to ICORES 2017 with number 37, entitled “Network of $M/M/1$ Cyclic Polling Systems”, has been accepted as a Short Paper, to be presented February (23 - 25) at Porto, Portugal.

All papers accepted to ICORES 2017 were peer reviewed by at least two experts from the international program committee, in a double-blind review process. The paper will be published in the conference proceedings with up to 8 pages, and after being presented at ICORES 2017 it will be included in the SCITEPRESS Digital Library under a specific DOI to be specified after the proceedings are published, and submitted for indexation to Thomson Reuters Conference Proceedings Index, Engineering Index, DBLP, INSPEC and Scopus.

Best Regards,

Greg H. Parlier
(ICORES Program Chair)
Network of $M/M/1$ Cyclic Polling Systems

Carlos Martínez-Rodríguez1, Raúl Montes-de-Oca2 and Patricia Saavedra2

1 Universidad Autónoma de la Ciudad de México, Calzada Ermita Iztapalapa 4163, Col. Lomas de Zaragoza, 09620, Ciudad de México, MÉXICO

2 Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Ciudad de México, MÉXICO

\texttt{carlos.martinez@uacm.edu.mx, \{momr, psb\}@sanum.uam.mx}

Keywords: Networks of Cyclic Polling System, Exhaustive Policy, Exponential Inter-arrivals Times.

Abstract: This paper presents a Network of Cyclic Polling Systems that consists of two cyclic polling systems with two queues each when transfer of users from one system to the other is imposed. This system is modelled in discrete time. It is assumed that each system has exponential inter-arrival times and the servers apply an exhaustive policy. Closed form expressions are obtained for the first and second moments of the queue’s lengths for any time.

1 INTRODUCTION

A Cyclic Polling System (CPS) consists of multiple queues that are attended by a single server in cyclic order. Users arrive at each queue according to independent processes which are independent of the service times. The server attends each queue according to a service policy previously established. When the server finishes, it moves to the next queue incurring in a switchover time. It will be assumed that the switchover times form a sequence of independent and identically distributed random variables. A thorough analysis has been made on this subject. For an overview of the literature on polling systems, their applications and standard results, the authors refer to such surveys as: (Boon et al., 2011; Levy and Sidi, 1990), and (Vishnevskii and Semenova, 2006).

Here a Network of Cyclic Polling System (NCPS) is considered. It consists of two cyclic polling systems, each of them with two queues that are attended, according to an exhaustive policy. The exhaustive policy service consists in attending all users until the queue is emptied. The system is observed at fixed times where the length of the slot is proportional to the time service. The arrivals to each queue are assumed to be Poisson processes with independent identical distributed (i.i.d.) inter-arrival exponential times. When the servers finish, they move to the next queue incurring a switchover time. It will be assumed that the switchover times form a sequence of independent and identically distributed random variables. The novelty in this work is that the two systems are connected in the following way: the users enter the system through one of the queues. After being served instead of leaving the system, they transfer to one of the queues of the other system, see Figure 1. All the users leave the network after being attended by the two servers. This network requires considering two kinds of arrival processes at each queue. One of them corresponds to the arrival process of the users that enter the system for the first time through that queue, and the other one corresponds to the arrival of the transfer users. Specifically, in this article the authors are looking for explicit formulae for the first and second order moments at any time. The buffer occupancy method is applied. It uses the Probability Generating Function (PGF) of the joint distribution function of the queues lengths at the moment the server arrives to the queue to start its service, which is called a polling instant. For an overview of this method, see (Takagi, 1986; Cooper and Murray, 1969; Cooper, 1970).

This work was motivated by the subway system, where each line can be considered as a cyclic polling system and the transfer station allows the users to transfer from one line to the other. Networks of polling systems is a rather new topic with few references, and a variety of possible applications, see (Boon et al., 2011; Levy and Sidi, 1990; Vishnevskii and Semenova, 2006; Beekhuizen, 2010). Recent publications about networks of polling stations are: (Beekhuizen et al., 2008b; Beekhuizen et al., 2008a; Aoun et al., 2010; Beekhuizen and Resing, 2009; van den Bos and Boon, 2013). The problem of in-