OPTIMIZACIÓN ESTADÍSTICA DEL TIEMPO DE VIDA DE ANAQUEL DEL LITCHI Y EL NOPAL

Ana Marlene López Ramos

Marzo de 2015

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

ACTA DE EXAMEN DE GRADO

No. 00122

	Matrícula: 2113802245
OPTIMIZACION ESTADISTICA DEL	A JOA JE A DE
TIEMPO'DE VIDA DE ANAQUEL DE	En México, D.F., se presentaron a las 14:00 horas del día
LITCHI Y EL NOPAL	14 del mes de mayo del año 2015 en la Unidad Iztapalapa de la Universidad Autónoma Metropolitana, los suscritos
	miembros del jurado:
L'ANDALION IONIONIONIONIONIONI	DR. ALBERTO CASTILLO MORALES
0. A _ 30. A _	DR. CARLOS DIAZ AVALOS
	DRA. BLANCA ROSA PEREZ SALVADOR
CARL AND AN AN AN AN AN AN AN AN AN	DRA. CLARA PELAYO ZALDIVAR
A A DA BOANDA BARANA AN	A ACAMPA MCANCANCANCANCANCANCANCANCANCANCANCANCANC
A CANCANCA MCANCANCANCA MCANCA A	A A DA ADA ADA ADA ADA ADA ADA ADA ADA
A A A A A A A A A A A A A A A A A A A	A A STATE A ST
A A DA A	A A DA A
and the second second second second second	
A STA STA A STA A STA A STA A STA A STA A	A HOA HOA HOA HOA HOA HOA HOA HOA HOA HO
A A THE REPORT OF A REPORT OF THE ATTEM OF THE ATTEM OF	TA ATTA ATTA ATTA ATTA ATTA ATTA ATTA

Bajo la Presidencia del primero y con carácter de Secretaria la última, se reunieron para proceder al Examen de Grado cuya denominación aparece al margen, para la obtención del grado de:

MAESTRA EN CIENCIAS (MATEMÁTICAS APLICADAS E INDUSTRIALES)

DE: ANA MARLENE LOPEZ RAMOS

y de acuerdo con el artículo 78 fracción III del Reglamento de Estudios Superiores de la Universidad Autónoma Metropolitana, los miembros del jurado resolvieron:

Acto continuo, el presidente del jurado comunicó a la interesada el resultado de la evaluación y, en caso aprobatorio, le fue tomada la protesta.

APROBAR

VOCAL VOCAL SECRETARIA

Índice general

Introducción

1.	. Desarrollo histórico de la Metodología de superficies de res-			
puesta				1
	1.1.	Parte	I: 1951-1975	1
		1.1.1.	Propiedades deseables de los diseños usados en super-	
			ficies de respuesta	4
		1.1.2.	Diseños robustos	5
		1.1.3.	Diseños de primer y segundo orden	5
		1.1.4.	Determinación de condiciones óptimas	5
		1.1.5.	Experimentos multirespuesta	7
	1.2.	Segun	da parte, era Taguchi, 1976-1999	8
		1.2.1.	Diseño de parámetros robusto Taguchi	8
	1.3.	Tercer	a parte	9
		1.3.1.	Modelos de superficie de respuesta con efectos aleatorios	9
		1.3.2.	Introducción a los modelos lineales generalizados (MLG)	12
2.	Met	odolog	gía de superficies de respuesta	15
	2.1.	Curvas	s de Nivel	16
2.2. Superficies de respuesta polinómicas		ficies de respuesta polinómicas	16	
		2.2.1.	Modelos de primer orden	17
		2.2.2.	Modelos de segundo orden	18
		2.2.3.	Naturaleza secuencial de la metodología de superficie	
			de respuesta	18
	2.3.	Diseño	os de superficies de respuesta	19
		2.3.1.	Diseños de primer orden	20
		2.3.2.	Diseños de segundo orden	23

 \mathbf{V}

	2.4.	Región de confianza para el punto óptimo en un ajuste de	96
	0 5		20
	2.5.	Procesos multi-respuesta	30
		2.5.1. Optimización multi-respuesta	31
		2.5.2. Enfoque de respuesta dual	35
	2.6.	Un ejemplo por simulación de la metodología de superficie de	
		respuesta para una variable	38
3.	Apl	icación de la metodología de superficies de respuesta	43
	3.1.	Litchi	43
		3.1.1. Producción de Líchi en México	44
		3.1.2. Manejo postcosecha	45
	3.2.	Desarrollo del experimento (aplicación en litchi)	46
	3.3.	Análisis de datos en Litchi	49
	3.4	Nopal	57
	0.1.	3.4.1. Uso e industrialización del nopal	57
		3.4.2 Limitantes del nopal para su comercialización	59
		3.4.3 Tratamientos Térmicos	60
		3.4.4 Atmósforas Modificadas (AM)	60
	25	Deservelle del experimente	60
	5.5.		00
	0.0	3.5.1. Variable de respuesta	03
	3.6.	Analisis de datos en Nopal	66
4.	Pro	blemática experimental	71
А.	Dat	os experimentales	73
	A.1.	Datos de experimentos con Nopal	73
	A.2.	Datos de experimentos con Litchi	80

Introducción

La metodología de superficies de respuesta es un conjunto de técnicas matemáticas y estadísticas utilizadas para modelar y analizar problemas en los que una variable de interés es influenciada por otras. Esta metodología fue introducida por Box y Wilson [1] en el año de 1951 y el objetivo es optimizar la variable de interés. Esto se logra al determinar las condiciones óptimas de operación del sistema.

Uno de los mayores problemas de la industria es encontrar las condiciones óptimas de operación, ya sea para minimizar costos ó maximizar la calidad de sus productos.

El objetivo de este trabajo es encontrar el conjunto de variables control que maximizan el tiempo de vida del nopal y el litchi cuando se les aplican diferentes tratamientos postcosecha. En este trabajo se presenta un resumen de la metodología de superficies de respuesta, y una breve historia de su desarrollo.

En el primer capitulo se da una breve descripción de las tres etapas en el desarrollo de esta metodología, en la primera se habla de la metodología clásica, de algunos diseños experimentales y se da una breve descripción de sus propiedades deseables. En la segunda etapa se muestran algunas técnicas de superficies de respuesta, así como la alternativa de los diseños de parámetros robustos, y en la tercera etapa se habla brevemente de las nuevas lineas de investigación en la metodología de superficies de respuesta.

En el capítulo 2 se presenta de forma más detallada la metodología de superficies de respuesta, así como una introducción a los diseños de experimentos de primer y segundo orden. En este capítulo también se muestra un ejemplo por simulación de esta metodología.

En el capítulo 3, se indica el impacto que tienen en México la producción de litchi y nopal, la problemática de estos frutos para mantenerse en el mercado por más tiempo, y los tratamientos que se utilizan para preservarlos. También se describe la aplicación de estos tratamientos y los resultados obtenidos de la aplicación de la metodología de superficies de respuesta.

En el apéndice A se presentan todos los datos obtenidos en los experimentos de litchi y nopal.

Capítulo 1

Desarrollo histórico de la Metodología de superficies de respuesta

La metodología clásica de superficies de respuestas (MSR) se originó con el artículo de Box y Wilson [1] en el año de 1951, y desde entonces hasta la fecha se pueden distinguir 3 etapas en su desarrollo. En la primera, se generó lo que actualmente se denomina metodología clásica de superficies de respuestas y abarca los años 1951 a 1975. La etapa dos, comprende los años de 1976 a 1999, en este tiempo se consolidan las técnicas de superficies de respuestas y se introducen como una alternativa los diseños de parámetros robustos de Taguchi. La tercera etapa proporciona una cobertura de nuevas ampliaciones y líneas de investigación en MSR moderna, incluyendo modelos de superficie de respuesta con efectos aleatorios y modelos lineales generalizados.

1.1. Parte I: 1951-1975

La metodología de superficie de respuestas consiste de un grupo de técnicas estadísticas y matemáticas usadas en el desarrollo de una adecuada relación entre una variable de interés y y un número de k variables independientes denotadas por $x_1, x_2, ..., x_k$. Esta relación es desconocida pero puede ser aproximada localmente por un modelo polinomial de grado d ($d \ge 1$) de la forma:

$$Y = f(x)^T \beta + \epsilon. \tag{1.1}$$

donde $x = (x_1, x_2, ..., x_k)$, f(x) es una función vector de p elementos cuyas coordenadas son de la forma $\prod_{i=1}^k x_i^{r_i}$ con $r_i \ge 0$ y $\sum_{i=1}^k r_i \leqslant d$, β es un vector de p constantes desconocidas (parámetros), y ϵ es el error aleatorio (asumimos que tiene media 0). El valor de $f(x)^T\beta$ representa la respuesta media, esto es el valor esperado de Y en el punto x, y lo denotamos por $\mu(x)$.

Dos modelos importantes comúnmente usados en la metodología de superficie de respuestas son dos casos especiales del modelo (1.1), estos son el modelo de primer grado (d = 1):

$$Y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \epsilon \tag{1.2}$$

y el modelo de segundo orden (d = 2):

$$Y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \sum_{j < i} \beta_{ij} x_i x_j + \sum_{i=1}^k \beta_{ii} x_i^2 + \epsilon.$$
(1.3)

Los propósitos de considerar un modelo como (1.1) son tres:

- Establecer una relación (aunque sea aproximada) entre la variable respuesta y y las variables $x_1, x_2, ..., x_k$, que pueda ser usada para hacer predicciones de la variable respuesta en un conjunto dado de variables control.
- Determinar la significancia de las variables control $x_1, x_2, ..., x_k$.
- Determinar el conjunto óptimo de $x_1, x_2, ..., x_k$ que nos da el máximo (o el mínimo) de la variable respuesta, dentro de cierta región de interés.

Con el fin de alcanzar estos tres objetivos se realiza una serie de experimentos secuenciales para un conjunto específico de variables control, en cada uno de estos experimentos se mide la variable de interés o variable respuesta Y. Al conjunto de valores de la variables independientes en los que se realiza cada uno de estos experimentos se conoce como **diseño de superficie de respuesta** o simplemente diseño, los datos de cada diseño se representan por una matriz D, de tamaño $n \times k$ llamada matriz de diseño:

$$D = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix}$$

donde x_{ui} denota el *u*-ésimo conjunto de x_i (i = 1, 2, ..., k, y u = 1, 2, ..., n). Cada renglón de *D* representa un punto en el espacio Euclidiano *k*-dimensional. Y_u denota la respuesta obtenida resultado de realizar el experimento en el *u*-ésimo valor de $x, x_u = (x_{u1}, x_{u2}, ..., x_{uk})'$. Se supone que la relación entre Y_u y x_u sigue el modelo dado por la ecuación (1.1),por lo que se satisface la ecuación:

$$Y_u = f(x_u)^T \beta + \epsilon_u, \ u = 1, 2, ..., n.$$
(1.4)

Este modelo se puede expresar en forma matricial como:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1.5}$$

donde $\mathbf{Y} = (Y_1, Y_2, ..., Y_n)'$, \mathbf{X} es una matriz de tamaño $n \times (k+1)$ donde su *u*-ésimo renglón es $f(x_u)^T$ y $\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, ..., \epsilon_n)'$. La primera columna de \mathbf{X} es un vector de unos (variable x_0 o constante).

Asumiendo que el error $\boldsymbol{\epsilon}$ tiene media cero y matriz de varianza-covarianza $\sigma^2 I_n$, el estimador de mínimos cuadrados de $\boldsymbol{\beta}$ esta dado por

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

este estimador tiene como matriz de varianza-covarianza a:

$$Var(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}.$$

Remplazando $\boldsymbol{\beta}$ por $\hat{\boldsymbol{\beta}}$ en la expresión $Y(x) = f(x)^T \boldsymbol{\beta}$ se obtiene $\hat{Y}(x_u)$, un estimador para la respuesta media de Y, esto es

$$\hat{Y}(x_u) = f(x_u)^T \hat{\beta}, \ u = 1, 2, ..., n.$$

En general, para algún punto x en una región experimental R el valor pronosticado para la variable respuesta es:

$$\hat{Y}(x) = f(x)^T \hat{\boldsymbol{\beta}}, x \in R$$

у

$$Var(\hat{Y}(x)) = \sigma^2 f(x)^T (\mathbf{X}'\mathbf{X})^{-1} f(x).$$

La elección del diseño en la metodología de superficies de respuestas es muy importante, ya que de esto depende la calidad de la predicción.

1.1.1. Propiedades deseables de los diseños usados en superficies de respuesta

La elección del diseño depende de las propiedades que se deseen o se requieran en el problema específico. Algunas propiedades que se consideraron como deseables en los inicios del desarrollo de la MSR son:

- Ortogonalidad
- Rotabilidad
- Precisión uniforme

Ortogonalidad

Decimos que un diseño D es ortogonal si la matriz $\mathbf{X}'\mathbf{X}$ es diagonal, donde \mathbf{X} es la matriz de la ecuación (1.5). La ventaja de esta propiedad es que los elementos de $\hat{\boldsymbol{\beta}}$ no estarán correlacionados, ya que los elementos de la matriz $Var(\hat{\boldsymbol{\beta}})$ fuera de la diagonal serán 0. Ademas si asumimos que el vector $\boldsymbol{\epsilon}$ tiene distribución $N(0, \sigma^2 I_n)$, entonces las coordenadas de $\boldsymbol{\epsilon}$ resultan ser independientes.

Rotabilidad

Un diseño es rotable si $Var(\hat{Y}(x))$ es constante en todos los puntos x que son equidistantes al centro del diseño (los puntos del diseño pueden elegirse sobre la superficie de una hiperesfera centrada en el origen, en el sistema kdimensional). La ventaja de esta propiedad es que la varianza de la predicción permanece sin cambios en la rotación de los ejes de coordenados, ya que sólo depende de la norma de x.

Precisión uniforme

Un diseño rotable tiene la propiedad de precisión uniforme si la varianza de Y estimada en el centro del diseño es igual a su valor a una distancia igual a uno del centro del diseño.

1.1.2. Diseños robustos

Existen otras propiedades adicionales de los diseños que ayudan a la detección de falta de ajuste, mejor estimación para la varianza del error, a la insensibilidad en los errores realizados en la aplicación de los valores de las variables de control. Sin embargo no se puede esperar que un solo diseño contenga todas estas propiedades. Un diseño es robusto si sus propiedades no se ven afectadas por fallas en suposiciones hechas sobre el modelo y la distribución del error.

1.1.3. Diseños de primer y segundo orden

Como se señaló anteriormente los modelos de primer orden (1.2) y de segundo orden (1.3) son los más comúnmente utilizados en la MSR. En este sentido se utilizan frecuentemente una serie de diseños específicos para el modelo de primer orden y otra serie para los modelos de segundo orden.

El modelo de primer orden dado en la ecuación (1.2) tiene k + 1 parámetros β_i desconocidos y otro más por la varianza σ^2 . Para estimar todos los parámetros se requiere al menos que el diseño tenga k+2 puntos. Los diseños más comunes de primer orden, son los 2^k factoriales, Plackett-Burman y el diseño simplex, los cuales serán descritos mas adelante.

El número de parámetros β_i en el modelo de segundo orden (1.3) es $p = 1 + 2k + \frac{1}{2}k(k-1)$, entonces el número de puntos en el diseño debe ser al menos igual a p. Estos diseños normalmente son codificados de tal manera que $\frac{1}{n} \sum_{u=1}^{n} x_{ui} = 0$. Los diseños de segundo orden mas frecuentes son los diseños 3^k factoriales, central compuesto y el diseño Box-Behnken.

1.1.4. Determinación de condiciones óptimas

Uno de los principales objetivos de la metodología de superficies de respuestas es la determinación del conjuntos de variables control que nos den el resultado máximo (o mínimo) de la variable respuesta, sobre cierta región de interés R. Para estimar el conjunto de variables de control donde se encuentra la respuesta óptima se asume que la función E(Y|x) es continua y diferenciable, por lo que se puede aproximar localmente por un polinomio. En este caso se considera aproximar la función por un modelo de primer grado para acercarnos a la región del conjunto de variables control óptima y posteriormente aproximar la función E(y|x) con un modelo de segundo grado para estimar al óptimo.

Optimización de un modelo de segundo grado

Consideremos un modelo de segundo orden como en la ecuación (1.3), el cual puede ser escrito como:

$$Y = \beta_0 + x'b + x'Bx + \epsilon$$

donde $x = (x_1, x_2, ..., x_k)'$, $b = (\beta_1, \beta_2, ..., \beta_k)'$ y *B* es una matriz simétrica de $k \times k$ cuyos elementos de la diagonal son β_{ii} i = 1, 2, ..., k y las entradas (i, j) fuera de la diagonal son $\frac{1}{2}\beta_{ij}$ $(i \neq j)$. Asumiendo que $E(\boldsymbol{\epsilon}) = 0$ y $Var(\boldsymbol{\epsilon}) = \sigma^2$ la predicción de la respuesta sera dada por:

$$\hat{Y}(x) = \hat{\beta}_0 + x'\hat{b} + x'\hat{B}x$$
 (1.6)

donde $\hat{\beta}_0$, \hat{b} y \hat{B} son los estimadores de mínimos cuadrados de β_0 , b y B.

Método de análisis de cordillera

Este modelo fue introducido por Hoerl y formalizado por Draper. Este método optimiza $\hat{Y}(x)$ en la ecuación (1.6) sujeto a que x pertenece a la superficie de una hiperesfera de radio r y centrada en el origen:

$$\sum_{i=1}^k x_i^2 = r^2$$

Se usan varios valores para r con el fin de obtener información del óptimo alrededor de varias distancias del origen. Será una optimización con restricciones, y podemos usar el método de multiplicadores de Lagrange. Consideraremos la función

$$H = \hat{\beta}_0 + x'\hat{b} + x'\hat{B}x - \lambda(x'x - r^2)$$

donde λ es el multiplicador de Lagrange. Derivando H, con respecto a x e igualando a cero, obtenemos

$$\hat{b} + 2(\hat{B}x - \lambda x) = 0.$$

Resolviendo para x, obtenemos

1

$$x_0 = -\frac{1}{2}(\hat{B} - \lambda I_n)^{-1}\hat{b}.$$

Este punto representa un punto crítico de $\hat{Y}(x)$. Con la matriz hessiana, se puede saber si x_0 corresponde a un punto máximo, mínimo o punto silla. Esta matriz esta dada por

$$Hessiana = 2(\hat{B} - \lambda I_n).$$

1.1.5. Experimentos multirespuesta

En un experimento multirespuestas, varias respuestas son medidas a través de un conjunto de variables control. En el análisis de los datos de un experimento multirespuestas se presta atención a la correlación natural de los datos dentro de una corrida experimental. Asumimos que las respuestas están correlacionadas dentro de una corrida experimental, pero son independientes de otras corridas.

Supongamos que n es el número de corridas experimentales y q el número de respuestas. Entonces la i-esima respuesta puede ser modelada por

$$Y_i = X_i \beta_i + \epsilon_i, \ i = 1, 2, ..., q$$

donde Y_i es un vector de $n \times 1$ de observaciones de la *i*-esima respuesta, X_i es una matriz conocida de tamaño $n \times p_i$ de rango p_i , β_i es un vector de p_i parámetros desconocidos y ϵ_i es el vector de errores aleatorios asociados con la *i*-esima respuesta. Usando notación matricial, podemos expresar el modelo:

$$Y = X\beta + \epsilon \tag{1.7}$$

donde $Y = (Y'_1, ..., Y'_q)'$, X es una matriz diagonal por bloques, donde la diagonal esta formada $(X_1, ..., X_q)$, $\beta = (\beta'_1, ..., \beta'_q)'$ y $\epsilon = (\epsilon'_1, ..., \epsilon'_q)'$. Asumimos que $E(\epsilon) = 0$ y la matriz de varianza-covarianza $Var(\epsilon) = \Sigma \otimes I$, donde I es la matriz identidad de $n \times n$. El mejor estimador insesgado de β esta dado por:

$$\hat{\beta} = \left[X'(\Sigma^{-1} \otimes I)X \right]^{-1} X'(\Sigma^{-1} \otimes I)Y.$$

Cuando desconocemos Σ , usamos un estimador $\hat{\Sigma}$ para encontrar $\hat{\beta}$. Al seleccionar un diseño óptimo, necesitamos considerar todas las respuestas simultáneamente. Decimos que el modelo (1.7) sufre de falta de ajuste cuando no representa adecuadamente a la variable respuesta. Debido a la correlación natural de las respuestas en un diseño multirespuesta, la falta de ajuste de una variable respuesta afecta a las otras variables. Un objetivo importante de un diseño multirespuestas es determinar las condiciones óptimas de las variables de control que conducen a la optimización simultánea de los valores predichos de las respuestas dentro de una región de interés. Una complicación es que las condiciones que son óptimas para una respuesta pueden estar lejos de ser óptimas para otras, o incluso poco prácticas desde un punto de vista experimental. Por ejemplo, en un experimento en donde la toxicidad y la efectividad de un droga son medidas, se desea maximizar la efectividad y minimizar la toxicidad. El conocimiento común nos dice que a medida que aumenta la dosis de droga, también lo hace su eficacia y los efectos secundarios tóxicos. Esto implica que la respuesta eficacia se optimiza en un nivel más alto de dosis, mientras que la respuesta toxicidad se minimiza en un nivel bajo de dosis, por lo que es difícil identificar los niveles de dosis que son óptimos para ambas respuestas. Un procedimiento adecuado para este tipo de problemas es optimizar una de las respuestas, mientras se restringen las otras a un valor especificado.

1.2. Segunda parte, era Taguchi, 1976-1999

1.2.1. Diseño de parámetros robusto Taguchi

Un diseño robusto es un técnica de ingeniería bien consolidada que incrementa la calidad de un producto, haciendo insensible al proceso de variaciones incontrolables durante el diseño.

Taguchi propone que las variables de entrada en un experimento son de dos tipos, (1) factores controlables (parámetros): fáciles de controlar, y (2) factores de ruido (ruido): difíciles de controlar. Estos factores de ruido de difícil control son la causa de variaciones en el proceso de producción. El principal objetivo es determinar qué combinación de factores controlables es la menos sensible a los cambios en las variables de ruido, de este concepto se deriva el nombre de diseño de parámetros robustos.

Taguchi determinó que había tres objetivos específicos en un experimento:

- Minimizar la respuesta.
- Maximizar la respuesta.
- El logro de un valor objetivo dado.

Para cada uno de los diferentes objetivos, Taguchi define criterios de rendimiento conocidos como razón señal-ruido valores que obtuvo tomando en cuenta tanto la media del proceso como la varianza. Cada conjunto de ajustes de las variables control contiene n corridas de la matriz externa. Las razones de señal-ruido, son:

- Minimizar la respuesta: $-10\log(\frac{1}{n}\sum_{i=1}^{n}y_i^2)$.
- Maximizar la respuesta: $-10\log(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{y_i^2})$.
- Lograr un valor objetivo: $-10\log(\frac{s^2}{\bar{u}^2})$.

1.3. Tercera parte

1.3.1. Modelos de superficie de respuesta con efectos aleatorios

Los modelos de superficie de respuesta que hemos considerado hasta el momento son modelos polinomiales de efectos fijos. Estos modelos son adecuados siempre que los niveles de los factores que se consideran en un experimento dado son de particular interés para el experimentador, por ejemplo, la temperatura y la concentración de diversos productos químicos en una cierta reacción química. Hay, sin embargo, otras situaciones experimentales en las que, además de los factores de control, la respuesta puede estar sujeta a variaciones debidas a la presencia de algunos efectos aleatorios. Por ejemplo, la materia prima utilizada en un proceso de producción se puede obtener en lotes seleccionados al azar de un almacén. Debido a que los lotes pueden diferir en la calidad, el modelo debería de incluir un efecto aleatorio, para considerar la variabilidad de los lotes. En esta parte consideramos modelos polinomiales de efectos fijos que incluyan un efecto aleatorio.

