SPECTRALLY INVARIANT SUBSPACES OF A BOUNDED LINEAR OPERATOR

SLAVIŠA V. DJORDJEVIĆ

A proper lattices of X is a pair (A, L) composed by a bounded linear operator A on X and its invariant finite-dimensional subspace L. The set of all proper lattices of X we denote Pl(X). For $(A, L) \in Pl(X)$, the operator A induces two operators, the restriction operator $A_{|L}$ and the operator $\widehat{A_L}$ from the quotient X/L into itself, i.e. $\widehat{A_L}(\pi(y)) = \pi(A(y))$, where π is the natural homoeomorphism between X and the quotient space X/L.

In this note its shown that (A, L) is a proper lattices if and only if there are the finite sequence of eigenvalues $\{\lambda_1, \ldots, \lambda_n\} \in \sigma_p(A)$ and the appropriate set of linear independent eigenvectors $\{x_1, \ldots, x_n\}$ such that $L = \mathcal{L}(x_1, \ldots, x_n)$. Moreover, λ_i is a simple pole of A if and only if $\lambda_i \notin \sigma(\widehat{A}_L)$.

Follow this concept we can define spectrally invariant (finite dimensional) subspaces of linear operator T like invariant subspace E such that $\sigma(T_{|E}) \cap \sigma(\widehat{T_{E}}) = \emptyset$. Also, we gave it some properties of stability of spectrally invariant subspaces.

S. V. Djordjević : Facultad de Ciencias Físico-Matemáticas, BUAP, Río Verde y Av. San Claudio, San Manuel, Puebla, Pue. 72570, Mexico.

E-mail address: slavdj@fcfm.buap.mx