Seminario del Posgrado en Matemáticas


Reflections of semitopological groups and topological groups

Mat. Zhiqiang Xiao
El Miércoles 20 de Septiembre del 2017
AT- 318 de 17:00 a 18:00

Resumen:
Reflection is an important concept in category theory. Some constructions in algebra, funtional analysis, topology can be viewed as reflections of the concrete objects. In this talk, we will give an introduction of the systematic study of professor Tkachenko on Ti-reflections of semitopological (paratopological) groups (where i=1; 2; 3; r ) and group reflection of semitopological groups. Finally we will discuss our work on the $ au$-precompact Hausdorff group reflection of topological groups cooperated with professor He.


Reflections of semitopological groups and topological groups

Mat. Zhiqiang Xiao
El Miércoles 20 de Septiembre del 2017
AT-318 de 17:00 a 18:00

Resumen:
Reflection is an important concept in category theory. Some constructions in algebra, funtional analysis, topology can be viewed as reflections of the concrete objects. In this talk, we will give an introduction of the systematic study of professor Tkachenko on Ti-reflections of semitopological (paratopological) groups (where i=1; 2; 3; r ) and group reflection of semitopological groups. Finally we will discuss our work on the τ-precompact Hausdorff group reflection of topological groups cooperated with professor He.


Avances de tesis 17-P

Alumnos de posgrado
El Miércoles 19 de Julio del 2017
AT 318 de 10:00 a 12:00

Resumen:
Los alumnos de posgrado de Matemáticas, expondrán los avances de su proyecto de tesis. Las conferencias iniciarán el miércoles 19 de julio a partir de las 10 hrs. Concluyendo el día viernes 21.


Seminario Avances de Tesis 17-P

Estudiantes del Posgrado de Matemáticas
El Miércoles 19 de Julio del 2017
AT-318 de 15:00 a 17:00

Resumen:
Los alumnos de posgrado de Matemáticas, expondrán los avances de su proyecto de tesis. Las conferencias iniciarán el miércoles 19 de julio a partir de las 15:00 hrs. Concluyendo el día viernes 21.


Hiperespacios de sistemas dinámicos no autónomos

Dr. Iván Sánchez Romero
El Miércoles 12 de Julio del 2017
AT-318 de 17:00 a 18:00

Resumen:
En esta plática hablaremos sobre la interacción de algunas propiedades caóticas de un sistema dinámico no autónomo y el sistema dinámico inducido al hiperespacio de conjuntos compactos no vacíos. En particular, consideramos propiedades como transitividad, ser débilmente mezclante, densidad de puntos periódicos, entre otras. También, veremos que a diferencia de los sistemas dinámicos autónomos, no hay condiciones “redundantes” en la definición de caos en el sentido de Devaney.


Jugando al billar y viajando al mundo de las estructuras planas

M. en C. Miguel Ángel Méndez González
El Miércoles 21 de Junio del 2017
AT-318 de 17:00 a 18:00

Resumen:
Un billar consta de tres ingredientes: una mesa, una bola y una ley de reflexión. En esta charla hablaré un poco de los billares poligonales(cuya mesa es un polígono) y de cuál es el juego aquí. Trataré de dar una idea de cómo el estudio de la dinámica en los billares nos lleva al mundo de las estructuras planas y sus flujos geodésicos


Portafolios estables y anillos volátiles

M. en C. Sergio Zamora Erazo
El Miércoles 01 de Febrero del 2017
Salón de seminarios AT-318 de 17:00 a 18:00

Resumen:
Un portafolio es una clase de módulos que coincide con el dominio de inyectividad de algún módulo. Un portafolio es estable si la suma directa de cada familia de módulos, cuyo dominio de inyectividad de cada modulo es A, tiene como dominio de inyectividad a A. En esta plática veremos la relación que existe entre los anillos Noetherianos y los portafolios estables. Además, consideraremos un anillo "diametralmente opuesto' a los anillos Noetherianos, al cual definiremos como volátil. Daremos algunos ejemplos de anillos volátiles