Sea $\mu(\boldsymbol{x})$ la media de la variable respuesta y, en el punto $\boldsymbol{x} = (x_1, x_2, ..., x_k)'$. Asumimos que $\mu(\boldsymbol{x})$ es representada por un modelo polinomial de grado d (d ≥ 1) de la forma:

$$\mu(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x})^T \boldsymbol{\beta}. \tag{1.8}$$

Las corridas experimentales se dividen en *b* bloques de tamaño $n_1, n_2, ..., n_b$, tal que $n = \sum_{i=1}^{b} n_i$. Los efectos de los bloques son considerados aleatorios,

y el valor de la respuesta en la *u*-ésima corrida es representada por el modelo

$$y_u = \boldsymbol{f}(\boldsymbol{x}_u)^T \boldsymbol{\beta} + z_u^T \boldsymbol{\gamma} + \boldsymbol{g}(\boldsymbol{x}_u)^T \boldsymbol{\Lambda} z_u + \epsilon_u, \ u = 1, 2, ..., n$$
(1.9)

donde $\boldsymbol{g}(\boldsymbol{x})^T$ es tal que $\boldsymbol{f}(\boldsymbol{x})^T = [1, \boldsymbol{g}(\boldsymbol{x}_u)^T], \boldsymbol{x}_u$ es el valor de la variable \boldsymbol{x} en la *u*-ésima corrida, $z_u = (z_{u1}, z_{u2}, ..., z_{ub})^T$, donde cada z_{ui} es una variable indicadora la cual toma el valor de 1 cuando la *u*-ésima corrida pertenece al *i*-ésimo bloque y toma el valor de 0 cuando pertenece a otro bloque, $\boldsymbol{\gamma} = (\gamma_1, \gamma_2, ..., \gamma_b)^T$, donde γ_i denota el efecto del *i*-ésimo bloque, y ϵ_u es el error aleatorio experimental. La matriz $\boldsymbol{\Lambda}$ contiene los coeficientes de las interacciones entre los bloques y los efectos fijos en el modelo. Este modelo es considerado un modelo de efectos mixtos, y puede ser expresado en forma vectorial como

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{\gamma} + \sum_{j=2}^{p} \boldsymbol{U}_{j}\boldsymbol{\delta}_{j} + \boldsymbol{\epsilon}$$
 (1.10)

donde la matriz X es de tamaño $n \times p$ y es de la misma forma que en el modelo (1.5), Z es una matriz diagonal por bloques de tamaño $n \times p$ de la forma

$$\boldsymbol{Z} = \mathbf{diag}(\mathbf{1}_{n1}, \mathbf{1}_{n2}, ..., \mathbf{1}_{nb}).$$
(1.11)

 U_j es una matriz de tamaño $n \times b$ cuya *i*-ésima columna se obtiene al multiplicar los elementos de la *j*-ésima columna de X con los elementos de la *i*-ésima columna de Z, (i = 1, 2, ..., b; j = 1, 2, ..., p), δ_j es un vector de interacciones entre los bloques y el *i*-ésimo termino polinomial.

Suponemos que $\boldsymbol{\gamma}, \boldsymbol{\delta}_2, \boldsymbol{\delta}_3, ..., \boldsymbol{\delta}_p$ son independientes y distribuidas normalmente con media 0 y matrices de varianza-covarianza $\sigma_{\gamma}^2 \boldsymbol{I}_b, \sigma_2^2 \boldsymbol{I}_b, ..., \sigma_p^2 \boldsymbol{I}_b$, respectivamente. El vector de errores aleatorios tiene distribución $N(0, \sigma_{\epsilon}^2 \boldsymbol{I}_n)$ y suponemos que es independiente de los otros efectos aleatorios, por lo que la media de \boldsymbol{y} y su matriz de varianza-covarianza están dados por

$$E(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\beta} \tag{1.12}$$

$$Var(\boldsymbol{y}) = \sigma_{\gamma}^{2} \boldsymbol{Z} \boldsymbol{Z}^{T} + \sum_{j=2}^{p} \sigma_{j}^{2} \boldsymbol{U}_{j} \boldsymbol{U}_{j}^{T} + \sigma_{\epsilon}^{2} \boldsymbol{I}_{n}.$$
(1.13)

En base a las ecuaciones (1.12) y (1.13), el mejor estimador insesgado de β , es el estimador de mínimos cuadrados generalizados $\hat{\beta}$,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}$$
(1.14)

CAPÍTULO 1. DESARROLLO HISTÓRICO DE LA METODOLOGÍA DE SUPERFICIES DE RESPUESTA

donde

$$\boldsymbol{\Sigma} = \frac{1}{\sigma_{\epsilon}^2} Var(\boldsymbol{y}) \tag{1.15}$$

$$= \frac{\sigma_{\gamma}^2}{\sigma_{\epsilon}^2} \boldsymbol{Z} \boldsymbol{Z}^T + \sum_{j=2}^p \frac{\sigma_j^2}{\sigma_{\epsilon}^2} \boldsymbol{U}_j \boldsymbol{U}_j^T + \boldsymbol{I}_n \qquad (1.16)$$

La matriz de varianza-covarianza de $\hat{\boldsymbol{\beta}}$ es

$$Var(\hat{\boldsymbol{\beta}}) = (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} \sigma_{\epsilon}^2$$
(1.17)

El estimador de mínimos cuadrados generalizados de β requiere que se conozca las razones de las componentes de la varianza, $\frac{\sigma_{\gamma}^2}{\sigma_{\epsilon}^2}, \frac{\sigma_{2}^2}{\sigma_{\epsilon}^2}, ..., \frac{\sigma_{p}^2}{\sigma_{\epsilon}^2}$. Como las componentes de la varianza $\sigma_{\gamma}^2, \sigma_{2}^2, ..., \sigma_{p}^2, \sigma_{\epsilon}^2$ son desconocidas, primero es necesario estimarlas. Denotemos con $\hat{\sigma}_{\gamma}^2, \hat{\sigma}_{2}^2, ..., \hat{\sigma}_{p}^2, \hat{\sigma}_{\epsilon}^2$ a los correspondientes estimadores de las componentes de la varianza. Sustituyendo estos estimadores en (1.15), obtenemos

$$\hat{\boldsymbol{\Sigma}} = \frac{\hat{\sigma}_{\gamma}^2}{\hat{\sigma}_{\epsilon}^2} \boldsymbol{Z} \boldsymbol{Z}^T \sum_{j=2}^p \frac{\sigma_j^2}{\sigma_{\epsilon}^2} \boldsymbol{U}_j \boldsymbol{U}_j^T + \boldsymbol{I}_n.$$
(1.18)

Remplazando Σ por $\hat{\Sigma}$ en la ecuación (1.14), encontramos el estimador de mínimos cuadrados generalizados de β ,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{y}.$$
(1.19)

El correspondiente estimador de la matriz de varianza-covarianza de $\hat{\pmb{\beta}}$ es aproximado por

$$\widehat{Var}(\hat{\boldsymbol{\beta}}) \approx (\boldsymbol{X}^T \hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{X})^{-1} \hat{\sigma}_{\epsilon}^2.$$
(1.20)

Además la predicción de la respuesta en un punto \boldsymbol{x} en una región R es

$$\hat{\boldsymbol{y}}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x})^T \hat{\boldsymbol{\beta}}$$
 (1.21)

y la varianza estimada de la predicción es aproximada por

$$\widehat{Var}\left[\hat{\boldsymbol{y}}(\boldsymbol{x})\right] \approx \hat{\sigma}_{\epsilon}^{2} \boldsymbol{f}(\boldsymbol{x})^{T} (\boldsymbol{X}^{T} \hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{X})^{-1} \boldsymbol{f}(\boldsymbol{x}).$$
(1.22)

Los estimadores de las componentes de la varianza pueden ser obtenidos usando el método de máxima verosimilitud. Las pruebas de hipótesis sobre los efectos fijos (es decir de los elementos de β) en el modelo mixto dado por la ecuación (1.9) pueden ser realizados usando los estimadores de mínimos cuadrados generalizados de β y el estimador de su matriz de varianza-covarianza. Por ejemplo, para probar la hipótesis nula

$$H_0: \ \boldsymbol{a}'\boldsymbol{\beta} = c \tag{1.23}$$

donde \boldsymbol{a} y c son constantes dadas, la correspondiente estadístico de prueba es

$$t = \frac{\boldsymbol{a}'\boldsymbol{\beta} - c}{[\boldsymbol{a}'(\boldsymbol{X}^T\hat{\boldsymbol{\Sigma}}^{-1}\boldsymbol{X})^{-1}\boldsymbol{a}\hat{\sigma}_{\epsilon}^2]^{1/2}}$$
(1.24)

la cual, bajo H_0 tiene distribución *t*-student. Otra prueba importante, es la prueba de significancia de los efectos aleatorios en el modelo mixto (1.9. La prueba de hipótesis, es:

$$H_0: \ \sigma_\gamma^2 = 0 \tag{1.25}$$

y el estadístico de prueba por

$$F = \frac{R(\boldsymbol{\gamma}|\boldsymbol{\beta}, \boldsymbol{\delta}_2, \boldsymbol{\delta}_3, ..., \boldsymbol{\delta}_p)}{(b-1)CME}$$
(1.26)

donde CME son los cuadrados medios del error del modelo (1.9), $R(\boldsymbol{\gamma}|\boldsymbol{\beta}, \boldsymbol{\delta}_2, \boldsymbol{\delta}_3, ..., \boldsymbol{\delta}_p)$ es la suma de cuadrados tipo III para los efectos $\boldsymbol{\gamma}$ (efecto de bloques). Bajo H_0 , F tiene distribución F con b-1 y m grados de libertad, donde m = n - b - (p-1)b. Similarmente para la prueba de hipótesis

$$H_0: \ \sigma_j^2 = 0, \ j = 2, 3, ..., p \tag{1.27}$$

también usamos la razón F,

$$F_j = \frac{Suma \ de \ cuadrados \ Tipo \ III \ para \ \boldsymbol{\delta}_j}{(b-1)CME}, \ j = 2, 3, ..., p$$
(1.28)

la cual bajo H_0 tiene distribución F con (b-1) y m grados de libertad.

1.3.2. Introducción a los modelos lineales generalizados (MLG)

En los modelos lineales generalizados, asumimos que la variable respuesta y tiene una distribución que pertenece a la familia exponencial. Por ejemplo, distribución normal, binomial, Poisson o gamma. La respuesta media es modelada como una función de la forma $\mu(\boldsymbol{x}) = h[\boldsymbol{f}(\boldsymbol{x})^T \boldsymbol{\beta}]$, donde $\boldsymbol{x} = (x_1, x_2, ..., x_k)', \boldsymbol{f}(\boldsymbol{x})$ es una función vector conocida de tamaño $p \times 1$ y $\boldsymbol{\beta}$ es un vector de p parámetros desconocidos. La función $\boldsymbol{f}(\boldsymbol{x})^T \boldsymbol{\beta}$ es llamada un predictor lineal y se denota por $\eta(\boldsymbol{x})$. Asumimos que $h(\cdot)$ es una función estrictamente monótona. Usando el inverso de la función $h(\cdot)$, podemos expresar $\eta(\boldsymbol{x})$ como $g[\mu(\boldsymbol{x})]$. Llamamos a $g(\cdot)$ función vínculo.

Un buen diseño es uno que nos da una predicción de la varianza pequeña o un valor de los cuadrados medios del error pequeño. Sin embargo la predicción de la varianza y la suma de los cuadrados medios del error dependerán de los parámetros desconocidos del modelo ajustado. Por lo tanto para poder minimizar cualquiera de los dos criterios se necesita un conocimiento previo de β . Algunas aproximaciones comunes se listan a continuación.

- Estimación localmente óptima. Los diseños para MLG dependen de los parámetros desconocidos del modelo ajustado. Debido a esta dependencia, la construcción de un diseño requiere un conocimiento previo de los parámetros desconocidos. Si asumimos valores iniciales para los parámetros entonces el diseño obtenido se llama diseño localmente óptimo. Para que el diseño sea adecuado los valores iniciales deben ser próximos a los verdaderos valores de los parámetros.
- **Procedimientos secuenciales**. En esta aproximación, la experimentación no se detiene en la etapa inicial. Utilizando la información obtenida, las estimaciones iniciales de los parámetros se actualizan y se utiliza para encontrar los puntos de diseño adicionales en las etapas subsiguientes. Este proceso se lleva a cabo hasta que se logra la convergencia con respecto a algún criterio de optimización.
- Modelación Bayesiana. En la aproximación Bayesiana, asumimos una distribución a priori para β. Por ejemplo, un criterio maximiza la media de la distribución a priori del logaritmo del determinante de la matriz de información de Fisher. Este criterio es equivalente a un modelo lineal D-óptimo.

Las tres aproximaciones anteriores, se utilizan en diseños con una sola respuesta. Existen muy pocos trabajos para modelos lineales generalizados multirespuesta, particularmente en el área de diseño. En los MLG multivariados, se asume que la q-ésima respuesta de \boldsymbol{y} pertenece a la familia exponencial. La respuesta media $\mu(\boldsymbol{x}) = [\mu_1(\boldsymbol{x}), \dots, \mu_q(\boldsymbol{x})]'$ en un punto \boldsymbol{x} que pertenece a la región de interés R, esta relacionada con el predictor lineal $\eta(\boldsymbol{x}) = [\eta_1(\boldsymbol{x}), \dots, \eta_q(\boldsymbol{x})]'$ por la función vinculo $g : \mathbb{R}^q \longrightarrow \mathbb{R}^q$,

$$\eta(oldsymbol{x}) = oldsymbol{Z}'(oldsymbol{x})oldsymbol{eta} = g[\mu(oldsymbol{x})]$$

donde $\boldsymbol{x} = (x_1, ..., x_k)', \ \boldsymbol{Z}(\boldsymbol{x}) = \bigoplus_{i=1}^q \boldsymbol{f}_i(\boldsymbol{x}), \ \boldsymbol{f}_i(\boldsymbol{x})$ es una función vector conocida de $\boldsymbol{x}, \boldsymbol{\beta}$ es un vector de parámetros desconocidos Si el inverso de g, denotado por h, existe, donde $h : \mathbb{R}^q \longrightarrow \mathbb{R}^q$, entonces

$$\mu(\boldsymbol{x}) = h[\eta(\boldsymbol{x})] = h[\boldsymbol{Z}'(\boldsymbol{x})\boldsymbol{\beta}].$$

La estimación de $\boldsymbol{\beta}$ esta basada en el método de máxima verosimilitud.

Capítulo 2

Metodología de superficies de respuesta

La metodología de superficies de respuesta es un conjunto de técnicas matemáticas utilizadas para modelar y analizar problemas en los que una variable de interés es influenciada por otras. El objetivo es optimizar la variable de interés. Esto se logra al determinar las condiciones óptimas de operación del sistema.

La metodología de superficies de respuesta tiene dos etapas, modelado y desplazamiento, que son repetidas tantas veces como sea necesario, con el objetivo de alcanzar una región óptima de la superficie investigada. El modelado, generalmente se hace ajustándose a modelos simples (en general, lineales o cuadráticos). El desplazamiento se da siempre a lo largo del camino de máxima inclinación de un determinado modelo que es una trayectoria en la cual la respuesta varía de forma más pronunciada.

Supongamos que el valor esperado, η , de la variable respuesta esta en función de las k variables $x_1, x_2, ..., x_k$ esto es existe alguna función de $x_1, x_2, ..., x_k$, que proporciona el correspondiente valor de η para alguna combinación dada de niveles de la variables explicativas

$$\eta = f(x_1, x_2, ..., x_k)$$

de tal forma que la variable respuesta puede expresarse como:

$$Y = \eta + \epsilon = f(x_1, x_2, \dots, x_k) + \epsilon \tag{2.1}$$

donde ϵ es el error observado en la respuesta.

La relación $f(x_1, x_2, ..., x_k)$ entre η y los niveles de las k variables puede representarse a través de una hipersuperficie (subconjunto de un espacio euclídeo (k+1)-dimensional) a la que llamaremos **superficie de respuesta**.

2.1. Curvas de Nivel

Una técnica utilizada para ayudar a visualizar la forma que puede tener una superficie de respuesta tridimensional consiste en representar la gráfica de curvas de nivel de la superficie, en la que se trazan las denominadas líneas de contorno, que son curvas correspondientes a valores constantes de la respuesta sobre el plano bidimensional. Geométricamente, cada línea de contorno es una proyección sobre el plano de una sección de la superficie de respuesta al interceptar con un plano paralelo al (x_1, x_2) . La gráfica de contornos resulta útil para estudiar los niveles de los factores en los que se da un cambio en la forma o altura de la superficie de respuesta.

La existencia de gráficas de contorno está limitada a 3 dimensiones. No obstante, el hecho de poder representar gráficas de contorno para problemas en que haya 2 o 3 factores permite visualizar más fácilmente la situación general.

2.2. Superficies de respuesta polinómicas

La forma de la función f que determina la relación entre los factores y la variable respuesta es, en general, desconocida, por lo que el primer objetivo de la MSR consiste en establecer experimentalmente una aproximación apropiada de la función f. Para ello, se propone un modelo de ecuación, generalmente polinómico, en los k factores $x_1, x_2, ..., x_k$ y se selecciona un conjunto de tratamientos sobre los que se realizan las observaciones experimentales, que se utilizarán tanto para obtener estimaciones de los coeficientes en el modelo propuesto (por ejemplo, a través del método de mínimos cuadrados) como para obtener una estimación de la variación del error experimental (para lo que es conveniente tener al menos 2 observaciones por cada tratamiento). Se realizan, contrastes sobre las estimaciones de los parámetros y sobre el ajuste del modelo y si el modelo se considera adecuado, puede utilizarse como función de aproximación.

Los polinomios usados más frecuentemente como funciones de aproxima-

ción son los de orden uno y dos, que nos proporcionan, respectivamente los siguientes modelos:

$$Y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \epsilon \tag{2.2}$$

$$Y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^k \sum_{j < i} \beta_{ij} x_i x_j + \epsilon$$
(2.3)

2.2.1. Modelos de primer orden

Cuando no se tiene suficiente información acerca de la forma que presenta la superficie de respuesta, el primer intento de ajuste se hace, generalmente, aproximando a través de un modelo de primer orden.

La forma general de un modelo de primer orden con k factores, $x_1x_2,...,x_k$ es:

$$Y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \epsilon \tag{2.4}$$

o equivalentemente en forma matricial

$$Y = X\beta + \epsilon \tag{2.5}$$

Si la matriz X es de rango completo, entonces el estimador de $\boldsymbol{\beta}$ obtenido por el método de mínimos cuadrados es $\boldsymbol{\hat{\beta}} = (X'X)^{-1}X'Y$ y la matriz de varianza-covarianza de $\boldsymbol{\hat{\beta}}$ viene dada por $Var(\boldsymbol{\hat{\beta}}) = (X'X)^{-1}\sigma^2$.

El modelo ajustado de primer orden, es:

$$\hat{Y} = \hat{\beta}_0 + \sum_{i=1}^k \hat{\beta}_i x_i$$
(2.6)

Si el modelo está bien ajustado, la parte no aleatoria del modelo representa la respuesta real esperada y ϵ es el error experimental. Sin embargo, si el modelo no está ajustado a la función respuesta real, lo que ocurre cuando la relación entre la respuesta y los factores está demasiado simplificada, ϵ contiene, además del error experimental, una parte de error no aleatorio que se debe a la falta de ajuste.

2.2.2. Modelos de segundo orden

Cuando existe curvatura en la superficie de respuesta, el modelo de primer orden no es una aproximación adecuada y es necesario utilizar un modelo que ajuste mejor. Se emplea entonces un modelo de segundo orden.

La forma general de un modelo de segundo orden con k factores, x_1, x_2, \ldots, x_k es:

$$Y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^k \sum_{j < i} \beta_{ij} x_i x_j + \epsilon$$
(2.7)

El modelo ajustado de segundo orden es:

$$\hat{Y} = \hat{\beta}_0 + \sum_{i=1}^k \hat{\beta}_i x_i + \sum_{i=1}^k \hat{\beta}_{ii} x_i^2 + \sum_{i=1}^k \sum_{j < i} \hat{\beta}_{ij} x_i x_j$$
(2.8)

2.2.3. Naturaleza secuencial de la metodología de superficie de respuesta

Frecuentemente, la selección inicial de las condiciones de operación está alejada del óptimo real, así que el objetivo es, usando un método lo más simple y menos costoso posible, moverse rápidamente hacia las cercanías del óptimo.

Como se sabe muy poco o nada acerca de la relación existente entre la variable respuesta y los factores, en un principio, se propone el modelo de aproximación más simple posible, el de primer orden, que suministra la base para ejecutar un conjunto inicial de observaciones que proporcionarán datos correspondientes a los puntos del diseño de primer orden. Si los datos recogidos permiten hacer una estimación de la varianza del error, se puede llevar a cabo un contraste para evaluar el ajuste del modelo. Esto nos lleva a una segunda etapa, que consiste en localizar áreas de la región experimental en las que se sospeche que puedan estar los valores más deseables de la variable respuesta. Un método que nos llevará hacia valores máximos en la respuesta, se conoce como método de ascenso por máxima pendiente (o de descenso en el caso de minimizar los valores de la respuesta).

Método de ascenso por pendiente máxima

El método de ascenso por máxima pendiente consiste en elaborar una secuencia de experimentos a lo largo de la línea de máximo incremento de la respuesta. Si el modelo ajustado de primer orden es adecuado, la información que éste proporciona se utiliza para determinar una dirección en la cual se espera observar mayores valores de la variable respuesta. A medida que se avanza sobre la superficie ajustada en la dirección en que se incrementan los valores de la respuesta y se va llegando a una región en la que haya curvatura en la superficie real, el incremento en la respuesta se estabilizará en el punto más alto de la superficie ajustada. Si se continúa en esta dirección y la variable de respuesta disminuye, se lleva a cabo un nuevo conjunto de observaciones y se ajusta de nuevo el modelo de primer orden. Se determina una nueva dirección hacia valores crecientes de la respuesta y se ejecuta otra secuencia de experimentos en la dirección determinada. Este proceso continúa hasta que se hace evidente que a partir del método no se puede obtener un crecimiento en la respuesta o éste es muy pequeño.

Si las pruebas de ajuste detectan que puede haber curvatura en la superficie, se usa uno de segundo orden agregándole los términos del producto cruzado y los términos cuadráticos puros al diseño de primer orden. Si el modelo de segundo orden se ajusta adecuadamente, se utiliza para describir la forma de la superficie a través de la gráfica de contornos en la región experimental. Se utiliza entonces el modelo ajustado de segundo orden para localizar, en el lugar en el que la pendiente de la superficie ajustada es cero, las coordenadas del punto critico, que es el punto que proporciona el valor óptimo de la variable respuesta y, si se detecta que éste se encuentra dentro de los límites de la región experimental, se pasa a determinar su naturaleza (si es máximo, mínimo o punto de silla). Si, por el contrario, el punto critico no se halla dentro de la región experimental, hemos de realizar una nueva experimentación en la dirección en la que éste se encuentra. Una vez que se ha localizado el punto que proporciona valores óptimos de la variable respuesta, se describe la superficie en un entorno próximo a éste.

2.3. Diseños de superficies de respuesta

La elección de un diseño adecuado del experimento a realizar es fundamental para modelar y explorar la superficie de respuesta usada para ajustar un modelo polinómico al conjunto de datos recogidos en los puntos del diseño. Así pues, sería deseable que el diseño tuviera, las características que se enumeran a continuación, y dado que algunas de ellas resultan conflictivas entre sí, lo recomendable es considerar solo las que más sirvan al interés del experimento:

- Generar una distribución razonable de puntos, por tanto, de información en toda la región de interés, pero utilizando el menor número posible de puntos experimentales.
- Asegurar que, para cada punto x, el valor ajustado, $\hat{Y}(x)$, está tan cerca como sea posible del valor real, Y(x).
- Permitir la detección de falta de ajuste en el modelo.
- Permitir la construcción secuencial de diseños de orden creciente.
- Proporcionar una estimación interna de la varianza del error.
- Asegurar simplicidad en los cálculos de las estimaciones de los parámetros del modelo.

Además de las propiedades mencionadas, sería muy conveniente que el diseño elegido fuera ortogonal e invariante por rotación.

2.3.1. Diseños de primer orden

Si el modelo (2.4) es una representación adecuada de la respuesta real esperada, entonces el diseño elegido para estimar los parámetros debe proporcionar valores razonables de la respuesta sobre la región de interés. Los diseños considerados con el propósito de recoger datos para ajustar un modelo de primer orden se conocen como **diseños de primer orden**.

Los diseños de primer orden tienen la ventaja de fácil análisis y pocos puntos en los diseños. Veremos los diseños de primer orden más usuales.

