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Abstract

MatCont can start the continuation of a branch of saddle-homoclinic orbits from a given BT point.
We update the BT Hom initializer using the results in a recent study that improves on the previous
literature. We propose to use an extra parameter (kfactor) which allows users to better manipulate the
initialization of the homoclinc continuation. Using the new intializer, we start branches of homoclinic
orbits in multi-dimensional models and we point out the importance of the new parameter. In MatCont5.3
where the new initializer is first introducted, kfactor is hard-coded in the file init BT Hom where the
user may have to change it.

1 Introduction

The study of the homoclinic orbits that appear near singular points of codimension 2 such as Bogdanov-
Takens (BT) is a part of global bifurcation theory, see [16, 22, 2, 3, 19]. Consider the following system of
ordinary differential equations (ODE’s)

ẏ = f(y, α), (1)

where y ∈ R
n and α ∈ R

m. We say that a solution y(t) of (1) is a homoclinic orbit at α = α0 if

y(t) → y0 as t → ±∞, y(0) 6= y0 (2)

and
f(y0, α0) = 0. (3)

There are two types of homoclinic orbits with codimension 1, namely homoclinic to hyperbolic saddle (HHS),
if y0 is a saddle, and homoclinic to saddle node (HSN), if y0 is a saddle-node. Codimension 1 implies that in
generic dynamical systems with two free parameters these orbits exist along curves in the parameter plane
[15].

The BT bifurcation occurs if the equilibrium of (1) has a zero eigenvalue of algebraic multiplicity two
and geometric multiplicity one. The homoclinic orbits near a BT point are of the saddle type (HHS).

The idea of starting homoclinic orbits numerically from a BT point in planar systems was developed by
Rodriguez L. et al. [22]. This idea was based on shooting (numerical integration of orbits in the stable and
unstable directions of the equilibria). BeynW. [2] treated the general n-dimensional problem. He investigated
the problem of the homoclinic orbits that emanate from a BT point as a branch switching problem and he
used boundary value methods (BVMs) to compute homoclinic orbits. Such methods truncate the problem
to a finite time interval and impose projection boundary conditions at the end points of the interval. In the
BT case, since y0 is hyperbolic, the truncated boundary value problem is formally well-posed. Moreover, the
existence of a homoclinic solution to the original problem on the infinite interval implies the existence of a
solution to the truncated problem [1].

To continue homoclinic orbits using BVMs, we need an initial point with the corresponding homoclinic
solution. MatCont [12] originally used a method adopted from [3] to derive such initial solution. However,
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this method needs correction. In [20] the method was improved and a better homoclinic predictor was
derived.

In the present tutorial we show how the new intializer can be used in multi-dimensional systems.
The paper is organized as follows. Section 2 is a review on the main mathematical concepts. In section

3 we describe the algorithm used in MatCont to initialize the homoclinic continuation from a computed BT
point. Numerical examples with MatCont are in section 4. Section 5 contains conclusions and suggestions
for users.

2 The homoclinic prediction

Center manifold theory provides a method to reduce the dimensionality of (1) to the number of zero eigen-
values. In a BT neighborhood, we can reduce the nD system (1) to a 2D system. Details and extensive
theoretical studies are given in [25, 16, 19].

Normal form theory allows us to simplify the dynamics in the center manifold by eliminating all unnec-
essary nonlinear terms which do not affect the existence of stability and solutions. A normal form of (1) at
the BT point is given by

ẇ0 = w1,

ẇ1 = aw2

0 + bw0w1 +O(‖w‖3),
(4)

where (w0, w1)
T ∈ R

2 and ab 6= 0 (the non-degeneracy condition). We call a and b the BT normal form
coefficients. Guckenheimer and Holmes [16] showed that the family