Portafolios estables y anillos volátiles

M. en C. Sergio Zamora Erazo
El Miércoles 01 de Febrero del 2017
Salón de seminarios AT-318 de 17:00 a 18:00

Resumen:
Un portafolio es una clase de módulos que coincide con el dominio de inyectividad de algún módulo. Un portafolio es estable si la suma directa de cada familia de módulos, cuyo dominio de inyectividad de cada modulo es A, tiene como dominio de inyectividad a A. En esta plática veremos la relación que existe entre los anillos Noetherianos y los portafolios estables. Además, consideraremos un anillo "diametralmente opuesto' a los anillos Noetherianos, al cual definiremos como volátil. Daremos algunos ejemplos de anillos volátiles


(0,1)-matrices y Geometría Simpléctica

Dr Jesús Carrillo Pacheco
El Miércoles 09 de Noviembre del 2016
AT-318 de 17:00 a 18:00

Resumen:
Dado un espacio vectorial simpléctico de dimensión finita,se construye una familia de matrices de ceros y unos que describe la geometría de la variedad Lagrangiana-Grassmaniana L(n,2n), permite construir una clase de códigos álgebro-geométricos, de dimensión grande, asociado a los puntos racionales de L(n,2n) y establece (bajo la inclusión de Plücker ) todas las relaciones lineales en las variables de la variedad L(n,2n).


Sobre la complejidad parametrizada de los algoritmos que buscan clanes

M. en C. Ismael Robles Martínez
El Miércoles 13 de Julio del 2016
AT-318 de 17:00 a 18:00

Resumen:
Un clan de una gráfica G, es una subgráfica completa maximal de G. Es bien sabido que una gráfica con n vértices tiene a lo més $3^{frac{n}{3}}$ clanes, por lo que en el peor caso, un algoritmo que imprime todos los clanes de una gráfica requiere tiempo exponencial. En esta plática revisaremos uno de los algoritmos más utilizados para buscar todos los clanes de una gráfica: el algoritmo de Bron-Kerbosch. Examinaremos las variantes de dicho algoritmo así como la cota de complejidad temporal que demostraron Tomita extit{et al.} para este algoritmo: $O(omega 3^{frac{n}{3}})$ para gráficas con n vértices y con número clánico $omega$. También mostraremos nuestros avances en tratar de determinar una cota de complejidad temporal parametrizada para el algoritmo de Bron-Kerbosch, que sea más general que la cota encontrada por Tomita extit{et al.}. Para una gráfica de n vértices, m aristas, $mu$ clanes y número clánico $omega$; nuestra conjetura actual es que la complejidad temporal del algoritmo de Bron-Kerbosch es $O(n^2 + nm + omegamu)$. Si el algoritmo no imprime cada uno de los vértices de los clanes que encuentra, nuestra conjetura es que la complejidad es $O(n^2 + nm + mu)$.


Juegos estocásticos y Tiempos de paro

M. en C. Victor Manuel Martínez Cortés
El Miércoles 06 de Julio del 2016
AT-318 de 17:00 a 18:00

Resumen:
En esta charla se presentará una combinación entre una clase de juegos con un estilo especial de función de recompensa y los tiempos de paro. La teoría de juegos comenzó formalmente en el año de 1944, con la publicación del libro “Game Theory and Economic Behavior” de Von Neumann y Morgenstern, aunque cabe mencionar que existen trabajos como el de Zermelo (1913), Borel (1929), del mismo Von Neumann en (1928) y algunos trabajos de economistas como Cournot(1838) y Edgeworth (1881) que ya daban pie a esta teoría. El tipo de juegos que abordaremos en esta plática se desarrollan en el marco de los juegos estocásticos, los cuales tienen a Shapley y Zachrisson como sus pioneros. Estos juegos permiten modelar los procesos de decisión de Markov (PDMs, en singular PDM), los cuales tiene un interés en muchas disciplinas, debido a que proporcionan una herramienta conveniente para hablar de los sistemas controlados que se desarrollan a través del tiempo con componentes aleatorios (por ejemplo, el control de presas, juegos de apuestas, etc). Por otro lado, un aspecto interesante es el concepto de tiempo de paro, el cual nos permite decidir cuando detener el proceso en el que se está inmerso. Esta decisión puede ser acordada desde el principio, elegida por algún controlador o se puede tener en un contexto aleatorio. Entre los pioneros de los tiempos de paro se encuentran Wald, Shiryaev y Peskir.