Diseños factoriales 2^k

En los diseños 2^k factoriales, cada variable control tiene dos niveles etiquetados por -1 y 1, los cuales corresponden al nivel bajo y alto de cada variable respectivamente. Este diseño consiste de todas las posibles combinaciones de los niveles de los k factores. Cada renglón de la matriz diseño D consiste de 1 y -1, aquí el número de experimentos sera $n = 2^k$. Por ejemplo, en un experimento químico las variables de control son x_1 =temperatura de una reacción la cual es medida a 250 y 300 grados centigrados, x_2 =presión (10 y 16 psi) y x_3 =tiempo de reacción tomados a 4 y 8 minutos. La transformación a ±1, para x_1, x_2, x_3 se obtiene de la siguiente manera:

$$x_1 = \frac{t_i - \frac{t_1 + t_2}{2}}{\frac{t_2 - t_1}{2}}$$
$$= \frac{\text{temperatura} - 275}{25}$$

De la misma forma para la presión y el tiempo de reacción

$$x_2 = \frac{\text{presión} - 13}{3}$$
$$x_3 = \frac{\text{tiempo} - 6}{2}$$

La correspondiente matriz de diseño es de tamaño 8×3 y es la siguiente:

Fracciones de diseños factoriales 2^k

Los diseños 2^k factoriales tiene el inconveniente que si k es muy grande el número de observaciones en el experimento crece demasiado. Así pues, hay que valorar, en función del coste del experimento, si para ajustar un modelo de primer orden es necesario llevar a cabo las 2^k combinaciones, o si es más conveniente omitir algunas utilizando únicamente un subconjunto de los puntos de un diseño factorial 2^k . Se puede considerar en este último caso una fracción 2^{k-m} de un diseño 2^k que consiste en 2^{k-m} tratamientos $(k \ge m)$, siempre y cuando el diseño resultante tenga, al menos, k+2 puntos, que es el número de parámetros que han de estimarse y mantenga las mismas propiedades que las del factorial completo, en particular, que sea ortogonal.

Diseño Plackett-Burman

Este diseño también considera 2 niveles por cada variable control, al igual que el diseño 2^k , pero requiere un número mucho mas pequeño de experimentos, especialmente si k es grande. Para este diseño el número de puntos es n = k + 1, igual al número de parámetros en el modelo (1.2), es decir es un modelo saturado. El diseño solo es válido cuando k + 1 es múltiplo de 4. Entonces puede ser usado cuando el número k, de las variables de control es k = 3, 7, 11, 15, ... Para construir el diseño Plackett-Burman con k variables, se selecciona un primer renglón con elementos 1 y -1, de tal manera que el número de 1 sea $\frac{k+1}{2}$ y el número de -1 sea $\frac{k-1}{2}$. Los siguientes k-1 renglones de la matriz D se obtienen al desplazar los elementos del renglón anterior un lugar a la derecha, esto es $d_{i+1,j+1} = d_{ij}$ y $d_{i+1,1} = d_{i,k}$ cuando i = 1, 2, ..., k-1 y finalmente los elementos del renglón k+1 son únicamente -1. Para estimar la varianza se pueden agregar repeticiones en el centro del diseño.

Por ejemplo, para k = 7, la matriz diseño D es de tamaño 8×7

Las ventajas de este diseño, es que es un diseño completamente ortogonal y reduce el número de experimentos cuando se trabaja con un número elevado de variables control.

Diseño Simplex

El diseño simplex es también un diseño saturado, es decir n = k + 1. Sus puntos están localizados en los vértices de una figura regular k-dimensional, caracterizada por el echo de que el ángulo θ , que forman dos puntos con el centro es tal que $\cos \theta = -\frac{1}{k}$. Por ejemplo; para k=2, el diseño simplex consiste de los vértices de un triángulo equilátero, con centro en (0,0), donde $\theta = 120^{\circ}$, y su matriz de diseño esta dada por:

$$D = \begin{bmatrix} \sqrt{3/2} & -1/\sqrt{2} \\ -\sqrt{3/2} & -1/\sqrt{2} \\ 0 & 2/\sqrt{2} \end{bmatrix}$$

Para k=3, los puntos del diseño son los vértices de un tetraedro centrado en (0, 0, 0). Este diseño es menos usado que los diseño 2^k y el diseño Plackett-Burman, esto por que en situaciones experimentales reales los ajustes del diseño son difíciles de alcanzar.

2.3.2. Diseños de segundo orden

Los diseños utilizados para recoger observaciones que permitan estimar los parámetros de los modelos de segundo orden se denominan diseños de segundo orden. Éstos deben tener, al menos, $1 + 2k + \frac{1}{2}k(k-1)$ puntos, que es precisamente el número de coeficientes del modelo que se necesita estimar y deben involucrar, como mínimo 3 valores de la variable independiente, dado que el modelo contiene términos cuadráticos puros. Por otro lado, sería conveniente, por las razones que se han comentado, que fueran ortogonales y/o invariantes por rotación.

Diseños 3^k factoriales

Los diseños 3^k consisten de todas las combinaciones de los niveles de las k variables control, las cuales tienen 3 niveles cada una. Si los niveles están igualmente espaciados entonces las podemos asociar a -1, 0, 1. El número de corridas del experimento es 3^k , el cual puede llegar a ser muy grande. Al igual que en el diseño 2^k , cuando k es grande se puede considerar solo una fracción de los puntos del diseño.

Diseño Central compuesto

Este diseño fue propuesto por Box y Wilson en 1951, y es el método más popular en los modelos de segundo orden, ya que se requieren menos experimentos que en el diseño 3^k . Los diseños compuestos centrales constan de diseños 2^k , con 2k combinaciones adicionales llamadas puntos axiales, a lo largo de los ejes coordenados de los niveles codificados. Las coordenadas de

Diseño 2^2		Axial		Central	
x_1	x_2	x_1	x_2	x_1	x_2
-1	-1	$-\alpha$	0	0	0
+1	-1	$+\alpha$	0	m repeticiones	
-1	+1	0	$-\alpha$		
+1	+1	0	$+\alpha$		

Cuadro 2.1: Coordenadas del diseño central compuesto.

los puntos axiales son: $(\pm \alpha, 0, ..., 0)$, $(0, \pm \alpha, ..., 0)...(0, 0, ..., \pm \alpha)$; y se agregan *m* repeticiones al centro del diseño en las coordenadas (0, 0, ..., 0). Esto es el número de puntos en el diseño es $n = 2^k + 2k + m$. Por ejemplo, para k = 2, $\alpha = \sqrt{2}$ y m = 2 tenemos que la matriz *D* esta dada por

$$D = \begin{bmatrix} -1 & -1 \\ 1 & -1 \\ -1 & 1 \\ 1 & 1 \\ -\sqrt{2} & 0 \\ \sqrt{2} & 0 \\ 0 & -\sqrt{2} \\ 0 & \sqrt{2} \\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

La primera parte del diseño (diseño de primer orden) nos sirve para obtener información inicial acerca de la variable respuesta y para evaluar la importancia de los factores de la variables en el experimento. Las corridas experimentales adicionales se eligen con el fin de obtener mas información que pueda conducir a determinar las condiciones óptimas de las variables de control. Los valores de α y m se eligen de tal manera que el diseño adquiera algunas propiedades deseables.

Diseño Box-Behnken

En 1960 Box y Behnken, propusieron una clase de diseños de tres niveles para estimar las superficies de respuesta de segundo orden. Los diseños son

Factor	А	В	С
Nivel codificado	x_1	x_2	x_3
Factorial 2^k para A y B	-1	-1	0
	+1	-1	0
	-1	+1	0
	+1	+1	0
Factorial 2^k para A y C	-1	0	-1
	+1	0	-1
	-1	0	+1
	+1	0	+1
Factorial 2^k para B y C	0	-1	-1
	0	+1	-1
	0	-1	+1
	0	+1	+1
Centro del diseño	0	0	0
	0	0	0
	0	0	0

Cuadro 2.2: Diseño Box-Behnken para tres factores.

rotatorios, o casi rotatorios, con menor número de unidades experimentales en comparación con los diseños 3^k . Se forman con la combinación de diseños 2^k y diseños de bloques incompletos. Los niveles de factores codificados para las combinaciones de tratamientos necesarios en un diseño para tres factores se muestran en la tabla 2.2, donde para cada par de factores se tiene un conjunto de renglones que forman un diseño factorial 2^2 completo, con ceros en las columnas correspondientes a los factores que no se consideran. Se presenta un conjunto completo de las combinaciones de tratamientos para un factorial 2^k para cada par de factores acompañados por el nivel 0 de los factores restantes. Se incluyen varias replicas para el centro del diseño.

Este diseño es popular en la industria ya que es económico. Son diseños factoriales incompletos en los que los puntos experimentales están escogidos especialmente para permitir una estimación eficiente de los coeficientes de un modelo de segundo orden.

2.4. Región de confianza para el punto óptimo en un ajuste de superficies de respuesta

En la metodología de superficies de respuesta la función de respuesta η se estima típicamente usando el modelo cuadrático, de esta manera la respuesta óptima se estima con el punto óptimo de la estimación del modelo

$$Y = eta_0 + oldsymbol{b}oldsymbol{x} + oldsymbol{x}'oldsymbol{B}oldsymbol{x} + oldsymbol{\epsilon},$$

donde Y es la variable respuesta, y ϵ tiene distribución normal con media cero y varianza σ^2 .

Si \boldsymbol{x}_0 es el punto estacionario de $E(Y|\mathbf{x})$ en la región experimental entonces se cumple que:

$$\boldsymbol{b} + 2\boldsymbol{B}\boldsymbol{x}_0 = 0,$$

por lo tanto

$$\boldsymbol{x}_0 = -\frac{1}{2}\boldsymbol{B}^{-1}\boldsymbol{b},\tag{2.9}$$

y es a este punto al que nos interesa encontrarle la región de confianza.

Para encontrar la región de confianza analicemos primero el caso más sencillo, en el que tenemos solo una variable control, es decir

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon, \qquad (2.10)$$

en este caso el punto óptimo esperado esta dado por $x_{opt} = -\frac{\beta_1}{2\beta_2}$ y su estimador es $\hat{x}_{opt} = -\frac{\hat{\beta}_1}{2\hat{\beta}_2}$. Como no conocemos que distribución tiene \hat{x}_{opt} (para este caso se podría encontrar usando la función generadora de momentos, pero en el caso general sería complicado), usaremos la variable aleatoria $\hat{\delta} = \hat{\beta}_1 + 2\hat{\beta}_2 x$, que tiene distribución normal con media $\delta = \beta_1 + 2\beta_2 x$ y varianza $\sigma_{\hat{\delta}}^2 = \sigma^2(a_{22} + 4a_{23}x + 4a_{33}x^2)$ donde las a_{ij} son los elementos de la matriz

$$(X^T X)^{-1} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
(2.11)

por lo que tenemos que

$$\frac{\hat{\delta} - \delta}{\hat{\sigma}_{\hat{\delta}}} \sim t - student \tag{2.12}$$

donde $\hat{\sigma}_{\hat{\delta}}^2 = s^2(a_{22} + 4a_{23}x + 4a_{33}x^2)$. De aquí se sigue que el intervalo de $(1 - \alpha)100\%$ de confianza para δ esta dado por

$$\hat{\beta}_1 + 2\hat{\beta}_2 x - t_{\frac{\alpha}{2}} \hat{\sigma}_{\hat{\delta}} \le \beta_1 + 2\beta_2 x \le \hat{\beta}_1 + 2\hat{\beta}_2 x + t_{\frac{\alpha}{2}} \hat{\sigma}_{\hat{\delta}}.$$
 (2.13)

Nuestro interés no es encontrar un intervalo para δ , sino para x_{opt} , y sabemos que $\delta(x_{opt}) = 0$, por lo que consideraremos la unión de todos los intervalos para x que contengan al 0, es decir

$$\left\{x \in \mathbb{R} \mid \hat{\beta}_1 + 2\hat{\beta}_2 x - t_{\frac{\alpha}{2}}\hat{\sigma}_{\hat{\delta}} \le 0 \le \hat{\beta}_1 + 2\hat{\beta}_2 x + t_{\frac{\alpha}{2}}\hat{\sigma}_{\hat{\delta}}\right\}.$$
 (2.14)

Lo que es equivalente a

$$\left\{ x \in \mathbb{R} \mid -t_{\frac{\alpha}{2}} \hat{\sigma}_{\hat{\delta}} \le \hat{\beta}_1 + 2\hat{\beta}_2 x \le t_{\frac{\alpha}{2}} \hat{\sigma}_{\hat{\delta}} \right\}$$
(2.15)

o de otra manera

$$(\hat{\beta}_1 + 2\hat{\beta}_2 x)^2 \le t_{\frac{\alpha}{2}}^2 \hat{\sigma}_{\hat{\delta}}^2,$$
 (2.16)

lo que implica que

$$\hat{\beta}_1^2 + 4\hat{\beta}_1\hat{\beta}_2x + 4x^2\hat{\beta}_2^2 \le t_{\frac{\alpha}{2}}^2s^2\left(a_{22} + 4x^2a_{33} + 4xa_{23}\right).$$
(2.17)

Esto nos da la siguiente desigualdad cuadrática

$$4\left(t_{\frac{\alpha}{2}}^{2}s^{2}a_{33}-\hat{\beta}_{2}^{2}\right)x^{2}+4\left(t_{\frac{\alpha}{2}}^{2}s^{2}a_{23}-\hat{\beta}_{1}\hat{\beta}_{2}\right)x+\left(t_{\frac{\alpha}{2}}^{2}s^{2}a_{22}-\hat{\beta}_{1}^{2}\right)\geq0.$$
 (2.18)

Obtenemos los límites del intervalo de confianza cuando se alcanza la igualdad en 2.18 y están dados por

$$\boldsymbol{\mathcal{X}} = \frac{-\left(t_{\frac{\alpha}{2}}^2 s^2 a_{23} - \hat{\beta}_1 \hat{\beta}_2\right) \pm \sqrt{\left(t_{\frac{\alpha}{2}}^2 s^2 a_{23} - \hat{\beta}_1 \hat{\beta}_2\right)^2 - \left(t_{\frac{\alpha}{2}}^2 s^2 a_{33} - \hat{\beta}_2^2\right) \left(t_{\frac{\alpha}{2}}^2 s^2 a_{22} - \hat{\beta}_1^2\right)}{2\left(t_{\frac{\alpha}{2}}^2 s^2 a_{33} - \hat{\beta}_2^2\right)}.$$
(2.19)

Si $\left(t_{\frac{\alpha}{2}}^2 s^2 a_{23} - \hat{\beta}_2^2\right) < 0$, garantizamos que nuestra región es una función cóncava y que tendremos un máximo, pero si además $\left(t_{\frac{\alpha}{2}}^2 s^2 a_{23} - \hat{\beta}_1 \hat{\beta}_2\right)^2$ – $\left(t_{\frac{\alpha}{2}}^2 s^2 a_{33} - \hat{\beta}_2^2\right) \left(t_{\frac{\alpha}{2}}^2 s^2 a_{23} - \hat{\beta}_1^2\right) > 0$ garantizamos raíces reales, por lo que el intervalo de confianza sera un intervalo cerrado.

Este resultado se puede generalizar al caso multifactorial, donde se tiene el vector $\delta = \mathbf{b} + 2\mathbf{B}\mathbf{x}$; su estimador de mínimos cuadrados es $\hat{\delta} = \hat{\mathbf{b}} + 2\hat{\mathbf{B}}\mathbf{x}$. Se sabe que $\hat{\delta} \sim N(\mathbf{b}+2\mathbf{B}\mathbf{x},\sigma^2\mathbf{V})$, donde $\sigma^2\mathbf{V} = V(\hat{\mathbf{b}})+4V(\hat{\mathbf{B}}\mathbf{x})+4Cov(\hat{\mathbf{b}},\hat{\mathbf{B}}\mathbf{x})$ entonces la región de confianza para δ esta dada por $(\hat{\delta}-\delta)'V^{-1}(\hat{\delta}-\delta) < ks^2F_{(1-\alpha;k,\nu)}$ igualmente que en el caso unifactorial, se elige como región de confianza a la unión de todos las regiones que contengan al 0.

De esta manera la frontera de la región de $(1 - \alpha)100\%$ de confianza está dada por

$$\hat{\delta}' V^{-1} \hat{\delta} = s^2 k F_{(1-\alpha;k,\nu)}.$$
 (2.20)

Debe tenerse en cuenta que la dificultad de resolver la ecuación 2.20 estriba en el hecho de que para todos los elemento de la matriz V están en función de las coordenadas de X.

Una manera de simplificar los cálculos para determinar las soluciones de 2.20 es reescribir el lado izquierdo de la ecuación como una razón de dos determinantes

$$\hat{\delta}'\hat{V}^{-1}\hat{\delta} = -\frac{\begin{vmatrix} 0 & \hat{\delta}' \\ \hat{\delta} & \hat{V} \end{vmatrix}}{|\hat{V}|}$$
(2.21)

esta ecuación es equivalente a

$$\begin{vmatrix} s^2 k F_{\alpha} & \hat{\delta}' \\ \hat{\delta} & \hat{V} \end{vmatrix} = 0.$$
 (2.22)

La ecuación 2.22 se simplifica cuando las correlaciones entre los estimadores $\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_{11}, \hat{\beta}_{22}, \hat{\beta}_{12}$ son iguales a cero, en este caso 2.20 da los siguientes limites para la región de confianza

$$\sum_{i=1}^{k} \left\{ \left(\beta_{i} + 2\beta_{ii}x_{i} + \sum_{\substack{j=1\\j \neq i}}^{k} \beta_{ij}x_{j} \right)^{2} / \left(v(\beta_{i}) + 4v(\beta_{ii})x_{i}^{2} + \sum_{\substack{j=1\\j \neq i}}^{k} v(\beta_{ij})x_{j}^{2} \right) \right\} = s^{2}kF_{\alpha}.$$
(2.23)

Ahora presentamos una manera de construir un diseño con estas características cuando se tienen únicamente 2 factores. El diseño se compone de un diseño central compuesto con m repeticiones en el centro y cuatro puntos axiales de longitud c, los puntos de este diseño se muestran en la figura (2.1).

Figura 2.1: Puntos del diseño experimental.

La matriz de varianza-covarianza para los estimadores $\hat{\pmb{\beta}}$ utilizando este diseño esta dada por

Para que $\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_{11}, \hat{\beta}_{22}, \hat{\beta}_{12}$ sean independientes necesitamos que c satisfaga la ecuación $-(-c^4 - 4c^2 + m + 4) = 0$, es decir debemos escoger $c = \sqrt{-2 + \sqrt{m+8}}$.

Si además las varianza de los estimadores de los parámetros son todas iguales $(V(\hat{\beta}_1) = V(\hat{\beta}_2) = V(\hat{\beta}_{11}) = V(\hat{\beta}_{22}) = V(\hat{\beta}_{12}) = v)$, el problema de encontrar los límites de la región de confianza se simplifica, y están dados por

$$\sum_{i=1}^{k} \left(\beta_i + 2\beta_{ii}x_i + \sum_{\substack{j=1\\j \neq i}}^{k} \beta_{ij}x_j \right)^2 = \left(v + v \sum_{j=1}^{k} x_j^2 \right) s^2 k F_{\alpha}.$$
 (2.25)
2.5. Procesos multi-respuesta

Es común que en diferentes áreas de estudio se consideren problemas representados por muchas características de interés, y éstas estén en función de un conjunto de factores de control. Para obtener el valor de respuesta de esas características se recurre a una estrategia experimental. El tipo de diseño que se utiliza involucra la selección de un conjunto de factores de interés tal que la combinación de sus valores corresponda de la mejor manera a todas las características de un producto. A este proceso se le conoce como un diseño de optimización multi-respuesta, ya que las características de interés se definen para varias respuestas.

En un proceso químico casi siempre hay varias propiedades de salida del producto que deben ser consideradas como "deseables". En muchos productos de consumo (alimentos o bebidas), el científico debe tratar el gusto como una respuesta, pero también debe tener en cuenta otros respuestas tales como el color y la textura, así como subproductos indeseables. En el área farmacéutica o biomédica, el clínico se ocupa principalmente de la eficacia del medicamento o remedio pero no debe ignorar la posibilidad de graves efectos secundarios.

Por ejemplo, en un proceso químico se tienen 2 variables de respuesta y_1 =rendimiento y y_2 =viscosidad las cuales están en función del tiempo (x_1) y la temperatura (x_2) del proceso (ver datos en el Cuadro 2.3).

ξ_1	ξ_2	x_1	x_2	y_1	y_2
80	170	-1	-1	76.5	62
80	180	-1	1	77.0	60
90	170	1	-1	78.0	66
90	180	1	1	79.5	59
85	175	0	0	79.9	72
85	175	0	0	80.3	69
85	175	0	0	80.0	68
85	175	0	0	79.7	70
85	175	0	0	79.8	71
92.07	175	1.414	0	78.4	68
77.93	175	-1.414	0	75.6	71
85	182.07	0	1.414	78.5	58
85	167.93	0	-1.414	77.0	57

Cuadro 2.3: Datos del experimento, diseño central compuesto.

Una aproximación común para resolver problemas de diseño multi-respuesta es la siguiente; inicialmente las variables de respuesta individuales son modeladas para crear una superficie de respuesta de un diseño experimental. A cada variable de respuesta se le aplica una transformación de tal manera que todas las respuestas se puedan combinar en una sola función llamada función objetivo. A partir de ahí se varían los niveles de las variables control de forma tal que se puedan cumplir de la mejor manera los óptimos individuales hasta alcanzar un óptimo global $\boldsymbol{x} = (x_1, ..., x_k)$. Aquí la palabra óptimo se usa como referencia para considerar los valores más aceptables o más deseables de las respuestas con respecto a ciertas condiciones. La optimización multi-respuesta requiere encontrar características de las variables de control que generen un óptimo, o un valor cerca del óptimo, tal que produzcan los mejores valores para cada una de las respuestas que se están considerando.

Las técnicas de optimización multi-respuesta se pueden estudiar mediante métodos gráficos y analíticos. Un método gráfico relativamente sencillo para optimizar varias respuestas que funciona bien cuando sólo hay pocas variables de control consiste en superponer las gráficas de contorno para cada respuesta. Este método se vuelve poco práctico cuando tenemos más de dos variables control, por lo que se usan métodos más formales para optimizar nuestras variables de respuesta. En problemas de optimización multi-respuesta, es raro encontrar que las soluciones óptimas den lugar a que todas las respuestas cumplan con su valor óptimo.

2.5.1. Optimización multi-respuesta

Supongamos que tenemos k variables control y n puntos en nuestro diseño experimental, y que tenemos r respuestas para cada punto del diseño. Con la información generada por el experimento se pueden modelar de manera individual cada una de las r respuestas. Por lo general estos modelos son lineales o de forma cuadrática y están en función de las k variables control. Así para r respuestas se tienen r modelos. El j-ésimo modelo estimado, un polinomio de grado d, para la respuesta y_j se escribe como:

$$\hat{Y}_j = Z(x)^T \hat{\vec{\beta}}_j \ \ j = 1, ..., r$$
 (2.26)

donde Z(x) es una matriz de tamaño $n \times q$ (matriz diseño). Por ejemplo para el caso d = 2 tenemos que

$$Z(x) = (1, X_1, X_2, \dots, X_k, X_1^2, \dots, X_k^2, X_1 X_2, \dots, X_{k-1}, X_k)$$
(2.27)

 $\begin{array}{l} \mathrm{con}\; \hat{\vec{\beta}_{j}} = (\hat{\beta}_{j0}, \hat{\beta}_{j1}, ..., \hat{\beta}_{jk}, \hat{\beta}_{j11}, ..., \hat{\beta}_{jkk}, \hat{\beta}_{j12}, ..., \hat{\beta}_{jk-1k})^{T}. \\ \mathrm{El \; problema \; consiste \; en \; determinar \; la \; combinación \; de \; los \; factores \; que } \end{array}$

El problema consiste en determinar la combinación de los factores que produzca el óptimo global, es decir que todas las respuestas den su"mejor" valor. Generalmente, el problema de optimización multi-respuesta se plantea como sigue:

Optimizar
$$Y_1$$

sujeto a: $\hat{Y}_2 = O_1$
 \vdots (2.28)
 $\hat{Y}_r = O_{r-1}$
 $x \in \Re$

donde \Re es la región experimental, O_i (i = 1, ..., r-1) son condiciones importantes o restricciones para las variables de respuesta, y \hat{Y}_j son las respuestas estimadas de los valores observados en los n puntos del diseño.