ẇ0 = w1,

ẇ1 = β1 + β2w1 + aw2

0 + bw0w1 +O(‖w‖3 + ‖β‖‖w‖2),
(5)

represents a parameter-dependent normal form of (4). By a suitable blowup transformation, we can
construct an approximation for the homoclinic orbits in the BT normal form (5) and then transfer system
(5) with the resulted homoclinic approximation to the original equation (1). For the literature we refer, in
particular, to [20, 22, 2, 3]. So, we arrive at the homoclinic predictor for the original system (1)

α = α0 + ε2γ1 + ε4γ2,

y(t) = y0 + ε2g1(εt) + ε3g2(εt).
(6)

Here γ1, γ2, g1(εt), and g2(εt) are defined in [20], where ε is called the initial amplitude of the homoclinic
orbit. In MatCont ε is chosen by the user.

3 Continuation of homoclinic orbits

To generate the initial data to start the continuation of homoclinic orbits from a BT point, we use a procedure
that consists of several steps.

First, the condition (2) is defined on an infinite time interval (−∞,∞). This interval has to be truncated
to a finite interval with suitable boundary conditions, say [−T,+T ], where T is the half-return time. So,
after applying this truncation of time, equation (1) becomes 1

ẋ− 2Tf(x(t), α) = 0. (7)

The interval [−T,+T ] is rescaled to [0, 1] and divided into mesh intervals where the solution is approximated
by a vector polynomial (represented via the interpolation formula depending on Lagrange basis polynomials).
The mesh is non-uniform and adaptive. Each mesh interval is further subdivided by equidistant fine mesh

1We will reserve x for system (1) with time truncation and rescaling.
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points. Also, each mesh interval contains m collocation points (Gauss points). These points are the rescaled
roots of the mth−degree Legendre polynomials [19, 5]. The numbers ntst of mesh intervals and ncol = m of
collocation points are part of the continuation data chosen by the user. Equation (7) must be satisfied at
each collocation point. An initial approximation for the homoclinic solution that satisfies (1), (2) and (3) at
some parameter value α is computed by the homoclinic predictor (6). We choose the initial T such that, at
the end points, the distance between y0 and y(±T ) is sufficiently small [2], say δ0, where

δ0 =
‖y(0)− y0‖

κ
, (8)

and κ is a code parameter (kfactor). This leads to an important connection between the initial amplitude
value ε, the code parameter κ and the initial T .

Second, the distance between x(0) (respectively, x(1)) and x0 must be monitored. We define

ε0 =‖x(0)− x0‖

ε1 =‖x(1)− x0‖.
(9)

The initial values for ε0 and ε1 are determined by the predictor (6). The half-return time T , ε0 and ε1
are called the homoclinic parameters. We note that either one or two homoclinic parameters can be free.

Third, if two homoclinic parameters are free, then the following integral phase condition is added
∫ 1

0

〈

x(t)− x̃(t), ˙̃xT(t)
〉

dt = 1, (10)

where x̃ is the homoclinic solution obtained at the previously found point on the curve. Equation (10) is a
necessary condition for a local minimum of the l2-distance between x(t) and x̃(t) over time shifts [19].

Fourth, the boundary value problem (7), (3) and (10) needs suitable boundary conditions at 0 and 1
(i.e., replace (2) by suitable boundary conditions). The following projection boundary conditions are used
to solve this problem

QS(x(0)− x0) = 0,

QU (x(1)− x0) = 0,
(11)

where QS and QU are the ns × n and nu × n matrices whose rows form a basis for the stable and unstable
eigenspace respectively of AT (x0, α). The projection boundary conditions place the solution at the two end
points in the unstable and stable eigenspace of A(x0, α) respectively [8]. The MatCont software [11], uses
specific algorithm dependent on the real Schur factorization to constructQS andQU (see [9, 4, 10, 14, 13, 18]).

4 Examples

We will use MatCont to start homoclinic orbits that emanate from a given BT point.