Fluidos incompresibles y vórtices: de los equilibrios a las coreografías.

Dr. Celli Siboni Martin
El Miércoles 22 de Junio del 2016
AT-318 de 17:00 a 18:00

Resumen:
Las ecuaciones diferenciales de Helmholtz permiten estudiar el movimiento de un sistema de N remolinos o vórtices en un fluido plano incompresible sin viscosidad, sin enfrentarse directamente a las ecuaciones diferenciales parciales de Euler. Este sistema hamiltoniano, integrable sólo en el caso de dos o tres vórtices, modela varios fenómenos y sistemas físicos: huracanes en la atmósfera, helio superfluido... Tiene varios parecidos con otras ecuaciones clásicas, entre las cuales están las que describen el movimiento de planetas en interacción gravitacional, o las interacciones moleculares. El propósito de esta plática es presentar algunas soluciones simétricas de las ecuaciones de Helmholtz, donde los vórtices se siguen en la misma curva, o las distancias entre ellos son constantes.


El método de Galerkin discontinuo y limitadores de pendiente

Mat. José Carlos Sánchez Fernández
El Miércoles 08 de Junio del 2016
AT-318 de 17:00 a 18:00

Resumen:
En la solución numérica de ecuaciones diferenciales existe una gran variedad de métodos aceptados y probados. Los más conocidos son los métodos de elemento finito, volumen finito y diferencias finitas que son técnicas que discretizan el operador diferencial en el espacio. El método de Galerkin es un caso particular de los métodos de elemento finito, en el cual la solución es la proyección sobre un espacio de dimensión finita. En el método de Galerkin discontinuo se permite que existan discontinuidades en las fronteras de cada elemento. En esta platica hablaré sobre el método, las ventajas y desventajas del mismo y de algunas formas de estabilizar las soluciones obtenidas por medio de limitadores de pendiente.


Control y Problemas Inversos: Aproximación Numérica

Dr. Lorenzo Héctor Juárez Valencia
El Miércoles 01 de Junio del 2016
AT-318 de 17:00 a 18:00

Resumen:
Recientemente hemos trabajado en el control de procesos difusivos en superficies, obteniendo buenos resultados. Por otro lado, hemos encontrado que los aspectos teóricos como las formulaciones y los métodos de solución aproximada, se pueden aplicar a problemas inversos que aparecen en otros contextos. En esta charla se mostrarán algunos ejemplos y resultados de esta conexión.


Catando volumen del mundo hiperbólico

Ricardo Guzman Fuentes
El Miércoles 25 de Mayo del 2016
AT-318 de 17:00 a 18:00

Resumen:
De manera análoga a la geometría euclideana, ¿existe alguna manera de calcular áreas y volúmenes de cuerpos geométricos, como triángulos, cuadriláteros, polígonos y poliedros, mediante una formula, evitando integrar cada vez que se requiera uno de esos datos?. En esta charla mostraremos una respuesta y teoremas de Thurston, Jorgensen y Gromov sobre el tema.


Control de caos... y de otras cosas

Dr. Solís Daun Julio Ernesto
El Miércoles 18 de Mayo del 2016
AT-318 de 17:00 a 18:00

Resumen:
En esta charla presentamos primero algunos sistemas caóticos famosos. Después veremos el problema de control del caos (informalmente, significa hacer que un sistema caótico deje de serlo). Esto nos servir'a de motivación para introducir el problema sobre la estabilización de sistemas mediante controles, de manera gradual: primero regulares, luego acotados y por último con derivadas acotadas. El enfoque adoptado es la teoría de las funciones de Lyapunov de control y el denominado Teorema de Artstein, así como de un problema abierto plateado en 1999 por E. Sontag con referencia a dicho teorema, y una solución al mismo. La herramienta básica, aparte de Ecuaciones Diferenciales y Teoría de Control, es el Análisis Convexo y la Geometría Diferencial.