Regresando al ejemplo del proceso químico, se ajusto una superficie cuadrática a la variable de respuesta y_1 :

$$\hat{y}_1 = 79.939 + 0.995x_1 + 0.515x_2 - 1.376x_1^2 - 1.001x_2^2 + 0.25x_1x_2. \quad (2.29)$$

Model Estimation	Section			
Parameter	Parameter	Asymptotic	Lower	Upper
Name	Estimate	Standard Error	95% C.L.	95% C.L.
A	79.93996	0.1190886	79.65836	80.22156
В	0.9950503	9.415493E-02	0.7724092	1.217691
С	0.5152028	9.415493E-02	0.2925618	0.7378438
D	-1.376449	0.1009842	-1.615239	-1.137659
E	-1.001336	0.1009842	-1.240125	-0.7625461
F	0.25	0.1331451	-6.483819E-02	0.5648382
Model	$v1 = A + B^* X 1 + C^*$	X2+D*X1^2+E*X2^2+E*	X1*X2	
R-Souared	0.982731			
Iterations	3			
Estimated Model				
(79.93996)+(.9950	503)*(X1)+(.515202	28)*(X2)+(-1.376449)*(X1	1)^2+(-1.001336)*(X2	^2+(.25)*(X1)*X
Analysis of Varian	ce Table			
		Sum of	Mean	
Source	DF	Squares	Square	
Mean	1	80062.16	80062.16	
Model	6	80090.41	13348.4	
Model (Adjusted)	5	28.2467	5.649341	
Error	7	0.4963735	0.0709105	
Total (Adjusted)	12	28.74308		
Total	13	80090.9		

Figura 2.2: Análisis de respuesta del modelo ajustado a y_1 .

De igual manera ajustamos modelos para la respuesta y_2 :

$$\hat{y}_2 = 70.0002 - 0.155x_1 - 0.948x_2 - 0.687x_1^2 - 6.689x_2^2 - 1.25x_1x_2 \quad (2.30)$$

Figura 2.3: Superficie de la variable de respuesta y_1 .

Figura 2.4: Curvas de nivel de la superficie de respuesta de la variable y_1 .

Model Estimation	Section			
Parameter	Parameter	Asymptotic	Lower	Upper
Name	Estimate	Standard Error	95% C.L.	95% C.L.
A	70.00021	1.017308	67.59466	72.40576
В	-0.1552735	0.8043134	-2.057173	1.746626
С	-0.9483932	0.8043134	-2.850292	0.9535059
D	-0.687322	0.8626518	-2.72717	1.352525
E	-6.689135	0.8626518	-8.728982	-4.649287
F	-1.25	1.137385	-3.939488	1.439488
Model	$\sqrt{2} = A + B^* X + C^*$	X2+D*X1^2+E*X2^2+E*	X1*X2	
R-Squared	0.899726	ALIO AT LICAL LI		
Iterations	3			
Estimated Model	0			
(70 00021)+(- 1552	735)*(X1)+(- 94839	32)*(X2)+(- 687322)*(X*	1)*2+(-6 689135)*()	(2)^2+(-1 25)*(X 1)*X
Analysis of Variar	ice Table			
		Sum of	Mean	
Source	DF	Squares	Square	
Mean	1	55707.77	55707.77	
Model	6	56032.78	9338.796	
Model (Adjusted)	5	325.0087	65.00174	
Error	7	36.22206	5.17458	
Total (Adjusted)	12	361.2308		
Total	13	56069		

Figura 2.5: Análisis de varianza del modelo ajustado a y_2 .

Figura 2.6: Superficie de respuesta para y_2 .

Figura 2.7: Curvas de nivel de la superficie de respuesta de y_2 .

Optimizaremos, en este caso maximizaremos de manera independiente las respuestas y_1 y y_2 . Para y_1 tenemos que su punto crítico esta dado por:

$$x = -\frac{1}{2}\boldsymbol{B}^{-1}\boldsymbol{b} = -\frac{1}{2} \begin{pmatrix} -0.76129 & -0.19013\\ -0.19013 & -1.0465 \end{pmatrix} \begin{pmatrix} 0.995\\ 0.515 \end{pmatrix} = \begin{pmatrix} 0.4277\\ 0.36406 \end{pmatrix}$$

y en términos de la variables naturales, este punto es (87.1385, 176.82), el cual es un punto máximo de la función estimada. Hacemos lo mismo con la variable de respuesta y_2 , y encontramos que su punto máximo es (85.122, 174.622) en las variables naturales. El óptimo para las dos variables es ($\hat{x}_{op} = (x_{op1}, x_{op2})$ tal que

$$85.122 \le x_{op1} \le 87.1385$$

 $174.622 \le x_{op2} \le 176.82$

2.5.2. Enfoque de respuesta dual

Este método se introdujo por Myers y Carter (1973), es una técnica útil que se usa en el caso de tener dos variables de respuesta, asignándoles peso a estas variables, es decir se toma una variable primaria y otra secundaria. El objetivo es determinar los valores de las variables de control \boldsymbol{x} que nos devuelven el máx $\hat{y}_p(\boldsymbol{x})$ (o el mín $\hat{y}_p(\boldsymbol{x})$) sujeto a una restricción en $\hat{y}_s(\boldsymbol{x})$, donde \hat{y}_p corresponde a la respuesta primaria y \hat{y}_s a la respuesta secundaria, y pueden ser modeladas por

$$y_p(\boldsymbol{x}) = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i< j} \beta_{ij} x_i x_j + \epsilon_p$$
(2.31)

у

$$y_{s}(\boldsymbol{x}) = \gamma_{0} + \sum_{i=1}^{k} \gamma_{i} x_{i} + \sum_{i=1}^{k} \gamma_{ii} x_{i}^{2} + \sum_{i < j} \sum_{i < j} \gamma_{ij} x_{i} x_{j} + \epsilon_{s}$$
(2.32)

donde ϵ_p y ϵ_s son los errores aleatorios los cuales tienen distribución normal con media cero y varianza σ_p^2 y σ_s^2 . Supongamos que el resultado del ajuste de superficies de respuestas es

$$\hat{y}_p = b_0 + \boldsymbol{x}'\boldsymbol{b} + \boldsymbol{x}'\boldsymbol{B}\boldsymbol{x}$$
(2.33)

у

$$\hat{y}_s = c_0 + \boldsymbol{x}' \boldsymbol{c} + \boldsymbol{x}' \boldsymbol{C} \boldsymbol{x}$$
(2.34)

donde $b_0 = \hat{\beta}_0, c_0 = \hat{\gamma}_0, \boldsymbol{b} = (\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_k)', \boldsymbol{c} = (\hat{\gamma}_1, \hat{\gamma}_2, ..., \hat{\gamma}_k)', y$

$$\boldsymbol{B} = \frac{1}{2} \begin{bmatrix} 2\hat{\beta}_{11} & \hat{\beta}_{12} & \cdots & \hat{\beta}_{1k} \\ \hat{\beta}_{12} & 2\hat{\beta}_{22} & \cdots & \hat{\beta}_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\beta}_{1k} & \hat{\beta}_{2k} & \cdots & 2\hat{\beta}_{kk} \end{bmatrix}$$
(2.35)

у

$$\boldsymbol{C} = \frac{1}{2} \begin{bmatrix} 2\hat{\gamma}_{11} & \hat{\gamma}_{12} & \cdots & \hat{\gamma}_{1k} \\ \hat{\gamma}_{12} & 2\hat{\gamma}_{22} & \cdots & \hat{\gamma}_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}_{1k} & \hat{\gamma}_{2k} & \cdots & 2\hat{\gamma}_{kk} \end{bmatrix}$$
(2.36)

son los vectores y matrices de los estimadores para los coeficientes.

Usando multiplicadores de Lagrange, Vinings y Myers (1990) propusieron un método para encontrar $\boldsymbol{x}^* \in R$ que optimiza \hat{y}_p sujeto a que $\hat{y}_s = \theta$, donde θ es algún valor aceptable para la respuesta secundaria y R es una región esférica de interés. Esto es nos da \boldsymbol{x}^* que satisface

$$\frac{\partial L}{\partial \boldsymbol{x}} = 0$$

donde

$$L = b_0 + \boldsymbol{x}'\boldsymbol{b} + \boldsymbol{x}'\boldsymbol{B}\boldsymbol{x} + \lambda(c_0 + \boldsymbol{x}'\boldsymbol{c} + \boldsymbol{x}'\boldsymbol{C}\boldsymbol{x} - \theta)$$

Existen 3 posibles casos de optimización para cada variable de respuesta:

- Aproximación de la variable de respuesta a un valor deseado (VD).
- Maximizar la variable de respuesta ([†]).
- Minimizar la variable de respuesta (↓).

Al considerar respuestas duales, existen 9 posibilidades, las cuales se muestran en la siguiente matriz

$$\begin{bmatrix} (VD, VD) & (VD, \uparrow) & (VD, \downarrow) \\ (\uparrow, VD) & (\uparrow, \uparrow) & (\uparrow, \downarrow) \\ (\downarrow, VD) & (\downarrow, \uparrow) & (\downarrow, \downarrow) \end{bmatrix}.$$
 (2.37)

Veamos un ejemplo: el propósito de un experimento es estudiar el efecto de la velocidad (x_1) , presión (x_2) y distancia (x_3) en la habilidad de una maquina para etiquetar. El diseño experimental es un diseño 3³ con tres repeticiones en cada punto. Supondremos que tenemos suficiente información para suponer que estamos cerca del óptimo y usaremos un modelo de segundo grado. El modelo ajustado a la variable de respuesta fue

$$\hat{\omega}_{\mu} = 327.6 + 177x_1 + 109.4x_2 + 131.5x_3 + 32x_1^2 - 22.4x_2^2 - 29.1x_3^2 + 66x_1x_2 + 75.5x_1x_3 + 43.6x_2x_3.$$

Modelamos además la desviación estándar con la siguiente función

$$\hat{\omega}_{\sigma} = 34.5 + 11.5x_1 + 15.3x_2 + 29.2x_3 + 4.2x_1^2 - 1.3x_2^2 + 16.8x_3^2 + 7.7x_1x_2 + 5.1x_1x_3 + 14.1x_2x_3.$$

Usamos la metodología de respuesta dual para minimizar la varianza fijando $\hat{\mu} = 500$, es decir σ sera nuestra variable primaria. El resultado que obtienen Vining y Myers en [10] es $x_1 = 0.614$, $x_2 = 0.228$ y $x_3 = 0.100$.

2.6. Un ejemplo por simulación de la metodología de superficie de respuesta para una variable

Para ilustrar la metodología de superficies de respuesta se realizó un estudio de simulación.

La función de respuesta utilizada es

$$f(x_1, x_2) = -0.2(x_1 + 0.3x_2 - 21)^2 - 0.01(x_1 + 4.7x_2 - 79)^2 + 100,$$

el punto máximo de la función es (15, 20), y el valor de la función de respuesta en este punto óptimo es f(15, 20) = 100.

Las observaciones de la variable respuesta se generan de acuerdo a la relación

$$y = f(x_1, x_2) + \epsilon \tag{2.38}$$

donde ε tiene distribución $N(0, \sigma^2)$ (en este caso se utilizó el valor de $\sigma^2 = 1$).

El diseño utilizado es un 2^2 con repeticiones en el centro. A continuación se presentan los datos del procedimiento de la metodología de superficies de respuesta.

Pu	ntos	Valores y
Dis	eño	Observados
x_1	x_2	$f(x_1, x_2) + \varepsilon$
-1	-1	-67.671
-1	1	-48.427
1	-1	-55.908
1	1	-34.192
0	0	-49.469
0	0	-50.806
0	0	-49.445

Centro	$b + k\Delta_x$	Observación
x_1	x_2	y
0.536	0.844	-38.694
1.072	1.689	-27.621
1.608	2.533	-16.085
2.144	3.377	-6.320
2.679	4.221	5.055
÷	:	:
11.253	17.730	94.439
11.789	18.575	96.287
12.325	19.419	97.863
12.861	20.263	98.494
13.397	21.107	101.519
13.933	21.952	100.954

Dis	eño	Observación
x_1	x_2	y
12.397	20.107	97.305
12.397	22.107	97.150
14.397	20.107	100.093
14.397	22.107	98.990
13.397	21.107	100.417
13.397	21.107	101.291
13.397	21.107	101.223

Con estos datos se estima la ecuación lineal

 $y = -50.845 + 6.499x_1 + 10.240x_2.$

El coeficiente de determinación de esta regresión es $R^2=0.988~{\rm y}$ el estadísticoF es $F_c=159.709$ que tiene una significancia muestral de casí cero. Por lo que concluimos que existe evidencia suficiente de que la variable respuesta crece en dirección del vector

$$(\hat{\beta}_1, \hat{\beta}_2) = (6.499, 10.240).$$

En dirección de este vector, pero a intervalos de longitud igual a uno se obtienen nuevas observaciones hasta que se observe una caída en la respuesta. El vector que se utiliza para este proceso es

$$\Delta_x = (0.535, \, 0.844).$$

Se calcula las observaciones $Y_i = f(centro + i\Delta_x) + \varepsilon_i$ para toda *i*, hasta que se observe una caída en la respuesta.

Los datos de la simulación muestran una respuesta creciente hasta el punto (13.397, 21.107). En el cuadro de la izquierda se muestra un fragmento de este proceso, se han suprimido los puntos centrales, en los cuales la respuesta va creciendo.

Entonces con centro en este punto se vuelve a obtener un diseño para estimar nuevamente una función de primer grado. La función estimada es

$$y = 90.634 + 1.156x_1 - 0.314x_2.$$

El coeficiente de determinación es $R^2 = 0.320$ y el estadístico F es $F_c = 0.941$, por lo que podemos concluir que estamos en una región donde se encuentra un máximo relativo de la función de respuesta.

		Diseño			Observación
x_1	x_2	x_{1}^{2}	x_{2}^{2}	$x_1 x_2$	y
12.397	20.107	153.683	404.309	249.269	97.305
12.397	22.107	153.683	488.738	274.063	97.150
14.397	20.107	207.270	404.309	289.484	100.093
14.397	22.107	207.270	488.738	318.278	98.990
13.397	21.107	179.477	445.523	282.774	100.417
13.397	21.107	179.477	445.523	282.774	101.291
13.397	21.107	179.477	445.523	282.774	101.223
13.397	22.107	179.477	488.738	296.171	99.427
13.397	20.107	179.477	404.309	269.377	99.354
14.397	21.107	207.270	445.523	303.881	100.050
12.397	21.107	153.683	445.523	261.666	97.572

Se completa el último diseño para obtener un diseño central compuesto y estimar una función de segundo grado.

El modelo ajustado de segundo grado es:

$$\hat{y} = 100.732 + 1.184x_1 - 0.197x_2 - 1.555x_1^2 - 0.976x_2^2 - 0.236x_1x_2,$$

y se está interesado en optimizarlo. Para encontrar los puntos críticos calcularemos la derivada de \hat{y} y la igualamos a cero:

$$\frac{\partial \hat{y}}{\partial \boldsymbol{x}} = \begin{pmatrix} 47.851\\ 44.188 \end{pmatrix} + 2 \begin{pmatrix} -1.555 & -0.118\\ -0.118 & -0.976 \end{pmatrix} = 0.$$
(2.39)

Encontramos que su único punto crítico es

$$x = -\frac{1}{2}B^{-1}b = {\binom{13.789}{20.958}}.$$

El verdadero punto donde se alcanza el máximo valor de la respuesta es (15, 20), su estimación es (13.789, 20.958), es cercana la estimación.

Como la matriz \boldsymbol{B} es negativa definida este punto crítico en un punto máximo de \hat{y} . Evaluamos el punto máximo estimado en la función obtenemos $\hat{y}(\hat{x}_{opt}) = 100.98$, muy cercano al valor que nos regresa el punto óptimo de la función que usamos para realizar la simulación.

Figura 2.8: Gráfica de la función $f(x_1, x_2)$.

Figura 2.9: Curvas de nivel de la función $f(x_1, x_2)$.

Capítulo 3

Aplicación de la metodología de superficies de respuesta

3.1. Litchi

El litchi es un árbol subtropical que produce una de las frutas más finas del mundo. La fruta tiene el tamaño de una fresa cuya cáscara es firme como de papel grueso y de un atractivo color rojo intenso. La pulpa al interior tiene un color blanco perla de aspecto gelatinoso y es apreciada por su excelente sabor que se debe a una combinación ideal entre componentes dulces, agrios y aromáticos. Se come en estado fresco, congelado, enlatado o deshidratado.

Figura 3.1: Frutos de litchi.

Aunque el litchi se conoce desde hace milenios en China y sus países vecinos, su historia comercial es reciente y todavía falta mucho para difundirlo a nivel mundial. Su mercado internacional es muy dinámico y se caracteriza por altas tasas de crecimiento, incluso en los propios países de origen no se satisface adecuadamente la demanda lo que se refleja en los altos precios que tienen que pagar los consumidores.

El comercio internacional del litchi es reciente, porque requirió de dos condicionantes: por un lado, de un excedente exportable y, por el otro, de métodos de conservación y de transporte. Por ello, durante siglos el consumo se quedó limitado a mercados locales de las regiones productoras del sudeste asiático.

El litchi no solamente se caracteriza por una pronunciada estacionalidad. Por lo general, se puede cosechar solamente durante tres semanas al inicio del verano.

Una de las principales limitaciones que obstaculiza el comercio es que se trata de una fruta muy delicada y perecedera, su calidad puede deteriorarse rápidamente, en solo tres días a temperatura ambiente si no se le da un tratamiento adecuado. Muchos países asiáticos, productores tradicionales de la fruta, tienen problemas en el manejo poscosecha y en el comercio de la fruta en fresco, porque no disponen de una producción comercial, y métodos adecuados de conservación de conservación.

3.1.1. Producción de Líchi en México

Introducción y expansión de cultivo

La producción de litchi ha pasado por varias fases de desarrollo, y como la planta no es originaria de México, su historia inicia con el proceso de introducción al país y su posterior expansión.

La introducción se dio en varias fases, la primera a principio del siglo pasado que quedó sin impacto sobre la fruticultura nacional. Los primeros en iniciar la producción comercial de esta fruta en América Latina fue la familia Redo de Sinaloa, quienes introdujeron la planta directamente de China. Una segunda fase de introducción está ligada a los intentos de diversificar la producción frutícola en el país y se extiende desde principios de los 60 hasta 1980, aproximadamente. En esta fase participan investigadores del IN-MECAFE, INIFAP y CONAFRUT. Se introduce nuevo material genético procedente de Florida, Hawaii y Sinaloa en los estados de Veracruz, Nayarit y San Luis Potosí. La ignorancia con respecto al manejo adecuado de la planta, el desconocimiento de la fruta entre los consumidores y el acceso a muchas otras opciones productivas constituyen cierto obstáculo para llegar en esta fase a una producción comercial importante, con las excepción de Sinaloa. Pero se llega a apreciar cada vez más la fruta a nivel local.

La tercera fase está muy relacionada con la crisis en el campo y la búsqueda de alternativas a fines de los años 80. El litchi es uno de los cultivos, junto con el maracuyá y la macadamia, que se consideraron viables para varias zonas de Veracruz, Nayarit, Michoacán, Oaxaca y Chiapas. Además, los altos y estables precios que se obtienen en el mercado nacional y de exportación han atraído a muchos productores incluso de zonas no aptas para el cultivo.

Las perspectivas para México de aumentar su presencia en el mercado internacional del litchi parecen promisorias, sobre todo por tres razones: a) la cercanía con EUA, que es un consumidor importante y en expansión; b) la época de cosecha que va de mayo a julio, meses en que la demanda del mercado europeo no está satisfecha y c) el potencial importador de algunos países asiáticos, que a pesar de producir en las mismas fechas tienen un déficit, que hasta la fecha ningún otro país exportador puede cubrir.

3.1.2. Manejo postcosecha

La fruta de litchi, una vez cortada empieza a deshidratarse rápidamente, la cáscara pierde su color rojo brillante y se vuelve de color café perdiendo valor comercial. Para evitar o disminuir lo anterior es necesario un manejo eficiente de la fruta posterior a la cosecha.

Figura 3.2: Manchas cafés en el fruto.

En muchos países exportadores el obscurecimiento de la cáscara se controla actualmente por medio de una fumigación con dióxido de azufre (SO_2) y la aplicación de ácido clorhídrico después de la fumigación. El tratamiento aplicado adecuadamente conserva la cáscara de color rojo hasta por 25-30 días en refrigeración, inhibe la producción de compuestos que producen el oscurecimiento de la cáscara y destruye algunas plagas que infestan al litchi al momento de la cosecha. Sin embargo, no se mantiene el color rojo brillante natural del litchi fresco sino un color rojo opaco artificial, el sabor se altera por reducción de la acidez de la pulpa, aumenta la pérdida de peso en el almacenamiento y se intensifican las microfisuras de la cáscara. Asimismo, es un tratamiento poco amigable con el medio ambiente pues el SO₂ que se genera durante el tratamiento se libera al ambiente y las aguas residuales ácidas contaminan el suelo y los mantos acuíferos, a menos que sean tratadas antes de su desecho. Adicionalmente, el uso postcosecha del SO₂ está limitado a uvas en los Estados Unidos y restringido en Japón y la Unión Europea debido a los riesgos que presenta para los trabajadores y a las reacciones alérgicas y problemas respiratorios que puede producir en personas sensibles.

Para intentar sustituir la fumigación con SO_2 se están probando tratamientos alternativos como son los choques térmicos y tratamientos en inmersión con ácido.

Un choque térmico consiste en someter la fruta a un cambio brusco de temperatura, por ejemplo, sumergir el producto en agua a muy baja temperatura y después en agua muy caliente (o viceversa) durante periodos muy breves de tiempo.

3.2. Desarrollo del experimento (aplicación en litchi)

El experimento tiene como objetivo estimar las condiciones con las que se maximiza el tiempo en que la fruta conserva su color rojo brillante. Para lograr este objetivo se realizaron experimentos en los que se varío la temperatura del agua caliente (en 5 valores), la secuencia (frío-caliente) y 2 diferentes combinaciones de concentraciones de ácidos: 6 % de ácido cítrico con 2 % de ácido fosfórico (ácido 1), y ácido clorhídrico al 1 % (ácido 2). Se hicieron los tratamientos siguiendo los siguientes pasos, secuencia 1:

- 1. Sumergir el litchi en agua fría, a 10°C
- 2. Sumergir el litchi en agua caliente por 30 segundos
- 3. Sumergir el litchi en alguna concentración de ácido por 3 minutos
- 4. Secar el líquido en los litchis.

También se probaron los tratamientos cambiando los pasos 1 y 2 en la secuencia anterior, es decir (secuencia 2):

- 1. Sumergir el litchi en agua caliente por 30 segundos
- 2. Sumergir el litchi en agua fría a 10° C
- 3. Sumergir el litchi con alguna concentración de ácido por 3 minutos
- 4. Secar el líquido en los litchis.

Se busca el valor de la temperatura del agua caliente cuando la fruta se sumerge por 30 segundos, dejando fijos la temperatura del agua fría, así como el tiempo de inmersión en el agua con ácido.

Para este experimento la única variable de control es la temperatura del agua caliente, y nuestras variables de respuesta son: color, pérdida de peso y un cociente de sólidos solubles totales entre la acidez titulable (cociente SST/AM), este último determina la calidad del sabor del fruto. Se tiene un problema multirespuesta con una única variable explicativa. En este caso la búsqueda de ascenso por pendiente máxima (ó mínima) es sólo en una dirección con dos sentidos.

Para medir color se usa un colorímetro, el cual nos proporciona tres valores: L^* , $a^* y b^*$, siendo los más informativos $a^* y b^*$.

El espacio de color L^*a^*b es uno de los espacios más populares para medir color y es usado prácticamente en todos los campos. L^* indica luminosidad y $a^* y b^*$ son coordenadas de cromaticidad. La Figura 3.3 muestra el diagrama de cromaticidad de $a^* y b^*$. En el diagrama, $a^* y b^*$ indican direcciones de color: $+a^*$ es la dirección de los rojos, $-a^*$ la dirección de los verdes, $+b^*$ indica la dirección de amarillos, y $-b^*$ es la dirección de los azules. El centro es acromático (carece de color); cuando los valores de $a^* y b^*$ se incrementan y nos alejamos del centro, la saturación del color se incrementa.

Se considera que un fruto tiene calidad adecuada cuando el cociente SST/AM esta dentro del intervalo 30-100 y no ha sufrido una perdida de peso mayor al 10 %.