4.1 Normal form

Consider the BT normal form system (5) without the order terms, the bifurcation analysis of which was
presented in [16], [25] and [22]. We use MatCont to start a continuation of equilibria with fixed normal
form coefficients (a, b) = (−1, 1), initial parameter values (β1, β2) = (1,−2) and the equilibrium point
(w0, w1) = (1, 0); β1 is the free parameter. Two bifurcation points are detected along the curve of equilibria,
namely a limit point (LP) and Hopf (H). The LP continuation is now carried out with free β1, β2 to detect a
BT bifurcation point at (β1, β2) = (0, 0). We start the BT Hom initializer with β1 and β2 as the free system
parameters. In the MatCont Starter window, choose ε0 and ε1 as the free homoclinic parameters. With
40 test intervals (ntst), 4 collocation points (ncol), the amplitude (ε) equal to 0.05 and kfactor = 20 one
can start the homoclinic curve. It turns out that T = 70.806. Repeat the continuation steps using different
signs for a and b (i.e., (a, b) = (1, 1), (a, b) = (1,−1) and (a, b) = (−1,−1)). In Fig.1 and Fig.2 we present
the computed homoclinic orbits in parameter and phase space, respectively.
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Figure 1: Homoclinic orbits in parameter (β1, β2)
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Figure 2: Homoclinic orbits in state (w0, w1) space.

4.2 Predator-Prey systems with constant rate harvesting

Consider the following predator-prey system with constant rate predator harvesting [6]:

ẋ = rx(1−
x

k
)−

yx

e+ x
,

ẏ = y(−d+
x

e+ x
)− h,

(12)
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where k is the carrying capacity of the prey population, d is the death rate of the predator, r is the intrinsic
growth rate of the prey population, and h is the harvesting rate. Xiao and Ruan [26] show the existence of
a BT bifurcation in system (12) and sketch the global bifurcation diagram including the homoclinic curve
which emanates from the BT point. We study the occurrence of homoclinic orbits that emanate from the
computed BT point using MatCont. We fix the parameter values as follows: r = 1, e = 1, k = 2, h = 0.5,
d = 0, then we compute the equilibria with free parameter d and initial value for state variables x = 1.1
and y = 0.09. A limit point (LP) is detected. Compute the fold curve passing through it with (d, h) as
free parameters. One BT point is detected (see Table 1). To initialize the homoclinic orbit from the BT
point with (d, h) free system parameters, choose kfactor = 2 and in the MatCont Starter window input
the following numerical data: ε = 0.001, ntst = 20, ncol = 4 and in the Continuer window set Adapt = 1.
Activate ε0 and ε1 as a free homoclinic parameters and then Compute - Backward. The result should be
as in Fig.3. Notice that during continuation T = 1416.35.

Table 1: Parameter, state and BT normal form coefficient (a, b) values at the bifurcation points in Fig.3.

Label d h State variables Normal form coefficients (a, b)

BT 0.198 0.307 (1.12, 0.93) (−0.18, 0.38)
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Figure 3: (a) The homoclinic orbits in state space for system (12), (b) The homoclinic orbit in parameter
space. The dashed blue curve is the homoclinic curve. The red is the Hopf curve and the green is the LP
curve.

4.3 CO-oxidation in a platinum model.

Consider the following chemical model which describes CO-oxidation in platinum [17, 7, 2]

z = 1− x− y − s,

ẋ = 2k1z
2 − 2k

−1x
2 − k3xy,

ẏ = k2z − k
−2y − k3xy,

ṡ = k4(z − λs).

(13)

where λ = k
−4

k4

. The underlying reaction scheme is displayed in [7] and we notice that a factor 2 is missing

in front of k1z
2 in [17]. The reaction rates (constants) above are fixed as follows k1 = 2.5, k

−1 = 1,
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k3 = 10, k
−2 = 0.1, k4 = 0.0675, k2 = 1.4707, λ = 0.4. Compute the equilibria curve with free k2 and

initial state variables x = 0.00295, y = 0.76211, s = 0.1678. Two limit points (LP) are detected. Start the
LP continuation from any of the two LP-points with (λ, k2) free system parameters. Two BT points are
detected, see Table 2. From BT1 point and with (k2, λ) as free system parameters start the homoclunic
curve continuation using kfactor = 20, ε = 1 × 10−4, ntst = 80, ncol = 4, Adapt = 1, in the continuer
window set the InitStepsize = 0.001 and Compute - Backward with ε0, ε1 as free homoclinic parameters
and the fixed T = 29821.19. For BT2 use ε = 1 × 10−5, kfactor = 50, the fixed T = 494129.24 and then
Compute - Backward. The results are presented in Fig.4

Table 2: Parameter, state and BT normal form coefficient (a, b) values at the bifurcation points in Fig.4.