Implementación de un Método Integrador Paralelo de Alto Orden

Fis. José Angel Neria Pérez
El Miércoles 16 de Marzo del 2016
AT-318 de 17:00 a 18:00

Resumen:
Las ecuaciones diferenciales parciales (PDEs) proveen una descripción cuantitativa para muchos modelos centrales en ciencias físicas, biológicas, y sociales. La descripción es elaborada en términos de funciones desconocidas de dos o más variables independientes, y la relación entre las derivadas parciales con respecto a estas variables. En general al resolver una PDE numéricamente existirá un compromiso entre calidad de la solución y el tiempo de cómputo empleados. En esta charla se discute un algoritmo integrador paralelo de alto orden perteneciente a la familia de Métodos Integrales de Corrección Diferida y se muestran resultados al aplicarlo a las ecuaciones de propagación de ondas mecánicas en un medio poroso saturado con agua.


Estudio geométrico de las singularidades de curvas planas: el método de Newton y pares de Puiseux

Wágner Badilla Céspedes
El Miércoles 09 de Marzo del 2016
AT-318 de 17:00 a 18:00

Resumen:
En geometría es de gran importancia ciertos tipos de conjuntos, especialmente aquellos que generan lugares geométricos, un ejemplo son las curvas planas, es decir, conjuntos de la forma $V(f)={ (x,y)in U: f(x,y)=0 }$, donde $f$ es una serie convergente en cero con coeficientes complejos ($mathbb{C}{x,y}$) y $Usubset mathbb{C}^{2}$ una vecindad de cero, en la cual $f$ converge. No queremos centrarnos en cualquier tipo de curva, estudiaremos aquellas dadas por series que no tienen inversos multiplicativos, esto es, con término independiente igual a cero, además queremos que sean libres de potencias, es decir, si $f=f_{1}^{n_{1}}cdots f_{r}^{n_{r}}$, entonces $n_{i}=1$ para $i=1ldots r$. Teniendo estas curvas queremos centrarnos en vecindades pequeñas y arbitrarias de cero que nos permitan obtener información de $V(f)$ solo dependiendo de la misma $V(f)$. Para esto nos centramos solo en el fragmento de curva que abarca estas vecindades, que permitirán caracterizar las propiedades de la curva. Se detalla a través de ejemplos los algoritmos necesarios para la descripción detallada de las singularidades de curvas planas, pasando por el método de Newton y pares de Puiseux. Se exponen detalles significativos producto del an'alisis de los invariantes mencionados.


Descripción de datos en el simplex vía variables direccionales

M. en C. Marco Antonio Sánchez Pérez
El Miércoles 02 de Marzo del 2016
AT-318 de 17:00 a 18:00

Resumen:
Los datos direccionales tienen que ver con observaciones de vectores unitarios en el espacio q-dimensional. Por otro lado, los datos composicionales son vectores cuyas componentes son no negativas y cuya suma se restringe a un valor constante k, esta restricción hace que el espacio muestral asociado a los datos composicionales sea el simplex q-dimensional. En esta plática se presentan métodos y procedimientos definidos para datos direccionales en la descripción de datos composicionales. Esta propuesta implica, entre otras cosas, la implementación de procedimientos de inferencia Bayesianos para datos direccionales basados en la distribución Normal proyectada q-dimensional.


Inercia en Campos Cuadráticos

Mat. Edgar Pacheco Castán
El Miércoles 24 de Febrero del 2016
AT-318 de 17:00 a 18:00

Resumen:
Hist’oricamente, el estudio del fen’omeno conocido como ramificaci’on, ha sido objeto de inter’es de grandes matem’aticos, como se puede hallar en la literatura correspondiente. Sin embargo, estos estudios se centran principalmente en un tipo particular de primos, llamados primos ramificados, quiz’a porque la ramificaci’on de un primo es un fen’omeno de ’indole geom’etrico, por lo cual atrae el inter’es de otras ramas distintas a la teor’ia de n’umeros, dejando a un lado a los primos que no se ramifican. Por ello, el objeto de esta pl’atica es saber que pasa con otro tipo de primos, los primos inertes, aquellos que al ser extendidos como ideales en el anillo de enteros de un campo cuadr’atico, estos resultan ser ideales primos.