La metodología que se siguió para desarrollar estos experimentos fue:

- 1. Desinfección de área de trabajo con cloro.
- 2. Prender equipos de hidro-enfriamiento y baños térmicos. Esperar a que los equipos alcancen la temperatura deseada.

CAPÍTULO 3. APLICACIÓN DE LA METODOLOGÍA DE SUPERFICIES DE RESPUESTA

Figura 3.3: Diagrama de cromaticidad del espacio de color L*a*b*.

- 3. Preparar 10 litros de cada solución ácida a probar, ácido clorhídrico y una mezcla de ácido cítrico con ácido fosfórico. Y agregar fungicida (prochloraz) a cada solución.
- 4. Seleccionar al azar 30 frutos para cada tratamiento.
- 5. Se inicia con el hidro-enfriamiento de la fruta en el caso de la primera secuencia, en el caso de la secuencia 2 se inicia con el tratamiento térmico.

Figura 3.4: Baño de la fruta en agua fría.

CAPÍTULO 3. APLICACIÓN DE LA METODOLOGÍA DE SUPERFICIES DE RESPUESTA

6. Se aplica el tratamiento térmico (hidro-enfriamiento en el caso de la segunda secuencia).

Figura 3.5: Inmersión de la fruta en agua caliente.

- 7. Después del choque térmico, se sumergen los frutos en la solución ácida durante 3 minutos y se dejan secar en una reja de plástico con papel de estraza durante 10 min.
- 8. Se separa la fruta en tres unidades experimentales de diez litchis cada una en envases de plástico transparente (domos).

3.3. Análisis de datos en Litchi

En el primer experimento se probaron los 2 ácidos, las 2 secuencias, y las siguientes temperaturas para el agua caliente: 66, 68, 70, 72 y 74°C. Después de realizar el experimento, se midieron las variables de respuesta a los 3 y 7 días después de aplicar los tratamientos para cada uno de los ácidos y secuencias.

En este experimento los ácidos y las secuencias no son variables numéricas por lo que no pueden ser utilizadas para la metodología de superficies de respuesta. Como primer análisis de los datos se realiza un análisis de varianza.

Aunque el colorímetro nos proporciona 3 parámetros de color, sólo se utilizará el parámetro \mathbf{a}^* , ya que aporta mayor información, valores altos de esta variable indican rojos intensos y deseados en la fruta.

Los datos del primer experimento se presentan en los cuadros A.13 y A.14, los cuales pertenecen a un diseño $2 \times 2 \times 5$, con 3 repeticiones por tratamiento. Con estos datos se realizó un análisis de varianza para cada variable de respuesta por día de muestreo, en el cuadro 3.1 se muestra el análisis de varianza para el parámetro de color \mathbf{a}^* al día 3 y 7 de muestreo, observamos que existe diferencia significativa en ambos casos para esta variable de respuesta por efecto de las tres variables control. Observamos valores más altos para \mathbf{a}^* en los tratamientos con el ácido 1 y secuencia 1. En la variable perdida de peso y cociente SST/AM se detecta diferencia significativa entre tratamientos hasta el día 7 de muestreo.

Cuadro 3.1: Análisis de varianza para la variable de respuesta \mathbf{a}^* , primer experimento.

		Día 3			Día 7	
Source Term	DF	F-Ratio	Prob Lev	el	F-Ratio	Prob Level
A: temp	4	39.09	0.00000*		22.85	0.000000*
B: acido	1	25.61	0.000010*		4	0.052395
AB	4	0.4	0.807064		3.74	0.011136*
C: secuencia	1	82.65	0.0000003	*	51.85	0.000000*
AC	4	22.13	0.0000003	ĸ	4.82	0.002876*
BC	1	0.11	0.747267		7.55	0.008963^*
ABC	4	2.3	0.075151		1.01	0.411648
S	40					
Total (Adjusted)	59					
Total	60					
	* T	erm signific	ant at alpha	= 0	0.05	
	I	Means and	Effects Sec	tio	<u>n</u>	
			Día 3	1	Día 7	
	Term	Count	Mean	I	Mean	
	All	60	20.23218	17	7.36738	
	A:					
	66	12	23.85964	2	0.5808	
	68	12	22.23879	17	7.58847	
	70	12	18.37617	16	6.20618	
	72	12	18.42152	15	5.41164	
	74	12	18.2648	17	7.04979	
	B:					
	1	30	21.18616	17	7.73739	
	2	30	19.27821	16	5.99737	
	\mathbf{C} :					
	1	30	21.94579	18	3.69998	
	2	30	18.51858	16	6.03477	
	ABC:					
	66, 1, 1	3	28.01108	23	3.27744	
	66, 1, 2	3	21.66161	21	.21843	
	66, 2, 1	3	25.26616	21	.39144	
	66, 2, 2	3	20.49969	16	6.43589	
	68, 1, 1	3	27.59686	20	0.03956	
	68,1,2	3	18.58853	15	5.67497	
	68, 2, 1	3	25.88919	20	0.03956	
	68,2,2	3	16.88059	14	1.15232	
	70,1,1	3	21.09758	17	7.69925	
	70,1,2	3	16.88643	15	5.18804	

Analizaremos los datos como 4 experimentos independientes, para modelar la variable de respuesta \mathbf{a}^* en cada una de las secuencias y ácidos.

Cuadro 3.2: Análisis del parámetro $\mathbf{a^*}$ del primer experimento, en cada combinación de ácido y secuencia.

Respuesta	Día 3	Día 7
a* a-1 s-1	$\hat{a} = 117.894 - 1.357t$	$\hat{\sigma}$ 20.0 $\hat{\sigma}$ 20.0 σ
a* a-1 s-2	Diferencia significativa, pero sin ajuste lineal o cuadrático	$\hat{a}* = 46.577 - 0.423t$
a* a-2 s-1	$\hat{a}* = 100.5203 - 1.1352t$	$\hat{a}* = 47.5352 - 0.4099t$
a*	Sin diferencia significativa	Sin diferencia significativa
a-2 s-2	entre tratamientos	entre tratamientos

En el cuadro 3.2 podemos ver los ajustes realizados a la variable de respuesta \mathbf{a}^* en ambos días de muestreo para cada combinación de ácidosecuencia. Estos ajustes dan evidencia de que en temperaturas más bajas se observa mayor crecimiento, por lo que para próximos experimentos se bajó la temperatura del agua caliente. En las variables pérdida de peso y cociente SST/AM no se detectó diferencia significativa pero sus valores se encontraron dentro de los niveles de calidad.

En el segundo experimento se probaron las siguientes temperaturas: 54, 57, 60, 63 y 66 grados centígrados, se midieron las variables de respuesta a los días 3, 7 y 10 después de aplicar los tratamientos. Para realizar este experimento no se contó con fruta recién cosechada como en el caso del primer experimento, este se realizó con fruta con varios días de almacenamiento, además como no se contaba con suficiente fruta no se realizó medición de la variable cociente SST/AM, ya que para medir esta variable es necesario destruir la fruta.

Los datos del segundo experimento se muestran en los Cuadros A.15, A.16 y A.17. Con estos datos se realizó un análisis de varianza para cada variable de respuesta por día de muestreo, los cuales se muestran en el Cuadro 3.3. Para la variable de color a^* observamos diferencia significativa al día 3, 7 y 10 de muestreo solo por efecto del factor temperatura. En la variable de respuesta pérdida de peso, al día 3 de muestreo no se observa diferencia significativa entre tratamientos, al día 7 y 10 se detecta diferencia significativa entre tratamientos por efecto de la temperatura.

Dado que en el primer experimento se encontraron mejores resultados para la variable de respuesta \mathbf{a}^* en la combinación del ácido 1 con la secuencia 1, y ya que en este experimento no se encontró diferencia significativa entre tratamientos por efecto del ácido o la secuencia, se adoptó esta combinación para optimizar el color de la fruta, buscando la dirección de máximo crecimiento para la variable de respuesta \mathbf{a}^* .

Para los datos que provienen de los tratamientos con el ácido 1 y secuencia 1 se ajustó un modelo de regresión lineal en los 3 días de muestreo, observamos estos ajustes en el cuadro 3.5. En la variable pérdida de peso no se detectó diferencia significativa entre tratamientos en ninguno de los 3 días de muestreo.

Los datos del segundo experimento indicaron que es conveniente seguir bajando la temperatura para encontrar el punto óptimo que nos regrese un máximo para la variable \mathbf{a}^* , cuidando que los valores que toman las variables pérdida de peso y cociente se mantengan dentro de los parámetros de calidad. En un tercer experimento, se probaron las siguientes temperaturas: 48, 51, 54, 57 y 60 grados centígrados. A diferencia de los primeros experimentos, el tercer experimento se realizó con fruta procedente del estado de Puebla. Por los resultados que obtuvimos en los análisis de varianza de los 2 primeros experimentos se decidió que solo se seguiría trabajando con el ácido 1 y la secuencia 1. Al igual que en el segundo experimento, se medirán las variables de respuesta al día 3, 7 y 10 después de aplicar los tratamientos. Nuestras variables de respuesta siguen siendo el parámetro \mathbf{a}^* , pérdida de peso y cociente SST/AM.

Los datos del experimento tres se muestran en los cuadros A.18, A.19 y A.20. Al día 3 de muestreo no se observó diferencia significativa en el análisis de varianza en ninguna de las tres variables de respuesta. Al día 7 se encontró diferencia significativa en la variable de respuesta \mathbf{a}^* , al ajustar un modelo lineal observamos falta de ajuste por lo que le aumentamos un grado al modelo, es decir, ajustamos un modelo de segundo grado, podemos ver el ajuste de regresión en la Cuadro 3.5.

El modelo ajustado es

$$\mathbf{a}^* = -79.754 + 4.023t - 0.0349t^2 \tag{3.1}$$

el cual tiene por máximo para $\hat{\mathbf{a}^*}$ en el punto

$$\hat{t}_1 = 57.64$$

Este punto nos arroja un valor estimado de 36.18 para la variable $\hat{\mathbf{a}^*}$. En las variables pérdida de peso y cociente SST/AM no se encontró diferencia significativa, pero sus valores siguen dentro de los rangos de calidad.

Al día 10 de muestreo, al ajustar un modelo de regresión lineal a la variable \mathbf{a}^* se detectó falta de ajuste, causado por la curvatura que se observa en los datos en la gráfica de dispersión, por lo que se ajustó un modelo de regresión cuadrático, el modelo ajustado es

$$\mathbf{a}^* = -269.524 + 11.126t - 0.102t^2. \tag{3.2}$$

Usando este modelo podemos estimar el punto óptimo para la temperatura, este punto es

$$t = 54.48,$$

que nos arroja un valor de 33.87 para el parámetro de color \mathbf{a}^* . Los valores de la variable pérdida de peso y los valores de la variable cociente se mantiene dentro del rango de parámetros de calidad.

En resumen aplicando la metodología de superficies de respuestas para optimizar el tiempo de vida de anaquel, obtuvimos la combinación de factores óptima:

- 1.- Temperatura del agua caliente = 54.48° C.
- 2.- La secuencia 1, la cual corresponde a los tratamientos que recibieron primero el hidro enfriamiento y después la inmersión en agua caliente.
- 3.- La combinación de 6 % de ácido cítrico y 2 % de ácido fosfórico.

Esto da pauta a probar otras combinaciones de ácidos para buscar optimizar aun más el color en la fruta.

Cuadro 3.3: Análisis de varianza para la variable de respuesta $\mathbf{a^*}$ del segundo experimento.

			Día 3		Día 7		Día 10			
Source Term	DF	F-Ratio	Prob	Level	F-R	latio	\mathbf{Pr}	ob Level	F-Ratio	Prob Level
A: temperatura	4	18.57	0.000	000*	24	.78	0.	000000*	1.44E + 01	0.000000*
B: acido	1	0	1			0		1	0	1
AB	4	0.51	0.729	9785	0.	.16	0	.957869	7.50E-01	0.564802
C: secuencia	1	0	1			0		1	0	1
AC	4	1.02	0.409	9433	0.	.77	0	.550109	2.29E + 00	0.078361
BC	1	0	1			0		1	0	1
ABC	4	0.87	0.490	0085	2.	.21	0	.087119	0.66	0.624211
S	37									
Total (Adjusted)	56									
Total	57									
			* Term s	ignifican	nt at a	alpha =	0.0	5		
			Mean	s and E	ffect	s Secti	on		_	
						Mea	n]	
		Term	\mathbf{Count}	Día	3	Día	7	Día 10	7	
		All	57	23.730	09	20.968	14	20.89409	1	
		A:								
		54	12	27.470	65	23.785	22	23.14836		
		57	12	26.602	24	23.481	58	22.58248		
		60	12	23.066	38	21.008	19	20.34268		
		63	12	21.259	19	18.457	77	19.64873		
		66	9	20.255	88	18.107	94	18.74822		
		B:								
		1	27	24.588	19	21.414	91	21.34043		
		2	30	22.873	62	20.521	37	20.44776		
		C:								
		1	30	23.983	18	21.255	87	20.76679		
		2	27	23.478	62	20.680	41	21.0214		
		ABC:								
		54,1,1	3	30.983	53	24.697	'99	22.21808		
		54,1,2	3	26.931	.47	23.876	48	25.06846		
		54,2,1	3	26.236	17	25.394	19	22.31169		
		54,2,2	3	25.731	.44	21.172	21	22.99521		
		57,1,1	3	26.913	39	23.495	82	22.89687		
		57,1,2	3	28.007	'46	24.884	58	23.01846		
		57,2,1	3	25.289	47	24.006	28	22.02679		
		57,2,2	3	26.198	376	21.539	66	22.38781		
		60,1,1	3	24.254	46	21.691	34	20.31527		
		60,1,2	3	22.625	81	21.06	55	20.14101		

Cuadro 3.4: Análisis de regresión para la variable \hat{a} * en los tres días de muestreo del segundo experimento.

Cuadro 3.5: Ajustes de regresión para la variable $\hat{a}*$ en los tres días de muestreo del tercer experimento.

Respuesta	Día 3	Día 7	Día 10
a* a-1 s-1	Sin diferencia significativa entre tratamientos	\hat{a}_{460} \hat{b}_{57} \hat{b}_{50} b	$\dot{a} = -269.524 + 11.128t - 0.102t^2$

3.4. Nopal

Por sus numerosas virtudes nutritivas, químicas, industriales, ecológicas, medicinales y simbólicas, entre otras, el nopal representa uno de los recursos vegetales más importantes, desde el punto de vista económico-social, para los habitantes de zonas áridas y semiaridas de México, ya que mediante la producción, la recolección y la venta tanto de frutos como de brotes tiernos obtienen un ingreso adicional que les garantiza su supervivencia.

Figura 3.6: Nopal recién cosechado.

En México se llama nopal a las plantas de la familia *Cactaceae* de los géneros *Opuntia* y *Nopalea*, siendo el primero el de importancia comercial.

La producción del nopal en México se ha clasificado con base en el establecimiento de tres sistemas de producción, los cuales siguen vigentes: a) nopaleras silvestres; b) nopaleras en huertos familiares, y c) nopaleras en plantación comercial.

En México el 87% de la producción de nopal se encuentra en la región centro, que comprende el Distrito Federal, Estado de México y Estado de Morelos.

3.4.1. Uso e industrialización del nopal

El cultivo de nopal ocupa el sexto lugar en producción a nivel nacional después del chile verde, jitomate, limón, papa y cebolla. Como alimento, tiene una gran aceptación por su costo y por otras propiedades como su fácil digestibilidad por el organismo humano. A lo largo de la historia los mexicanos han desarrollado una infinidad de productos a partir del nopal.

Como hortaliza

Los brotes tiernos (nopalitos) de muchas de las variedades del nopal se utilizan para el consumo humano, y en algunos casos se exportan envasados a Estados Unidos, Canadá y Japón. Su contenido de vitaminas, fibra y otros compuestos funcionales (capaces de prevenir enfermedades crónicasdegenerativas y fortalecer el sistema inmunológico) lo convierten en un importante elemento de la dieta. Se estima la existencia de aproximadamente 10 mil hectáreas destinadas a la producción comercial del nopalito.

Como forraje

A pesar del bajo nivel nutritivo que aporta el nopal, en el norte de México y sur de los Estados Unidos, es considerado como un forraje suplementario y de emergencia para la alimentación del ganado, sobre todo en las épocas de sequía. El aprovechamiento del nopal como forraje debe realizarse mediante una planeación técnica adecuada, que considere la conservación del recurso y evite el deterioro al ambiente, con la finalidad de contar con un sistema de producción de forraje estable y permanente.

Industria alimentaria, farmacéutica y cosmetológia

A partir de las pencas maduras o adultas, mediante diversos procesos, es posible elaborar productos alimenticios, medicinales, de limpieza y aseo personal como champús, enjuagues y cremas, entre otros. Además por ser un alimento con gran cantidad de fibra regula la absorción de nutrientes y reduce los niveles de colesterol y glucosa en la sangre. Es utilizado también en la medicina tradicional por sus propiedades diuréticas, desinflamatorias, anticancerígenas, hipoglucemiantes, expectorantes, laxantes y analgésicas. Otro aspecto importante del nopal, es que su mucílago ("baba") tiene propiedades adherentes, impermeabilizantes y floculantes que pueden utilizarse en otras industrias.

Producción de cochinilla

Uno de los principales usos del nopal en México y otras partes del mundo, es la utilización de las pencas en la producción de un insecto que se conoce como cochinilla, que a su vez produce el colorante llamado grana, en opinión de varias personas éste es quizá el empleo histórico más original del nopal.

Como ornamental

Diversas especies de nopal tienen una alta demanda internacional como plantas ornamentales, debido a que se consideran exóticas y peculiares en su aspecto y forma. Algunas características que las hace atractivas son el colorido de sus flores, la caprichosa forma de sus tallos y la rareza de ciertas especies.

Ambiente

El nopal tiene un sistema radical superficial y muy ramificado, con una gran cantidad de pelos absorbentes. Anualmente estos pelos absorbentes se renuevan, constituyendo una fuente de materia orgánica que se incorpora al suelo, mejorando las propiedades químicas y físicas del mismo.

El nopal también tiene una gran importancia, como un buen agente de conservación del suelo, pues le protege de la erosión eólica e hídrica.

3.4.2. Limitantes del nopal para su comercialización

En mercados nacionales el nopal se vende mínimamente procesado es decir, des-espinado y en algunas ocasiones se ofrece cortado en pequeños trozos. Los nopales con procesamiento ligero deben venderse en menos de tres días para que tengan la calidad adecuada. El nopal de calidad debe ser firme, suculento, de gusto ácido, de color verde luminoso y aroma fresco herbáceo. Esto representa un gran reto cuando es comercializado en mercados distantes como los del Norte del país o del extranjero (Estados Unidos de Norteamérica, Canadá o Japón) debido a que el nopal puede presentar oscurecimiento en las áreas expuestas (des-espinadas), pérdida de su color característico y pérdida de peso.

El nopal des-espinado debe almacenarse a una temperatura de 4° C para conservar su calidad, pero como este producto procede de climas cálido-secos, puede sufrir daño por frío (DPF) si se le coloca a temperaturas inferiores a 10° C.

Existen diversas técnicas y metodologías empleadas para el control de estos problemas, que alargan la vida de anaquel, por ejemplo, los tratamientos térmicos y las atmósferas modificadas.

3.4.3. Tratamientos Térmicos

Los métodos térmicos resultan de interés como alternativas de los tratamientos químicos tradicionales durante el almacenamiento postcosecha de frutas y hortalizas. Recientemente, se ha encontrado que pueden modificar numerosos aspectos vinculados con la fisiología de los frutos. Para la aplicación de los tratamientos térmicos se pueden utilizar como medios de calentamiento el agua, el aire y el vapor. El tratamiento con agua, consiste en sumergir la hortaliza o fruto en agua a temperatura alta por cierto tiempo. La temperatura y el tiempo que dan el máximo tiempo de anaquel son parámetros a determinar para cada producto.

3.4.4. Atmósferas Modificadas (AM)

Otra tecnología muy eficaz en la actualidad es el uso de envasado en atmósferas modificadas. Este tipo de envases permite modificar la concentración de oxígeno, dióxido de carbono y nitrógeno en la atmósfera interna en contacto con el producto. Algunos estudios han mostrado que las atmósferas con baja concentración de oxígeno y elevada de dióxido de carbono pueden disminuir la reacción de oscurecimiento. Entre las ventajas de este tipo de tecnología está el retrasar la senescencia y el ablandamiento, reducir la deshidratación ocasionada por transpiración, la susceptibilidad a patógenos y por lo tanto las pudriciones.

El presente proyecto tiene como propósito encontrar las condiciones óptimas de aplicación de dos tecnologías postcosechas (hidrotérmicas y envasado en AM) para conservar la calidad y alargar la vida de anaquel del nopal desespinado, y contempla la realización de trabajo experimental para encontrar la mejor combinación hidrotérmica-AM para conseguir este propósito.

3.5. Desarrollo del experimento

Los nopales con los que se trabajan son cosechados de la misma huerta un día antes de realizar el experimento. Para aplicar los tratamientos seguimos los siguientes pasos:

1. El primer paso es seleccionar las pencas buscando que todos tengan buena calidad y tamaño similar.

CAPÍTULO 3. APLICACIÓN DE LA METODOLOGÍA DE SUPERFICIES DE RESPUESTA

Figura 3.7: Selección del nopal.

2. Los nopales son desinfectados con agua clorada.

Figura 3.8: Nopales que están siendo desinfectados con cloro.

- 3. El siguiente paso es aplicar el tratamiento térmico, es decir sumergir los nopales en agua a una temperatura alta.
- 4. Después de aplicar el tratamiento térmico dejamos pasar 2 horas para seguir con el desarrollo del experimento.
- 5. Transcurridas las dos horas, se des-espina el nopal, y se forman las unidades experimentales de 4 nopales cada uno.

CAPÍTULO 3. APLICACIÓN DE LA METODOLOGÍA DE SUPERFICIES DE RESPUESTA

Figura 3.9: Des-espinado de nopal.

- 6. Se envasan en bolsas que contienen una de las atmósferas modificadas (nitrógeno, aire o CO_2).
- 7. Se almacenan las unidades experimentales a una temperatura de 4° C.

Los tratamientos se asignan a las unidades experimentales de manera aleatoria.

Para este experimento se consideran tres factores:

- Factor 1: Tipo de atmósfera modificada, con 3 niveles: Aire común, nitrógeno y dióxido de carbono.
- Factor 2: Temperatura del agua a la que se sumergen los nopales en el tratamiento térmico.
- Factor 3: Tiempo de inmersión de los nopales en el tratamiento térmico.

Los factores 2 y 3 son variables continuas con las que se puede aplicar la metodología de superficie de respuesta. El factor 1 es una variable categórica por lo que se estimará la combinación temperatura y tiempo de inmersión, donde se alcanza la respuesta óptima para cada nivel del factor 1, y posteriormente se elige la mejor de estas combinaciones con la atmósfera modificada.

Inicialmente, para la metodología de superficie de respuesta se considera un diseño 2^2 con una observación en el centro. Los valores de este diseño son:

$T (^{o} C)$	t(s)
45	40
45	50
50	45
55	40
55	50

3.5.1. Variable de respuesta

La variable de interés es el tiempo de vida en anaquel de los nopales des-espinados. Determinar cuando se alcanza el 10 % de daño o determinar el porcentaje de daño en el nopal se realiza de manera visual, es decir una persona decide al ver el fruto, si el producto terminó su vida de anaquel, lo que la hace una variable de respuesta subjetiva, ádemas de que no sabemos el momento exacto en que este ocurre. Propusimos que en lugar de determinar el 10 % de daño en la superficie del nopal subjetivamente, se hiciera usando fotografías o escaneos del fruto.

Figura 3.10: Oscurecimiento en nopal.

En Matlab una imagen en formato RGB se representa por 3 matrices bidimensionales correspondientes a los planos R, G y B.

Teníamos la hipótesis de que cuando el nopal empieza a oscurecerse por oxidación, la media de las entradas de la matriz R aumenta y la media de las entradas de la matriz G disminuye. De manera que se decidió usar la relación

$$R = \frac{X_V}{\bar{X}_R} \tag{3.3}$$

como variable de respuesta. Se crearon imágenes simuladas para realizar algunas pruebas (ver imágenes en la Figura la 3.12), el resultado fue el siguiente:

CAPÍTULO 3. APLICACIÓN DE LA METODOLOGÍA DE SUPERFICIES DE RESPUESTA

Figura 3.11: Representación matricial de una imagen RGB.