Label k2 λ State variables Normal form coefficients (a, b)

BT1 1.42 0.97 (0.12, 0.32, 0.29) (−0.08,−2.14)
BT2 1.162 0.72 (0.02, 0.64, 0.20) (−0.05,−1.94)
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Figure 4: (a) and (b) Homoclinic orbits in (x, s)-space for the CO−oxidation model, (c) and (d) Homoclinic
orbit in parameter space. The dashed blue curve is the homoclinic curve. The green curve is the LP curve
and the red is the Hopf curve.
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4.4 The extended Lorenz-84 model

This example is an extended version of the Lorenz-84 model. In this model we can find all codim 2 points
of equilibria (i.e., BT, CP, GH, ZH and HH) [21, 24, 23]. Here, we discuss the switching to the homoclinic
branches from the computed BT points.

The extension model of Lorenz-84 has the form

Ẋ = −Y 2 − Z2 − αX + αF − ξU2,

Ẏ = XY − βXZ − Y +G,

Ż = βXY +XZ − Z,

U̇ = −δU + ξUX + S.

(14)

In this system, X models the intensity of a baroclinic wave, Y and Z the sin and cos coefficients of the
wave respectively, the variable U is added to study the influence of external parameters such as temperature.
The parameters are fixed as follows α = 0.25, β = 1, G = 0.25, δ = 1.04, and ξ = 0.987, F = 2.61. Start
the equilibria continuation with free S = 0 and with initial state variable values X = 1.05, Y = −0.01,
Z = 0.21, U = −0.5. Two LP are detected. From any LP point compute the LP curve passing through it
with (F, S) as a free system parameters. Two BT points are found (See Table 3). From BT1 point start the

Table 3: Parameter, state and BT normal form coefficient (a, b) values at the bifurcation points in Fig.5.

Label F S State variables Normal form coefficients (a, b)

BT1 1.45 0.02 (1.23,−0.04, 0.20,−0.12) (−0.21,−0.61)
BT2 1.45 −0.02 (1.23,−0.04, 0.20, 0.12) (0.21, 0.61)

homoclinic continuation with (F, S) free, kfactor = 100, ε = 4×10−4, ntst=40, ncol=4, Adapt = 1, (ε0, ε1)
free homoclinic parameters. In the Continuer window set the MaxStepSize = 0.2 and then Compute

- Forward. You should obtain the homoclinc orbits as in Fig.5. Notice that for BT2 the same procedure
with fixed T = 14720.40 and then Compute - Forward can be used.
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Figure 5: (a) Homoclinic orbits in (X,U)−space for the CO−oxidation model, (b) Homoclinic orbits in
parameter space. The dashed blue curve is the homoclinic curve. The red is the Hopf curve and the green
is the LP curve.
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5 Conclusion and suggestions

We have described the MatCont initializer to start homoclinic orbits from a given BT point. The intializer
is used to assign the initial cycle and homoclinic parameters so that the homoclinic continuation can start.

We suggest to allow ε0 and ε1 to vary as homoclinic parameters then start increase/decrease the amplitude
value ε and for each ε use different values for kfactor. This works for most studied models. However, it
does take some trial-and-error to set all parameters (including the continuation and corrector data) for the
continuation.

Note that in each case both Compute - Forward and Compute - Backward should be tried.
In general, cases where a, b have a comparable size (in absolute value) are easier to handle than cases

where they differ by a large factor.
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