Figura 3.12: Imágenes simuladas

% de área café	Cociente R
0 %	1.3525
14.29%	1.2012
28.57%	1.0585
42.86%	0.9421
57.14%	0.8409
71.43%	0.7512
85.71%	0.6717
100%	0.6019

A estos datos se les ajustó un modelo lineal, el análisis de la regresión fue el siguiente:

	G.L.	S. de C	P. de C.	\mathbf{F}	Valor crítico de F
Regresión	1	0.4741	0.4741	322.4700	1.9178E-006
Residuos	6	0.0088	0.0014		
Total	7	0.4829			

CAPÍTULO 3. APLICACIÓN DE LA METODOLOGÍA DE SUPERFICIES DE RESPUESTA

Figura 3.13: Diagrama de dispersión entre porcentaje de oscurecimiento y el cociente R.

Para las imágenes que obtengamos de los experimentos se hará un seguimiento de los nopales en el tiempo:

Tiempo de observación	t_1	t_2	• • •	t_n
Cociente R	R_1	R_2	• • •	R_n

y buscaremos encontrar una relación lineal entre estas dos variables, tiempo y cociente

$$R = \hat{a} + bt, \tag{3.4}$$

para luego estimar el tiempo donde el cociente corresponde al 10% de daño; esto es, se despeja t en cociente 10

$$t = \frac{R_{10} - \hat{a}}{\hat{b}}.$$
 (3.5)

Este valor será nuestra variable de respuesta. De manera paralela se midió con un colorímetro los parámetros de color \mathbf{a}^* y \mathbf{b}^* . El colorímetro mide el color de una pequeña área de la superficie del nopal y, dado que esta medición es muy local, se medirá en zona sin des-espinar y zona des-espinada para comparar.

En resumen tendremos 5 variables de respuesta, $\mathbf{a^*v}$ y $\mathbf{b^*v}$ variables obtenidas con el colorímetro en la zona sin desespinar, $\mathbf{a^*d}$ y $\mathbf{b^*d}$ variables de color en la zona desespinada, y nuestra variable *cociente*. Las variables de control son el tiempo de inmersión y la temperatura del agua. Nuestro objetivo principal es modelar estas variables.
3.6. Análisis de datos en Nopal

Se realizaron 3 experimentos uno para cada atmósfera, y se midieron las variables de color a los días 7, 11, 16 y 20 después de la aplicación de los tratamientos. Los datos experimentales se encuentran en el apéndice A.

Para detectar diferencia significativa entre las atmósferas se hizo un análisis de varianza con los datos de los tres experimentos por día de muestreo. En la zona sin desespinar para la variable $\mathbf{a}^* \mathbf{v}$ no encontramos diferencia significativa por efecto de ninguna de las variables factor, y en la variable $\mathbf{b^*v}$ se encontró diferencia significativa por efecto de la interacción de la temperatura con el tiempo y por efecto de la interacción de las tres variables control (tiempo, temperatura y atmósfera modificada). En la zona desespinada, al día 7 de muestreo existe diferencia significativa en la variable $\mathbf{a}^* \mathbf{d}$ por efecto de la interacción del tiempo con la temperatura y para la variable $\mathbf{b}^* \mathbf{d}$ se encontró diferencia significativa por efecto de la atmósfera, siendo la atmósfera con CO_2 diferente a las otras dos. A los días 11 y 16 de muestreo observamos lo mismo que al día 7. Al día 20 de muestreo se observó que en la zona desespinada ya no se detecta diferencia significativa en ninguno de los parámetros de color, pero en la zona sin desespinar observamos diferencia entre los tratamientos para la variable b^*v . Estos resultados los podemos ver en el cuadro 3.6.

Además del análisis de varianza de los 3 experimentos tomando las atmósferas como un tercer factor, se realizó un análisis de varianza por cada una de las atmósferas. El primer experimento corresponde a los tratamientos que se almacenaron con aire. Los datos de este experimento indican diferencia significativa únicamente en la variable $\mathbf{a}^*\mathbf{d}$ en la zona desespinada al día 7 por efecto de la temperatura, pero no resultó adecuado ajustar un modelo lineal o cuadrático, para el resto de las variables no se detectó diferencia significativa. En los otros días de muestreo no se encontró diferencia significativa para ninguna de las variables de respuesta. En el cuadro 3.7 podemos ver el análisis de varianza para las 5 variables de respuesta al día 7 y 20. Los datos observados que corresponden a los tratamientos con aire se encuentran en el apéndice A en los cuadros A.1, A.2, A.3 y A.4.

El segundo experimento corresponde a los nopales que se almacenaron con nitrógeno, los datos los podemos ver en los cuadros A.5, A.6, A.7 y A.8. Al analizar estos datos se encontró que al día 20 sólo se detectó diferencia significativa en la variable **a*d** en la zona desespinada por efecto de la temperatura, pero al intentar ajustar un modelo lineal o cuadrático se detectó falta

Cuadro	3.6:	Análisis	de va	rianza	para	$\log 4$	parámetro	os de	color,a*	۶ v ,	b * v ,
a*d y l	o*d	al día 7 y	20 d	e los 3	exper	iment	OS.				

	1111119515	Response a*v	opor 5			
	I	Día 7	D	ía 20		
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level		
A: temperatura	0	1	0	1		
B: tiempo	0	1	0	1		
AB	0.3	0.879652	2.49	0.05167		
C: atmósfera	0.18	0.838034	0.94	0.39705		
AC	0.11	0.979301	0.65	0.63147		
BC	0	0.999986	2.48	0.05246		
ABC	0.22	0.986086	0.16	0.99472		
	1	Response b*v				
	Día 7 Día 20					
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level		
A: temperatura	0	1	0	1		
B: tiempo	0	1	0	1		
AB	4.74	0.002080*	12.29	0.0000*		
C: atmosfera	0.13	0.878366	0.27	0.76319		
AC	0.27	0.89543	0.18	0.949411		
BC	0.01	0.999717	0.74	0.056812		
ABC	2.27	0.033655*	2.54	0.018210*		
	1	Response a*d				
	I	Día 7	D	ía 20		
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level		
A: temperatura	0	1	0	1		
B: tiempo	0	1	0	1		
AB	2.1	0.091457	0.35	0.841251		
C: Atmosfera	6.44	0.002859*	0.05	0.949071		
AC	1.37	0.2535	0.03	0.99808		
BC	0.03	0.998597	0	1		
ABC	0.78	0.625554	0.72	0.676141		
]	Response b*d				
	I	Día 7	D	ía 20		
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level		
A: temperatura	0	1	0	1		
B: tiempo	0	1	0	1		
AB	1.81	0.138186	0	0.99997		
C: Atmosfera	3.93	0.024562*	0.319533			
AC	2.06	0.096253	0.33	0.85904		
BC	1.15	0.343503	0	0.99999		
ABC	1.01	0.438251	0.78	0.61833		
	* Term sig	nificant at alpha	-0.05			

de ajuste. En los días 7, 11 y 16 no se encontró diferencia significativa en ninguna variable de respuesta, podemos ver el análisis de varianza al día 7 y 20 en el cuadro 3.8.

El tercer experimento corresponde a los tratamientos con atmósfera CO_2 . Los datos observados en este experimento se encuentran en el apéndice A en los cuadros A.9, A.10, A.11 y A.12. Al día 7, 11 y 16 encontramos que existe diferencia significativa en las variables $\mathbf{b^*v}$, $\mathbf{a^*d}$ y $\mathbf{b^*d}$. Podemos ver el análisis de varianza al día 7 y 20 en el cuadro 3.9.

Para la variable de respuesta $\mathbf{b^*v}$ al día 7, se ajustó un modelo cuadrático ya que al ajustar un modelo lineal se detectó falta de ajuste, observamos lo mismo al día 20, podemos ver el ajuste de regresión en el cuadro 3.10. Al día 7, la función ajustada tiene un mínimo en el punto ($T = 50.177^{\circ}C, t = 46.272s$)

Response cociente									
	Día 7 Día 20 n F-Ratio Prob Level F-Ratio Prob Leve								
Source Term	F-Ratio	Response cociente Día 7 F-Ratio Prob Level 2.15 0.141629 0 1 1.55 0.223345 Response a*v Día 7 F-Ratio Prob Level 0.36 0.700657 0 1 0.01 0.999545 Response b*v Día 7 F-Ratio Prob Level 0.04 0.959875		Prob Level					
A: Temperatura	2.15	0.141629	1.00E-02	0.98859					
B: Tiempo	0	1	0	1					
AB	1.55	0.223345	2.00E-01	0.93531					
	1	Response $\mathbf{a}^* \mathbf{v}$							
	D	lía 7	D	ía 20					
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level					
A: Temperatura	0.36	0.700657	0.04	0.965076					
B: Tiempo	0	1	0.00E + 00	1					
AB	0.01	0.999545	0.94	0.458449					
	Response b*v								
	Día 7 Día 20								
Source Term	F-Ratio	F-Ratio Prob Level F-Ratio		Prob Level					
A: Temperatura	0.04	0.959875	0.03	0.97436					
B: Tiempo	0	1	0	1					
AB	0.16	0.954509	1.76	0.17517					
	1	Response a*d							
	I	Día 7	D	ía 20					
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level					
A: Temperatura	3.7	0.042138*	0.76	0.481806					
B: Tiempo	0	1	0	1					
AB	0.13	0.970124	1.00E-02	0.999519					
	I	Response b*d							
	I	Día 7	D	ía 20					
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level					
A: Temperatura	0.63	0.541505	0.04	0.95742					
B: Tiempo	0	1	0	1					
AB	0	0.999979	0.24	0.914625					
	* Term sig	nificant at alpha	= 0.05						

Cuadro 3.7: Análisis de varianza para 5 variables de respuesta: *cociente*, $\mathbf{a}^*\mathbf{v}$, $\mathbf{b}^*\mathbf{v}$, $\mathbf{a}^*\mathbf{d}$ y $\mathbf{b}^*\mathbf{d}$ al día 7 y 20 del experimento de tratamientos con aire.

y la función ajustada al día 20 un mínimo en el punto $(T = 47.7683^{\circ}C, t = 42.2465s)$. Para las variables de color en el área des-espinada, aunque se detectó diferencia significativa no fue posible ajustar un modelo lineal o cuadrático.

Nuestro objetivo principal era modelar las variables $\mathbf{a}^* \mathbf{y} \mathbf{b}^*$, pero dado que no se encontró diferencia significativa en el parámetro \mathbf{a}^* , solo fue posible modelar el parámetro \mathbf{b}^* . Consideramos al parámetro \mathbf{b}^* como un buen indicador para la calidad de color en los nopales, ya que éste se mueve de los tonos azules (valores negativos) a los amarillos (valores positivos) en el plano de color, por lo que se creyó adecuado minimizar el valor de \mathbf{b}^* para evitar el amarillamiento de producto, cuidando que el parámetro \mathbf{a}^* esté dentro de una región aceptable.

Para realizar un ajuste cuadrático por mínimos cuadrados necesitábamos agregar más puntos a nuestro diseño experimental, pero dado el tiempo que lleva realizar cada experimento se decidió que nos quedaríamos con el modelo de segundo grado que nos proporciona el programa NCSS.

Aunque pudimos encontrar un mínimo para $\mathbf{b}^* \mathbf{v}$ al día 7 y al día 20,

Cuadro 3.8: Análisis de varianza para las 5 variables de respuesta: *cociente*, **a*v**, **b*v**, **a*d** y **b*d** al día 7 y 20 del experimento de tratamientos con Nitrógeno.

	Re	sponse cociente	leport	
	Е)ía 7	E	Día 20
Source Term	F-Ratio	Of variance neprify arr cociente fa 7 Día 20 Prob Level F-Ratio Prob Level 0.32361 2.21E+00 0.13472 1 0 1 0.215908 1.00E-0.1 0.98257 icsponse a*v i 6 fa 7 Día 20 Prob Level F-Ratio Prob Level 0.865216 0.53 0.59443 1 0 1 0.99734 0.13 0.968812 esponse b*v ia 7 fa 7 Día 20 Prob Level F-Ratio Prob Level F-Ratio Prob Level 0.575639 1 0 1 0.963322 tesponse a*d 1 0 1 fa 7 Día 20 Prob Level F-Ratio Prob Level F-Ratio Prob Level 1 fa 7 Día 20 0.4130* 1 0.99797 0.14 0.963322 0.4130* 0.9977		Prob Level
A: Temperatura	0.47	0.632361	2.21E+00	0.13472
B: Tiempo	0.00E + 00	1	0	1
AB	1.58	0.215908	1.00E-0.1	0.982576
]	Response a*v		
	I	Día 7	D	ía 20
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level
A: temperatura	0.15	0.865216	0.53	0.59443
B: tiempo	0	1	0	1
AB	0.04	0.99734	0.13	0.968812
]	Response b*v		
	I	Día 7	D	ía 20
Source Term	F-Ratio	Prob Level	l F-Ratio Prob Le	
A: temperatura	0.24	0.785004	0.57	0.575639
B: tiempo	0	1	0	1
AB	0	0.999957	0.14	0.963322
]	Response a*d		
	I	Día 7	D	ía 20
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level
A: temperatura	0.85	0.440489	3.72	0.4130^{*}
B: tiempo	0	1	0	1
AB	0.03	0.997713	0.12	0.974537
	1	Response b*d		
	I	Día 7	D	ía 20
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level
A: temperatura	0.66	0.529449	0.38	0.69022
B: tiempo	0	1	0	1
AB	0.02	0.998695	0.34	0.850217
	* Term sig	nificant at alpha	h = 0.05	

nos quedaremos con el punto ($T = 47.7683^{\circ}C, t = 42.2465s$), el valor que encontramos al día 20, ya que nos interesa maximizar en el tiempo. Este punto nos arroja un valor para $\hat{\mathbf{b}^*} = 25.382$.

Para la variable *cociente*, pudimos observar en las tablas de análisis de varianza que no existe diferencia significativa entre tratamientos en los diferentes días de muestreo. Además se intentó modelar para cada uno de los tratamientos, el comportamiento de esta variable en el tiempo, pero tampoco se encontró diferencia significativa.

En conclusión, encontramos que de las atmósferas que se probaron la que mantuvo en mejor estado el nopal fue la atmósfera con CO_2 , y la combinación óptima de temperatura del agua y tiempo de inmersión fue $(T = 47.768^{\circ}C, t = 42.2465s)$.

Cuadro 3.9: Análisis de varianza para las variable de las 5 variables de respuesta *cociente*, $\mathbf{a}^*\mathbf{v}$, $\mathbf{b}^*\mathbf{v}$, $\mathbf{a}^*\mathbf{d}$ y $\mathbf{b}^*\mathbf{d}$ al día 7 y 20 del experimento de tratamientos con CO₂.

	R	esponse <i>cociente</i>	ceport			
	I	Día 7	D	ía 20		
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level		
A: Temperatura	4.20E-01	0.661005	1.81E + 00	0.18772		
B: Tiempo	0	1	0	1		
AB	1.70E-01	0.953077	4.00E-0.2	0.996492		
		Response a*v		·		
	E	Día 7	Di	ía 20		
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level		
A: temperatura	0	0.998114	6.52	0.006276^*		
B: tiempo	0	1	0.00E + 00	1		
AB	0.94	0.462482	2.15	0.110783		
		Response b*v				
	E	Día 7	Di	ía 20		
Source Term	F-Ratio Prob Level		F-Ratio	Prob Level		
A: temperatura	temperatura 8.9 0.001590		6.75	0.005432^*		
B: tiempo	0	1	0.00E + 00	1		
AB	15.38	0.000005*	39	0.00000*		
		Response a*d				
	I	Día 7	D	ía 2 0		
Source Term	F-Ratio	Prob Level	F-Ratio	Prob Level		
A: Temperatura	1.8	0.18945	0.04	0.960617		
B: Tiempo	0	1	0.00E+00	1		
AB	6.45	0.001509*	2.45	0.07814		
		Response b*d				
	I	Día 7	D	ía 20		
Source Term F-Ratio Prob Level F-Ratio Prob						
A: Temperatura	5.18	0.014871*	0.26	0.77569		
B: Tiempo	0	1	0.00E+00	1		
AB	4.84	0.006312*	1.94	0.141626		
	* Term sig	nificant at alpha	a = 0.05			

Cuadro 3.10: Ajustes para la variable $\mathbf{b^*v}$ a los 7 y 20 días de muestreo,

Capítulo 4

Problemática experimental

Cuando se diseña un experimento, es necesario eliminar o controlar cualquier fuente de variación no planificada. Al trabajar con material biológico no es fácil evitar algunas fuentes de variación, ya que aunque la fruta u hortaliza es cosechada el mismo día, no presenta características uniformes, es decir, observamos productos de diferentes tamaños, diferente grado de madurez, diferentes colores, etcétera.

Al trabajar con frutas en estas condiciones, con variaciones muy grandes, lo cual no pudimos controlar, causó que el error fuera mayor que la tendencia, lo que evita que podamos detectar diferencias significativas entre tratamientos.

En el caso del litchi, la fruta no fue cosechada en la misma huerta para todos los experimentos realizados, se trabajó con fruta del estado de Oaxaca y del estado de Puebla. Otra factor que no permitió detectar por completo el efecto entre experimentos es que los días que transcurrieron desde la cosecha hasta el día de la aplicación de los tratamientos no fueron los mismos en todos los experimentos.

Al aplicar tratamientos térmicos, el tamaño de la fruta fue causante de una gran variabilidad en los valores observados. Si sumergimos un fruto pequeño y uno grande a una temperatura alta, el fruto pequeño se calentará mas rápido y por lo tanto resistirá menos que el de mayor tamaño.

Las variables de respuesta en ambos casos, son variables correspondientes a color. A pesar de que se observó diferencia significativa en algunas de estas variables, el que la fruta presente tanta variabilidad en color al llegar al laboratorio hace difícil la comparación en los diferentes días de muestreo.

Otro problema con las variables de color, es que el aparato que se usa para

Figura 4.1: Diferencia en daño, a pesar de que ambos nopales pertenecen al mismo tratamiento y mismo día de muestreo.

medirlo, realiza una medida muy local, y el color de la fruta no es uniforme. Para medir el color en todo el fruto, para el caso del nopal se propuso la variable *cociente*, la cual se medía al escanear el nopal y procesar la imagen en Matlab. Dado que los nopales no presentaron el daño por oxidación que mostraban las imágenes que se proporcionaron al inicio para las pruebas, no obtuvimos los resultados esperados.

Otra fuente de variación, en el caso del nopal es la cantidad de zona desespinada en el fruto, ya que esta zona es la que sufre el mayor daño con el tiempo. Además dependiendo de la profundidad del desespinado observamos diferentes tonalidades, si el desespinado es muy profundo observamos un tono casi blanco, y si este es muy superficial vemos un tomo verde claro.

A pesar de no obtener los resultados esperados creemos que es buena idea seguir trabajando con las imágenes para calificar el grado de daño en el nopal. Una posible solución es capturar las imágenes con otro método, usando filtros adecuados, y perfeccionando métodos de selección del fruto.

Apéndice A

Datos experimentales

A.1. Datos de experimentos con Nopal

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
101 a cara 1	45	40	0.0313	44.927	-18.799	28.920	54.886	-20.477	35.985
101 a cara 2	45	40	0.0474	43.221	-17.446	26.740	50.794	-20.259	36.255
101 b cara 1	45	40	0.0382	42.420	-17.323	26.021	52.855	-20.296	36.048
101 b cara 2	45	40	0.0187	44.267	-18.572	26.782	53.764	-20.297	34.990
101 c cara 1	45	40	0.0143	43.612	-17.870	27.541	51.641	-19.850	36.262
101 c cara 2	45	40	0.02998	43.454	-18.094	25.095	50.576	-20.450	35.944
102 a cara 1	45	50	0.0601	43.977	-18.372	27.575	61.252	-18.477	34.625
102 a cara 2	45	50	0.0372	46.054	-18.626	28.832	57.474	-19.934	35.365
102 b cara 1	45	50	0.0371	41.570	-16.797	24.182	52.678	-19.205	33.694
102 b cara 2	45	50	0.039	40.501	-16.015	22.521	50.761	-20.672	36.363
102 c cara 1	45	50	0.0454	44.948	-17.653	28.164	54.002	-20.658	37.263
102 c cara 2	45	50	0.04376	46.368	-18.088	29.633	52.419	-20.199	37.915
103 a cara 1	50	45	0.036	42.524	-16.555	23.715	57.623	-19.941	36.163
103 a cara 2	50	45	0.0481	46.688	-18.770	30.805	55.497	-20.278	36.913
103 b cara 1	50	45	0.0306	41.340	-18.378	26.597	50.135	-21.383	37.185
103 b cara 2	50	45	0.0307	37.947	-15.755	20.589	42.789	-19.819	31.784
103 c cara 1	50	45	0.0105	42.220	-16.846	25.534	50.546	-21.472	37.744
103 c cara 2	50	45	0.0535	44.907	-17.499	27.907	58.973	-20.324	38.049
104 a cara 1	55	40	0.0504	43.418	-16.845	25.620	51.322	-19.939	35.399
104 a cara 2	55	40	0.054	43.901	-15.858	24.420	58.165	-19.915	36.061
104 b cara 1	55	40	0.1	47.858	-18.239	29.592	58.182	-19.426	36.336
104 b cara 2	55	40	0.0459	49.200	-18.418	29.854	54.142	-18.753	34.457
104 c cara 1	55	40	0.0553	46.875	-17.591	26.399	61.195	-19.398	34.639
104 c cara 2	55	40	0.0637	44.845	-16.848	25.993	56.856	-19.675	34.502
105 a cara 1	55	50	0.0393	45.475	-17.583	28.537	56.578	-20.418	37.975
105 a cara 2	55	50	0.0254	45.667	-18.320	27.396	56.649	-19.482	35.040
105 b cara 1	55	50	0.0422	42.981	-17.623	25.581	58.486	-18.780	33.564
105 b cara 2	55	50	0.0245	41.216	-17.575	24.282	55.307	-20.743	38.203
105 c cara 1	55	50	0.0231	41.412	-16.181	22.070	49.075	-18.913	32.533
105 c cara 2	55	50	0.081	44.978	-15.243	22.609	51.487	-18.858	34.825

Cuadro A.1: Datos al día 7 para tratamientos con Aire.

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
101 a cara 1	45	40	0.055	42.034	-16.319	23.452	52.328	-20.170	35.537
101 a cara 2	45	40	0.059	44.329	-18.379	27.052	56.993	-20.298	37.576
101 b cara 1	45	40	0.055	44.813	-16.547	25.194	58.988	-18.118	33.658
101 b cara 2	45	40	0.063	44.509	-17.820	27.491	61.078	-17.944	32.254
101 c cara 1	45	40	0.077	40.467	-15.622	20.851	45.651	-20.102	35.223
101 c cara 2	45	40	0.079	45.563	-18.105	27.246	55.187	-17.813	35.629
102 a cara 1	45	50	0.064	41.072	-16.268	22.730	51.658	-20.265	36.062
102 a cara 2	45	50	0.078	40.936	-15.996	23.141	50.655	-19.030	35.544
102 b cara 1	45	50	0.040	45.802	-18.022	28.889	60.196	-18.540	34.888
102 b cara 2	45	50	0.067	43.631	-17.055	25.278	55.511	-19.263	36.105
102 c cara 1	45	50	0.063	41.127	-15.572	21.451	53.651	-19.841	35.998
102 c cara 2	45	50	0.051	45.833	-17.015	26.930	58.804	-19.010	35.803
103 a cara 1	50	45	0.052	43.761	-17.454	25.277	58.882	-19.594	34.981
103 a cara 2	50	45	0.056	45.538	-17.315	26.183	54.610	-20.636	36.965
103 b cara 1	50	45	0.056	46.078	-17.765	27.286	56.193	-18.620	35.338
103 b cara 2	50	45	0.055	45.469	-17.721	27.005	52.518	-20.654	37.373
103 c cara 1	50	45	0.049	42.004	-17.069	24.977	48.641	-19.259	32.541
103 c cara 2	50	45	0.071	47.637	-18.288	30.831	56.140	-20.527	37.813
104 a cara 1	55	40	0.080	46.081	-17.071	26.399	50.156	-19.879	35.745
104 a cara 2	55	40	0.077	44.568	-16.853	27.631	56.360	-19.940	37.643
104 b cara 1	55	40	0.025	41.904	-17.683	23.886	57.698	-17.019	35.108
104 b cara 2	55	40	0.051	44.707	-18.794	27.817	54.506	-18.224	33.873
104 c cara 1	55	40	0.068	45.746	-16.883	25.565	52.913	-19.667	36.587
104 c cara 2	55	40	0.080	44.352	-16.342	25.625	55.041	-18.021	34.579
105 a cara 1	55	50	0.039	42.486	-17.466	25.434	55.803	-19.521	34.664
105 a cara 2	55	50	0.097	42.353	-15.284	21.489	55.787	-17.416	30.392
105 b cara 1	55	50	0.061	45.885	-15.722	23.273	57.547	-20.058	35.793
105 b cara 2	55	50	0.047	44.606	-17.272	27.568	55.148	-19.306	34.089
105 c cara 1	55	50	0.060	40.980	-15.664	22.167	54.345	-17.822	32.950
105 c cara 2	55	50	0.070	46.449	-15.716	23.058	51.453	-20.230	35.507

Cuadro A.2: Datos al día 11 para tratamientos con Aire.

Cuadro A.3: Datos al día 16 para tratamientos con Aire.

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
101 a cara 1	45	40	0.085	46.676	-17.309	27.542	53.180	-18.830	35.590
101 a cara 2	45	40	0.077	40.648	-14.801	19.871	49.841	-18.906	34.488
101 b cara 1	45	40	0.064	46.850	-15.871	27.065	57.291	-18.796	35.981
101 b cara 2	45	40	0.062	46.143	-17.160	27.332	53.366	-18.391	32.212
101 c cara 1	45	40	0.070	40.896	-14.790	19.745	51.494	-19.819	35.463
101 c cara 2	45	40	0.082	44.827	-17.149	26.749	54.396	-19.264	35.727
102 a cara 1	45	50	0.062	44.830	-16.980	25.615	53.057	-19.174	34.254
102 a cara 2	45	50	0.094	40.509	-15.639	21.016	52.912	-18.503	34.927
102 b cara 1	45	50	0.107	44.064	-15.849	24.086	55.169	-19.395	38.736
102 b cara 2	45	50	0.065	46.570	-17.663	29.602	49.059	-19.206	36.574
102 c cara 1	45	50	0.071	42.388	-14.977	19.735	48.851	-19.617	35.483
102 c cara 2	45	50	0.074	44.140	-15.860	24.416	51.333	-19.199	36.566
103 a cara 1	50	45	0.073	45.218	-16.936	26.273	49.336	-19.158	33.585
103 a cara 2	50	45	0.093	48.432	-15.521	26.109	52.606	-19.010	37.739
103 b cara 1	50	45	0.095	44.222	-18.198	28.005	51.491	-18.427	35.664
103 b cara 2	50	45	0.091	39.790	-16.377	23.215	54.762	-17.685	34.776
103 c cara 1	50	45	0.055	47.335	-14.553	23.422	54.577	-18.581	34.039
103 c cara 2	50	45	0.064	43.811	-17.541	26.153	54.888	-17.571	33.949
104 a cara 1	55	40	0.064	41.266	-15.096	23.321	45.673	-17.392	32.121
104 a cara 2	55	40	0.091	46.321	-16.796	26.636	57.121	-19.572	38.088
104 b cara 1	55	40	0.038	46.108	-14.132	23.406	56.096	-18.560	32.933
104 b cara 2	55	40	0.097	44.450	-17.049	23.562	48.232	-18.191	30.730
104 c cara 1	55	40	0.084	45.565	-16.950	27.174	56.537	-20.137	38.090
104 c cara 2	55	40	0.071	42.038	-15.298	22.659	51.256	-16.597	31.672
105 a cara 1	55	50	0.091	43.208	-14.156	22.153	49.544	-18.750	35.803
105 a cara 2	55	50	0.086	47.722	-15.350	23.943	45.434	-16.065	25.303
105 b cara 1	55	50	0.175	44.282	-13.560	24.369	51.389	-12.933	35.992
105 b cara 2	55	50	0.063	44.857	-18.526	27.661	53.986	-13.855	34.087
105 c cara 1	55	50	0.073	42.531	-14.743	20.217	50.637	-20.362	35.563
105 c cara 2	55	50	0.068	46 387	-17023	$24 \ 473$	56.739	-18 799	35597

	Temperatura	Tiempo	Cociente	$L^* v$	a* v	b* v	L* d	a* d	b* d
101 a cara 1	45	40	0.130	44.964	-16.417	25.286	52.021	-16.541	35.472
101 a cara 2	45	40	0.093	45.106	-17.769	27.331	52.524	-17.800	35.323
101 b cara 1	45	40	0.122	42.643	-15.708	22.934	44.325	-17.072	29.003
101 b cara 2	45	40	0.085	43.881	-15.097	22.021	50.624	-19.468	37.200
101 c cara 1	45	40	0.080	44.895	-16.854	25.683	53.920	-20.659	38.630
101 c cara 2	45	40	0.078	42.646	-14.704	20.584	49.269	-18.151	35.439
102 a cara 1	45	50	0.086	40.522	-13.891	20.575	50.456	-19.338	35.127
102 a cara 2	45	50	0.102	47.241	-15.587	25.604	50.558	-17.910	35.201
102 b cara 1	45	50	0.078	45.098	-16.508	24.155	49.315	-18.982	33.591
102 b cara 2	45	50	0.117	45.595	-16.283	24.944	52.925	-18.719	37.333
102 c cara 1	45	50	0.089	45.040	-16.643	27.977	55.357	-16.750	35.459
102 c cara 2	45	50	0.067	45.004	-16.878	25.730	53.968	-19.453	37.024
103 a cara 1	50	45	0.080	45.734	-16.768	27.052	52.843	-19.339	36.281
103 a cara 2	50	45	0.102	47.237	-17.078	27.173	60.351	-13.143	34.660
103 b cara 1	50	45	0.068	46.748	-16.301	26.852	53.854	-18.676	36.266
103 b cara 2	50	45	0.094	46.407	-16.380	27.074	55.698	-16.597	36.176
103 c cara 1	50	45	0.054	45.128	-16.648	27.186	52.722	-14.034	35.681
103 c cara 2	50	45	0.080	47.186	-15.107	27.109	58.721	-17.794	37.993
104 a cara 1	55	40	0.112	43.107	-15.063	21.169	48.607	-18.226	36.396
104 a cara 2	55	40	0.090	50.108	-19.250	34.112	56.801	-19.279	36.386
104 b cara 1	55	40	0.059	45.697	-17.597	27.405	53.855	-17.694	34.133
104 b cara 2	55	40	0.087	49.492	-18.035	33.087	54.689	-18.850	38.693
104 c cara 1	55	40	0.062	45.405	-17.178	27.540	52.839	-18.824	33.411
104 c cara 2	55	40	0.076	47.720	-17.629	29.975	58.058	-17.279	38.561
105 a cara 1	55	50	0.087	44.062	-16.494	24.616	51.000	-16.082	33.066
105 a cara 2	55	50	0.135	46.726	-12.945	22.512	51.786	-18.592	36.394
105 b cara 1	55	50	0.063	44.131	-15.998	22.389	54.510	-18.753	33.704
105 b cara 2	55	50	0.069	45.687	-16.724	24.567	55.032	-18.805	36.012
105 c cara 1	55	50	0.075	44.682	-13.565	19.463	61.508	-17.577	30.970
105 c cara 2	55	50	0.110	46.630	-15.633	25.280	52.242	-19.777	38.308

Cuadro A.4: Datos al día 20 para tratamientos con Aire.

Cuadro A.5: Datos al día 7 para tratamientos con Nitrógeno.

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
201 a cara 1	45	40	0.046	41.679	-16.929	23.219	47.897	-20.631	35.329
201 a cara 2	45	40	0.050	47.240	-17.615	30.740	52.911	-19.775	37.127
201 b cara 1	45	40	0.050	40.462	-16.075	23.225	48.241	-19.957	35.042
201 b cara 2	45	40	0.029	42.577	-16.268	24.275	48.752	-19.663	34.051
201 c cara 1	45	40	0.061	42.086	-16.886	25.804	45.377	-16.218	32.297
201 c cara 2	45	40	0.031	44.246	-18.050	26.736	52.308	-20.185	36.205
202 a cara 1	45	50	0.034	42.390	-16.105	22.370	48.602	-21.528	37.886
202 a cara 2	45	50	0.027	45.124	-17.278	25.727	45.364	-19.108	30.950
202 b cara 1	45	50	0.031	43.048	-16.280	26.171	54.579	-19.046	35.633
202 b cara 2	45	50	0.019	42.958	-17.422	27.215	48.269	-19.267	32.037
202 c cara 1	45	50	0.021	47.100	-17.418	27.485	47.846	-14.958	32.579
202 c cara 2	45	50	0.024	42.147	-16.521	24.077	52.743	-18.624	34.165
203 a cara 1	50	45	0.030	46.057	-16.945	26.788	54.375	-20.825	37.805
203 a cara 2	50	45	0.050	44.512	-17.774	26.259	49.932	-20.277	35.520
203 b cara 1	50	45	0.019	41.833	-16.426	23.843	51.862	-19.560	36.469
203 b cara 2	50	45	0.036	39.843	-15.531	21.699	48.560	-20.113	33.707
203 c cara 1	50	45	0.030	39.937	-16.194	23.504	47.756	-20.409	35.019
203 c cara 2	50	45	0.054	46.942	-18.958	30.685	50.499	-20.292	36.105
204 a cara 1	55	40	0.044	42.942	-15.228	21.772	53.171	-18.781	32.527
204 a cara 2	55	40	0.024	46.026	-17.969	27.266	53.402	-21.400	38.276
204 b cara 1	55	40	0.033	48.204	-18.869	31.666	52.323	-21.462	39.873
204 b cara 2	55	40	0.027	41.965	-16.948	24.617	47.908	-20.046	33.564
204 c cara 1	55	40	0.019	46.244	-17.990	27.963	53.893	-20.879	38.019
204 c cara 2	55	40	0.028	45.076	-17.401	26.657	52.140	-20.513	36.452
205 a cara 1	55	50	0.033	44.678	-17.655	28.428	52.283	-19.960	35.887
205 a cara 2	55	50	0.038	41.589	-17.141	26.040	49.909	-21.823	40.026
205 b cara 1	55	50	0.020	46.502	-18.325	30.719	53.448	-20.279	36.111
205 b cara 2	55	50	0.044	42.896	-15.888	24.165	55.405	-20.234	36.423
205 c cara 1	55	50	0.045	39.463	-15.902	21.544	45.427	-20.003	33.355
205 c cara 2	55	50	0.024	45 551	-16 682	25 995	53 070	-19 477	33 803

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
201 a cara 1	45	40	0.046	40.860	-16.205	23.839	51.464	-20.642	37.082
201 a cara 2	45	40	0.047	43.744	-16.750	24.779	47.533	-19.775	35.493
201 b cara 1	45	40	0.039	44.898	-17.387	26.638	53.969	-21.394	39.148
201 b cara 2	45	40	0.053	50.993	-19.964	37.301	52.492	-19.770	37.898
201 c cara 1	45	40	0.035	44.846	-17.034	27.096	51.301	-20.771	37.828
201 c cara 2	45	40	0.055	46.821	-17.669	27.640	51.352	-20.470	37.490
202 a cara 1	45	50	0.063	42.580	-18.476	28.204	49.441	-17.995	35.757
202 a cara 2	45	50	0.057	45.344	-18.831	30.273	50.300	-16.820	37.758
202 b cara 1	45	50	0.061	42.756	-17.171	26.168	55.761	-18.499	36.618
202 b cara 2	45	50	0.053	44.494	-17.001	25.537	48.485	-20.130	35.665
202 c cara 1	45	50	0.061	39.613	-14.322	19.659	47.890	-19.543	33.345
202 c cara 2	45	50	0.039	44.471	-18.569	30.498	50.375	-18.597	35.828
203 a cara 1	50	45	0.048	38.549	-17.461	24.107	45.524	-18.434	34.650
203 a cara 2	50	45	0.050	46.210	-19.030	30.510	54.967	-19.149	37.782
203 b cara 1	50	45	0.049	43.176	-15.846	23.468	48.687	-20.091	35.624
203 b cara 2	50	45	0.055	43.240	-16.194	23.839	59.507	-20.619	38.835
203 c cara 1	50	45	0.043	40.885	-15.538	23.293	51.119	-18.898	35.205
203 c cara 2	50	45	0.069	50.913	-20.137	39.120	51.961	-19.438	36.419
204 a cara 1	55	40	0.029	39.924	-15.791	23.192	52.666	-20.449	37.269
204 a cara 2	55	40	0.025	46.057	-18.015	28.237	52.775	-20.968	37.373
204 b cara 1	55	40	0.037	42.065	-18.129	26.415	48.476	-18.359	35.258
204 b cara 2	55	40	0.037	44.363	-18.912	29.796	51.102	-18.496	36.232
204 c cara 1	55	40	0.047	42.953	-16.844	25.019	50.418	-20.646	36.169
204 c cara 2	55	40	0.034	43.476	-16.178	23.145	52.371	-21.949	40.320
205 a cara 1	55	50	0.054	42.330	-16.055	25.397	52.335	-20.600	37.799
205 a cara 2	55	50	0.054	43.237	-16.365	25.119	49.569	-20.466	36.596
205 b cara 1	55	50	0.017	43.897	-17.273	27.809	57.632	-20.596	37.679
205 b cara 2	55	50	0.035	41.438	-16.118	24.326	45.870	-20.460	34.332
205 c cara 1	55	50	0.047	47.013	-17.209	27.066	49.788	-20.470	36.203
205 c cara 2	55	50	0.033	43.165	-17.725	26.993	51.351	-19.980	35.052

Cuadro A.6: Datos al día 11 para tratamientos con Nitrógeno.

Cuadro A.7: Datos al día 16 para tratamientos con Nitrógeno.

	Temperatura	Tiempo	Cociente	L* v	a* v	b*v	L* d	a* d	b* d
201 a cara 1	45	40	0.052	43.768	-15.470	20.675	48.828	-19.890	36.118
201 a cara 2	45	40	0.101	41.034	-15.563	22.011	49.752	-20.694	36.722
201 b cara 1	45	40	0.069	43.448	-16.471	24.543	47.801	-17.624	31.919
201 b cara 2	45	40	0.051	45.337	-16.486	25.569	51.510	-20.051	36.647
201 c cara 1	45	40	0.070	41.457	-15.527	22.220	49.473	-19.565	35.352
201 c cara 2	45	40	0.080	43.463	-15.601	22.040	49.290	-19.970	36.382
202 a cara 1	45	50	0.101	43.190	-14.910	21.922	50.469	-19.863	37.204
202 a cara 2	45	50	0.058	45.190	-15.212	22.821	54.968	-19.215	34.175
202 b cara 1	45	50	0.020	40.714	-14.334	22.319	49.110	-17.209	34.618
202 b cara 2	45	50	0.082	42.754	-16.364	23.405	55.612	-18.740	34.526
202 c cara 1	45	50	0.063	40.285	-17.581	25.514	57.888	-17.178	35.549
202 c cara 2	45	50	0.139	41.457	-16.364	23.244	47.891	-14.126	32.227
203 a cara 1	50	45	0.063	41.191	-15.526	23.400	54.933	-19.879	36.464
203 a cara 2	50	45	0.062	45.646	-17.128	25.613	50.060	-17.892	35.309
203 b cara 1	50	45	0.055	43.695	-15.893	24.073	51.544	-17.558	29.495
203 b cara 2	50	45	0.071	43.467	-15.233	23.239	56.251	-18.255	37.756
203 c cara 1	50	45	0.080	45.162	-17.268	29.201	53.197	-18.396	34.756
203 c cara 2	50	45	0.058	43.638	-16.118	24.956	53.239	-18.073	35.886
204 a cara 1	55	40	0.073	45.843	-18.317	28.915	54.180	-16.363	38.805
204 a cara 2	55	40	0.064	38.445	-15.198	20.861	45.994	-13.086	33.528
204 b cara 1	55	40	0.035	48.386	-18.346	30.392	52.345	-20.118	36.141
204 b cara 2	55	40	0.038	42.868	-16.673	23.314	51.881	-19.425	36.453
204 c cara 1	55	40	0.033	40.459	-17.643	24.976	50.174	-17.564	30.845
204 c cara 2	55	40	0.043	47.540	-19.309	32.147	52.964	-16.139	37.350
205 a cara 1	55	50	0.059	42.618	-15.771	22.885	49.442	-19.888	36.374
205 a cara 2	55	50	0.036	41.400	-14.463	21.474	49.567	-20.361	36.597
205 b cara 1	55	50	0.027	43.267	-15.850	24.426	50.187	-19.276	33.903
205 b cara 2	55	50	0.062	44.447	-15.030	22.637	47.328	-18.796	33.982
205 c cara 1	55	50	0.038	46.564	-16.807	26.222	52.652	-19.960	36.267
205 c cara 2	55	50	0.053	40.889	-15.490	21.385	47.576	-18.584	30.759

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
201 a cara 1	45	40	0.060	43.199	-15.929	24.576	48.975	-17.950	34.421
201 a cara 2	45	40	0.081	43.370	-15.615	26.178	46.421	-17.904	33.897
201 b cara 1	45	40	0.100	39.362	-14.640	20.026	49.090	-16.158	35.744
201 b cara 2	45	40	0.094	40.790	-13.673	21.149	43.221	-15.588	27.882
201 c cara 1	45	40	0.067	46.964	-16.627	27.377	52.879	-17.127	34.760
201 c cara 2	45	40	0.089	47.295	-16.409	27.068	46.521	-17.717	33.457
202 a cara 1	45	50	0.104	41.241	-15.263	21.862	57.509	-18.777	36.221
202 a cara 2	45	50	0.068	46.738	-17.276	28.908	52.104	-19.846	38.274
202 b cara 1	45	50	0.089	46.281	-18.385	29.812	52.873	-16.360	37.520
202 b cara 2	45	50	0.072	45.785	-17.697	28.547	47.847	-15.652	32.753
202 c cara 1	45	50	0.074	44.623	-16.043	24.355	49.814	-17.001	33.261
202 c cara 2	45	50	0.067	43.723	-15.584	23.471	55.710	-17.746	36.118
203 a cara 1	50	45	0.067	46.722	-16.218	26.730	56.409	-17.231	35.737
203 a cara 2	50	45	0.080	48.246	-16.775	28.326	53.130	-16.463	37.820
203 b cara 1	50	45	0.045	41.530	-15.126	22.599	46.334	-18.335	33.917
203 b cara 2	50	45	0.044	45.761	-17.806	28.445	53.726	-19.004	37.833
203 c cara 1	50	45	0.080	43.826	-18.732	29.476	54.866	-16.350	36.726
203 c cara 2	50	45	0.071	43.422	-18.333	27.611	50.549	-17.366	33.931
204 a cara 1	55	40	0.062	41.249	-15.304	22.240	54.351	-20.305	37.910
204 a cara 2	55	40	0.038	44.488	-16.301	25.507	50.077	-19.308	33.708
204 b cara 1	55	40	0.075	46.736	-16.890	27.177	53.297	-20.293	40.497
204 b cara 2	55	40	0.087	48.735	-16.603	29.403	56.878	-17.112	38.838
204 c cara 1	55	40	0.075	43.589	-14.983	21.592	52.239	-19.694	36.142
204 c cara 2	55	40	0.048	42.007	-15.215	24.222	48.601	-17.730	31.780
205 a cara 1	55	50	0.057	39.299	-14.262	19.860	57.202	-18.904	35.496
205 a cara 2	55	50	0.051	46.035	-16.488	26.486	51.289	-19.953	36.892
205 b cara 1	55	50	0.033	44.599	-17.257	26.039	54.903	-20.220	39.605
205 b cara 2	55	50	0.068	43.128	-16.795	25.456	52.726	-16.452	37.535
205 c cara 1	55	50	0.063	44.596	-15.954	24.591	46.942	-17.370	30.455
205 c cara 2	55	50	0.044	45.510	-17.386	26.493	51.019	-19.649	36.200

Cuadro A.8: Datos al día 20 para tratamientos con Nitrógeno.

Cuadro A.9: Datos al día 7 para tratamientos con CO_2 .

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
301 a cara 1	45	40	0.005	41.257	-17.381	25.010	54.005	-18.806	32.576
301 a cara 2	45	40	0.005	40.870	-17.581	24.132	54.750	-18.998	34.489
301 b cara 1	45	40	0.031	42.919	-17.405	24.193	51.204	-19.211	34.012
301 b cara 2	45	40	0.000	46.017	-18.696	28.858	54.781	-20.062	37.302
301 c cara 1	45	40	0.010	42.148	-17.873	25.892	47.435	-18.818	31.154
301 c cara 2	45	40	0.010	43.602	-19.105	28.773	54.775	-19.663	35.453
302 a cara 1	45	50	0.010	51.449	-18.266	31.122	45.504	-17.839	27.915
302 a cara 2	45	50	0.012	48.053	-18.392	30.169	46.846	-17.129	28.711
302 b cara 1	45	50	0.011	53.467	-19.145	36.175	45.446	-17.419	27.743
302 b cara 2	45	50	0.039	47.260	-18.597	31.522	41.141	-16.124	24.477
302 c cara 1	45	50	0.014	44.173	-17.906	28.560	45.063	-17.210	26.760
302 c cara 2	45	50	0.039	46.648	-18.680	32.035	48.390	-17.818	29.162
303 a cara 1	50	45	0.024	43.024	-15.848	21.339	53.451	-19.009	36.430
303 a cara 2	50	45	0.033	42.694	-17.092	23.880	50.235	-18.873	34.381
303 b cara 1	50	45	0.026	43.846	-17.857	25.491	56.402	-17.974	33.668
303 b cara 2	50	45	0.028	43.649	-17.793	25.141	49.365	-16.748	34.002
303 c cara 1	50	45	0.010	42.423	-16.439	21.751	55.797	-18.177	35.113
303 c cara 2	50	45	0.042	40.816	-16.105	21.671	54.695	-17.813	32.122
304 a cara 1	55	40	0.000	51.951	-18.419	34.505	51.951	-18.419	34.505
304 a cara 2	55	40	0.030	51.334	-16.229	32.863	51.334	-16.229	32.863
304 b cara 1	55	40	0.018	54.373	-18.577	35.412	54.373	-18.577	35.412
304 b cara 2	55	40	0.029	53.765	-17.901	36.405	53.765	-17.901	36.405
304 c cara 1	55	40	0.031	48.535	-18.574	33.360	48.535	-18.574	33.360
304 c cara 2	55	40	0.042	51.865	-18.692	36.312	51.865	-18.692	36.312
305 a cara 1	55	50	0.030	45.475	-17.583	28.537	56.578	-20.418	37.975
305 a cara 2	55	50	0.017	45.667	-18.320	27.396	56.649	-19.482	35.040
305 b cara 1	55	50	0.036	42.981	-17.623	25.581	58.486	-18.780	33.564
305 b cara 2	55	50	0.037	41.216	-17.575	24.282	55.307	-20.743	38.203
305 c cara 1	55	50	0.020	41.412	-16.181	22.070	49.075	-18.913	32.533
305 c cara 2	55	50	0.022	44.978	-15.243	22.609	51.487	-18.858	34.825

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
301 a cara 1	45	40	0.041	42.773	-17.591	25.385	51.858	-19.982	35.578
301 a cara 2	45	40	0.010	44.162	-18.292	27.531	47.783	-19.473	31.361
301 b cara 1	45	40	0.048	44.491	-17.166	25.589	51.593	-19.698	35.677
301 b cara 2	45	40	0.040	43.194	-18.102	27.437	55.358	-20.268	36.106
301 c cara 1	45	40	0.045	45.977	-19.076	29.413	56.281	-20.067	36.794
301 c cara 2	45	40	0.037	40.369	-15.940	22.821	54.173	-18.957	32.617
302 a cara 1	45	50	0.053	49.364	-17.483	31.616	45.177	-18.041	27.001
302 a cara 2	45	50	0.056	48.984	-18.056	28.199	46.914	-18.785	29.520
302 b cara 1	45	50	0.033	54.853	-17.773	31.199	51.210	-16.917	28.417
302 b cara 2	45	50	0.053	49.534	-17.729	30.333	45.753	-16.962	28.828
302 c cara 1	45	50	0.044	47.232	-18.103	31.415	43.826	-17.520	26.275
302 c cara 2	45	50	0.023	50.895	-18.391	31.812	45.538	-18.005	29.347
303 a cara 1	50	45	0.026	42.110	-17.331	24.740	51.387	-16.943	34.474
303 a cara 2	50	45	0.028	41.980	-17.209	24.505	45.440	-16.551	32.389
303 b cara 1	50	45	0.011	43.666	-17.320	24.706	54.833	-19.929	37.361
303 b cara 2	50	45	0.029	41.875	-14.983	22.521	49.194	-17.703	34.878
303 c cara 1	50	45	0.037	39.972	-16.025	22.455	49.402	-15.108	34.360
303 c cara 2	50	45	0.033	41.692	-16.162	22.451	48.282	-17.419	32.196
304 a cara 1	55	40	0.035	53.747	-16.570	35.098	53.747	-16.570	35.098
304 a cara 2	55	40	0.045	48.209	-17.675	32.507	48.209	-17.675	32.507
304 b cara 1	55	40	0.045	50.387	-18.804	35.110	50.387	-18.804	35.110
304 b cara 2	55	40	0.036	48.005	-16.974	34.704	48.005	-16.974	34.704
304 c cara 1	55	40	0.032	50.177	-15.607	31.530	50.177	-15.607	31.530
304 c cara 2	55	40	0.039	49.048	-14.119	36.670	49.048	-14.119	36.670
305 a cara 1	55	50	0.052	42.486	-17.466	25.434	55.803	-19.521	34.664
305 a cara 2	55	50	0.026	42.353	-15.284	21.489	55.787	-17.416	30.392
305 b cara 1	55	50	0.042	45.885	-15.722	23.273	57.547	-20.058	35.793
305 b cara 2	55	50	0.033	44.606	-17.272	27.568	54.345	-17.822	32.950
305 c cara 1	55	50	0.063	40.980	-15.664	22.167	51.453	-20.230	35.507
305 c cara 2	55	50	0.022	46.449	-15.716	23.058	54.987	-19.009	33.861

Cuadro A.10: Datos al día 11 para tratamientos con $\rm CO_2.$

Cuadro A.11: Datos al día 16 para tratamientos con $\rm CO_2.$

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
301 a cara 1	45	40	0.081	40.759	-15.919	22.630	52.767	-19.825	33.678
301 a cara 2	45	40	0.054	44.114	-16.908	25.831	46.697	-17.301	28.078
301 b cara 1	45	40	0.045	40.840	-17.022	22.327	52.763	-20.413	36.413
301 b cara 2	45	40	0.050	44.025	-17.385	25.065	57.725	-20.533	38.374
301 c cara 1	45	40	0.069	42.814	-17.907	25.719	54.378	-19.484	35.086
301 c cara 2	45	40	0.065	46.645	-18.230	29.685	54.537	-19.404	36.608
302 a cara 1	45	50	0.062	49.236	-18.674	31.894	50.874	-17.662	29.684
302 a cara 2	45	50	0.076	51.855	-18.946	32.466	43.422	-17.519	26.899
302 b cara 1	45	50	0.070	50.175	-18.616	33.484	45.016	-17.458	26.108
302 b cara 2	45	50	0.132	52.084	-17.401	33.189	45.488	-18.861	30.173
302 c cara 1	45	50	0.083	48.552	-17.740	30.745	46.520	-17.068	27.762
302 c cara 2	45	50	0.067	48.733	-18.692	30.881	43.348	-15.313	25.275
303 a cara 1	50	45	0.038	43.134	-17.983	26.789	51.069	-17.262	33.160
303 a cara 2	50	45	0.046	39.897	-16.596	22.666	50.852	-15.153	32.556
303 b cara 1	50	45	0.028	40.909	-16.969	23.324	52.101	-18.272	35.498
303 b cara 2	50	45	0.061	43.277	-17.201	25.338	48.645	-15.167	34.980
303 c cara 1	50	45	0.077	39.953	-14.853	21.357	47.548	-16.235	34.915
303 c cara 2	50	45	0.061	41.214	-14.712	21.186	49.671	-16.284	37.099
304 a cara 1	55	40	0.084	56.769	-19.571	38.377	56.769	-19.571	38.377
304 a cara 2	55	40	0.081	51.784	-18.085	36.589	51.784	-18.085	36.589
304 b cara 1	55	40	0.049	47.612	-13.805	32.250	47.612	-13.805	32.250
304 b cara 2	55	40	0.049	49.201	-14.369	33.651	49.201	-14.369	33.651
304 c cara 1	55	40	0.064	50.434	-14.030	38.183	50.434	-14.030	38.183
304 c cara 2	55	40	0.056	51.911	-15.415	35.336	51.911	-15.415	35.336
305 a cara 1	55	50	0.050	43.208	-14.156	22.153	49.544	-18.750	35.803
305 a cara 2	55	50	0.074	47.722	-15.350	23.943	45.434	-16.065	25.303
305 b cara 1	55	50	0.040	44.282	-13.560	24.369	51.389	-12.933	35.992
305 b cara 2	55	50	0.049	44.857	-18.526	27.661	53.986	-13.855	34.087
305 c cara 1	55	50	0.054	42.531	-14.743	20.217	50.637	-20.362	35.563
305 c cara 2	55	50	0.031	46 387	-17 023	24 473	56739	-18 799	35597

Cuadro A.12: Datos al día 20 para tratamientos con $\rm CO_2.$

	Temperatura	Tiempo	Cociente	L* v	a* v	b* v	L* d	a* d	b* d
301 a cara 1	45	40	0.048	42.968	-16.850	24.014	52.943	-19.712	36.514
301 a cara 2	45	40	0.086	43.032	-16.125	22.321	50.328	-18.911	33.002
301 b cara 1	45	40	0.066	44.337	-17.530	25.715	56.408	-19.830	34.685
301 b cara 2	45	40	0.001	44.031	-16.567	23.760	50.683	-18.688	33.475
301 c cara 1	45	40	0.043	42.325	-16.979	24.162	56.254	-18.293	32.679
301 c cara 2	45	40	0.084	41.373	-16.544	23.007	52.069	-20.597	37.264
302 a cara 1	45	50	0.042	53.420	-18.329	32.823	46.054	-18.787	30.180
302 a cara 2	45	50	0.050	49.494	-19.255	32.779	42.784	-17.467	26.953
302 b cara 1	45	50	0.053	43.929	-19.302	32.528	45.567	-16.988	33.880
302 b cara 2	45	50	0.043	55.881	-17.494	30.851	46.873	-17.456	28.434
302 c cara 1	45	50	0.056	49.637	-18.507	32.276	46.985	-15.790	31.294
302 c cara 2	45	50	0.064	45.207	-17.188	28.713	45.231	-18.789	30.313
303 a cara 1	50	45	0.068	43.563	-16.556	23.405	53.510	-16.382	37.421
303 a cara 2	50	45	0.039	44.054	-17.928	25.731	52.861	-13.475	34.336
303 b cara 1	50	45	0.073	44.304	-17.205	24.571	52.742	-17.805	34.762
303 b cara 2	50	45	0.068	41.900	-16.767	22.515	53.565	-19.205	35.326
303 c cara 1	50	45	0.049	42.275	-16.828	23.216	54.450	-15.886	33.898
303 c cara 2	50	45	0.072	44.514	-17.848	25.326	51.843	-16.163	34.682
304 a cara 1	55	40	0.066	50.962	-18.493	34.760	50.962	-18.493	34.760
304 a cara 2	55	40	0.077	52.604	-15.643	33.142	52.604	-15.643	33.142
304 b cara 1	55	40	0.071	48.744	-15.710	34.353	48.744	-15.710	34.353
304 b cara 2	55	40	0.070	52.159	-16.759	34.114	52.159	-16.759	34.114
304 c cara 1	55	40	0.075	56.137	-16.421	36.779	56.137	-16.421	36.779
304 c cara 2	55	40	0.071	50.425	-15.025	30.810	50.425	-15.025	30.810
305 a cara 1	55	50	0.058	44.062	-16.494	24.616	51.000	-16.082	33.066
305 a cara 2	55	50	0.113	46.726	-12.945	22.512	51.786	-18.592	36.394
305 b cara 1	55	50	0.058	44.131	-15.998	22.389	54.510	-18.753	33.704
305 b cara 2	55	50	0.063	45.687	-16.724	24.567	55.032	-18.805	36.012
305 c cara 1	55	50	0.053	44.682	-13.565	19.463	61.508	-17.577	30.970
305 c cara 2	55	50	0.109	46.630	-15.633	25.280	52.242	-19.777	38.308

A.2. Datos de experimentos con Litchi

Temperatura	Acido	Secuencia	а	b	perdida	cociente SST/AM
66	1	1	27.849	18.031	4.8	43.251
66	1	1	30.950	21.108	4.6	39.040
66	1	1	25.233	15.714	5.6	35.715
68	1	1	27.611	18.126	4.9	40.055
68	1	1	28.198	17.751	6.7	47.228
68	1	1	26.980	17.528	4.9	36.871
70	1	1	21.310	14.664	4.5	33.829
70	1	1	22.529	16.057	4.5	31.485
70	1	1	19.453	13.698	5.5	38.528
72	1	1	18 724	14 193	5.2	31 862
72	1	1	17 525	13 293	3.9	41 233
72	1	1	19 294	14 271	5	39 203
74	1	1	19.661	13 237	6	45 223
74	1	1	17 413	11 755	4.4	52 773
74	1	1	10.844	13 580	55	38 696
66	1	2	19.044	16.051	5.5	46 224
66	1	2	21.752	15 404	6.9	40.234
66	1	2	20.037	16 201	0.2	48 242
00	1	2	23.174	14.040	1.0	48.342
68	1	2	17.334	14.048	6.9	41.480
68	1	2	20.398	14.919	7.2	38.293
68	1	2	18.031	12.514	7.1	34.302
70	1	2	18.167	14.494	7	45.704
70	1	2	15.721	12.135	7.3	62.250
70	1	2	16.770	13.586	7	51.923
72	1	2	18.751	10.748	6.5	46.731
72	1	2	20.499	11.584	7	35.874
72	1	2	21.554	13.396	6.1	41.579
74	1	2	18.181	11.416	7.9	41.579
74	1	2	20.423	11.842	6.6	42.412
74	1	2	22.184	11.386	7.4	43.299
66	2	1	26.667	15.608	7.9	64.402
66	2	1	23.143	14.827	6.7	52.773
66	2	1	25.987	15.778	6.4	48.471
68	2	1	26.806	15.397	6.9	40.356
68	2	1	24.730	16.616	7.2	30.801
68	2	1	26.130	12.805	6.9	44.742
70	2	1	19.382	14.200	7	35.648
70	2	1	17.960	12.732	7.7	47.828
70	2	1	18.304	13.165	6.9	31.485
72	2	1	16.574	12.280	7.1	54.494
72	2	1	18.230	12.603	7.9	41.672
72	2	1	17.406	11.523	7.1	44.742
74	2	1	16.679	13.213	7.7	51.923
74	2	1	18.368	11.898	8.3	32.669
74	2	1	19.420	12.349	7.2	37.487
66	2	2	20.010	15.315	5.9	50.601
66	2	2	22.670	15.257	6.7	37.084
66	2	2	18.817	15.385	6.8	39.203
68	2	2	17.021	13.025	6.6	70.646
68	2	2	18.324	11.376	6.9	64.628
68	2	2	15.295	12.299	7.5	80.712
70	2	2	17.563	13.242	7.9	52.773
70	2	2	17,172	11.780	6.9	52,199
70	2	2	16 178	12 853	8.1	40.356
72	2	2	18 810	12.000	6.1	53 691
72	2	2	16 241	13 868	67	52 100
72	2	2	17 449	12 362	7.8	57 171
74	2	2	15 729	12.303	7.9	55 480
74	2	2	15.042	11 362	7	63 046
74	2	2	16 009	12 202	67	50.966
14	4	4	10.223	1 13.303	0.7	30.200

Cuadro A.13: Datos del primer experimento al día 3.

Temperatura	Acido	Secuencia	а	b	perdida	cociente
66	1	1	24.289	16.520	12.6	53.028
66	1	1	25.025	18.738	12	43.387
66	1	1	20.518	15.715	11.7	56.674
68	1	1	18.518	13.435	12.3	60.254
68	1	1	21.873	16.577	13.6	45.675
68	1	1	21.070	14.976	11.2	41.760
70	1	1	19.181	15.085	10.9	38.696
70	1	1	16.869	14.783	11.7	37.678
70	1	1	17 048	15.068	11.9	40.482
72	1	1	15 243	14.075	12.7	46.667
72	1	1	15.245	12 507	11.0	54 494
72	1	1	14 222	14.024	10.2	51 125
74	1	1	14.332	12 204	12.3	48 222
74	1	1	14.072	12.007	11.7	46.225
74	1	1	18.173	13.227	11.7	35.947
74	1	1	15.533	13.267	13.1	45.705
66	1	2	20.620	15.653	16.2	43.387
66	1	2	19.188	14.885	16.1	47.726
66	1	2	23.847	15.970	18.3	52.476
68	1	2	14.590	13.076	18.3	50.400
68	1	2	16.379	13.723	18.6	63.548
68	1	2	16.056	14.064	16.8	36.712
70	1	2	14.307	11.577	18	63.548
70	1	2	15.722	13.317	17.6	47.228
70	1	2	15.535	11.817	16.6	57.271
72	1	2	15.053	11.743	16.9	47.726
72	1	2	15.637	11.542	16.8	48.223
72	1	2	15.311	14.922	16.3	47.228
74	1	2	17.764	12.239	16.7	55.068
74	1	2	18,173	11.766	16.8	47.228
74	1	2	15 518	12 711	16.7	55 642
66	2	1	20 430	17 224	17.4	52 476
66	2	1	20.498	15 245	14	46 186
66	2	1	23 246	15 709	13.2	59.036
68	2	1	10.818	16 509	14	44 201
69	2	1	21 474	15 805	12.9	44.201
60	2	1	10 007	13.895	13.6	44.291
08	2	1	10.027	14.059	14.0	43.839
70	2	1	17.737	14.124	14.2	41.760
70	2	1	17.922	13.699	14.3	35.794
70	2	1	15.567	12.229	14.2	49.886
72	2	1	16.852	11.787	14.4	54.494
72	2	1	17.935	13.248	16.8	34.557
72	2	1	15.456	11.931	14.2	47.228
74	2	1	20.586	13.110	15.9	36.540
74	2	1	17.191	13.100	17	42.483
74	2	1	19.037	14.374	15.5	43.387
66	2	2	15.805	14.408	12.4	47.148
66	2	2	18.305	13.386	14	40.482
66	2	2	15.197	14.105	13.1	44.277
68	2	2	13.848	14.160	14.4	85.099
68	2	2	13.458	11.972	14.3	81.200
68	2	2	15.151	12.837	14.9	76.926
70	2	2	14.844	14.381	15.5	55.642
70	2	2	15.647	14.252	14.2	57.271
70	2	2	14 095	12 200	15.5	57 271
70	2	2	13 719	14 308	13.7	53 581
72	2	2	14 502	13 565	14.7	47 229
72	2	2	15.020	12 019	14.7	50.602
12	2		16.029	11.090	10.0	69.142
14			14.159	14.469	10.0	U2.143
74	2	2	14.153	14.468	15.2	58.464
74	2	2	17.193	14.565	15.3	51.135

Cuadro A.14: Datos del primer experimento al día 7.

Temperatura	Acido	Secuencia	a	perdida
54	1	1	30.562	4
54	1	1	32.907	3
54	1	1	29.481	4.1
57	1	1	27.337	3.9
57	1	1	27.044	4.3
57	1	1	26.361	3.6
60	1	1	26 277	3.3
60	1	1	21 129	3.7
60	1	1	25.257	2.7
62	1	1	20.557	0.1
62	1	1	20.557	3.0
03	1	1	24.707	3.5
63	1	1	21.868	3.7
66	1	1	17.873	4
66	1	1	17.713	3
66	1	1	18.756	3
54	1	2	24.421	2.9
54	1	2	29.492	2.8
54	1	2	26.881	2.8
57	1	2	29.524	3.1
57	1	2	27.228	3.9
57	1	2	27.271	4.1
60	1	2	20.103	4.8
60	1	2	23.042	3.2
60	1	2	24.733	3.3
63	1	2	25.725	3.2
63	1	2	22.894	3.7
63	1	2	19.177	4.3
54	2	1	22.508	3.3
54	2	1	28.961	2.8
54	2	1	27.239	2.6
57	2	1	26.306	3.3
57	2	1	24.552	2.9
57	2	1	25.010	3.1
60	2	1	23.556	2.6
60	2	1	23.884	3.8
60	2	1	21.924	3
63	2	1	20 710	4.3
63	2	1	22 192	4.6
63	2	1	20 753	3.2
66	2	1	21 161	3.8
66	2	1	22 527	3.8
66	2	1	20.221	3.4
54	2	2	26 588	2.4
54	2	2	23.605	2.5
54	2	2	26.011	2.4
57	2	2	26.272	2.1
57	2	2	20.312	1.0
57	2	2	28.022	1.0
60	2	2	23.003	1.0
60	2	2	21.400	2.9
60	2	2	21.293	2.2
62	4	2	24.047	2.2
03	2	2	19.003	3.8
60	4	2	10.041	3.0
63	2	2	20.263	2.7
00	2	2	18.8/5	3.0
66	2	2	20.855	2.6
66	2	2	15.923	4.5

Cuadro A.15: Datos del segundo experimento al día 3.

				P of off of the	
54	1	1	23.86228767	7.7	
54	1	1	26.32086763	6.7	
54	1	1	23.91082975	8.3	
57	1	1	22.09979877	6.8	
57	1	1	23.06073488	7.7	
57	1	1	25.32691306	7.3	
60	1	1	22 44149174	6.2	
60	1	1	20 79631287	74	
60	1	1	21 83621362	6.5	
63	1	1	10.28886615	5.7	
63	1	1	19.60725103	5.0	
62	1	1	20 41020758	6.0	
66	1	1	14 46148224	0.9	
66	1	1	17 56410921	6.2	
00	1	1	17.30410231	0.3	
00 5.4	1	1	15.90217105	0.1	
54	1	2	21.1904138	7.4	
54	1	2	25.22497175	11.4	
54	1	2	25.21404905	6.2	
57	1	2	24.24361892	5.6	
57	1	2	24.21362234	5.5	
57	1	2	26.1964943	5.9	
60	1	2	21.34550727	6.8	
60	1	2	20.4119985	5.1	
60	1	2	21.43900421	5.2	
63	1	2	18.09430019	8.5	
63	1	2	17.80117656	8.2	
63	1	2	17.00343853	8.9	
54	2	1	23.80103049	7.4	
54	2	1	27.20027217	6.7	
54	2	1	25.18127298	6.2	
57	2	1	25.63062877	6.6	
57	2	1	23.26166421	6.7	
57	2	1	23.12654554	6.7	
60	2	1	23.46292355	5.2	
60	2	1	23.05444697	7.3	
60	2	1	18.39276213	6.3	
63	2	1	16.66206197	7.1	
63	2	1	17.17126041	7.8	
63	2	1	20.0377986	6.9	
66	2	1	17.42072377	7.7	
66	2	1	19.07808669	7.8	
66	2	1	17.30505902	7.9	
54	2	2	21.31086567	5.6	
54	2	2	20.65754251	4.7	
54	2	2	21.54823148	4.2	
57	2	2	22.32336518	4.8	
57	2	2	23.6834613	3.7	
57	2	2	18.61214511	6.9	
60	2	2	18.30908108	4	
60	2	2	20.50848858	4,1	
60	2	2	20.10007001	4.9	
63	2	2	18 40995523	5.8	
63	2	2	17.89685866	7.8	
63	2	2	19 10995523	4.9	
66	2	2	17 60993523	6.4	
66	2	2	17 20785846	4.8	
66	2	2	17 47674419	8.0	
		4		(1.7	

Cuadro A.16: Datos del segundo experimento al día 7.

Temperatura Acido		Secuencia	a	perdida		
54	1	1	20.767	8.9		
54	1	1	23.682	8.2		
54	1	1	22.206	9.6		
57	1	1	23.389	8.3		
57	1	1	21.994	8.8		
57	1	1	23.307	8.7		
60	1	1	19.626	7.5		
60	1	1	19.790	8.9		
60	1	1	21.530	7.9		
63	1	1	22.441	7.5		
63	1	1	21.152	7.3		
63	1	1	20.200	8.1		
66	1	1	17.554	9.6		
66	1	1	18.408	7.6		
66	1	1	18.398	8		
54	1	2	22.830	9.2		
54	1	2	27 419	10.4		
54	1	2	24 956	8.3		
57	1	2	22 622	6.9		
57	1	2	23 903	73		
57	1	2	22.531	7.2		
60	1	2	20.350	8.4		
60	1	2	19.876	6.7		
60	1	2	20.108	6.8		
63	1	2	21.190	10.2		
63	1	2	10.830	9.7		
62	1	2	17 999	10.6		
54	2	1	20.307	87		
54	2	1	20.307	77		
54	2	1	24.108	7.4		
54	2	1	22.520	1.4		
57	2	1	20.092	0.4 7.0		
57	2	1	22.394	7.9		
60	2	1	22.994	6.0		
60	2	1	22.001	0.9		
60	2	1	21.000	0.2		
00	2	1	20.194	1.1		
62	2	1	10.002	0.4		
03	2	1	20.447	9.5		
66	2	1	19.051	8.2		
66	4	1	16.490	9.4		
00	2	1	10.602	9.0		
50	2	1	18.520	9.9		
54	2	2	23.595	(.1		
54	2	2	23.333	0		
54	2	2	21.858	6.4		
57	2	2	23.802	6.3		
57	2	2	23.473	5.6		
57	2	2	19.889	8.3		
60	2	2	18.954	5.3		
60	2	2	21.717	5.7		
60	2	2	17.992	6.7		
63	2	2	18.566	7.7		
63	2	2	18.509	9.6		
63	2	2	18.317	6.4		
66	2	2	16.910	8.2		
66	2	2	19.051	6.4		
66	2	2	18.707	10.2		

Cuadro A.17: Datos del segundo experimento al día 10.

romporatara	- u	roranaa	000101100 001/1111
48	38.467	4.5	36.007
48	35.350	4.8	37.724
48	36.656	5.8	40.894
51	37.532	4.3	22.945
51	37.659	5.1	30.574
51	36.884	4.8	28.503
54	38.235	4.4	42.412
54	39.045	4.6	32.505
54	37.635	5.1	36.646
57	36.528	4.8	29.828
57	40.064	4.1	35.092
57	37.722	5	30.920
60	37.557	4.9	35.794
60	37.464	5.5	28.503
60	38.572	4.7	38.351

Cuadro A.19: Datos del tercer experimento al día 7.

Femperatura	a*	Perdida	Cociente SST/AM
48	34.164	10.3	28.441
48	31.883	10.9	29.101
48	33.474	9.7	41.856
51	32.828	10.2	39.479
51	33.243	11.3	35.716
51	36.128	11.3	39.629
54	37.641	9.9	37.499
54	34.536	10.6	38.777
54	35.854	11.5	32.888
57	36.388	9.1	41.480
57	35.928	8.2	45.737
57	36.659	9.9	37.700
60	36.840	10.2	29.828
60	34.886	10.8	30.539
60	35.771	10	43.811

Cuadro A.20: Datos del tercer experimento al día 10.

Temperatura	a*	Perdida	Cociente SST/AM
48	30.612	13.1	49.004
48	30.025	12.8	33.830
48	28.994	11.9	45.737
51	32.444	12.4	30.491
51	29.390	13.3	32.011
51	31.169	13.3	35.716
54	33.265	11.6	45.240
54	33.661	12	49.537
54	34.130	13.6	40.356
57	33.045	11	46.341
57	34.270	10.5	34.800
57	34.541	12.8	44.262
60	30.467	11.8	44.743
60	28.755	12.6	42.412
60	30.329	12.1	49.537

Bibliografía

- [1] Box, G. E. P., Wilson, K. G. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society, 13, 1-45.
- [2] Kuehl, Robert O. 2001. *Diseño de Experimentos*, 2a. Edición, Thomson Learning.
- [3] André I. Khuri, Siuli Mukhopadhyay, 2010. Response surface methodology John Wiley & Sons, Inc. Volume 2.
- [4] Myers Raymond H., Montgomery Douglas C. 1995. Response superface Methodology: Process and Product optimization using designed experiments. John Wiley & Sons, Inc.
- [5] André I. Khuri, John A. Cornell, 1987. Response surfaces: designs and analyses. Marcel Dekker, Inc. ASQC Quality Press.
- [6] Box, G. E. P. and Hunter, J. S. 1954. A confidence region for the solution of set of simultaneous equations with an application to experimental design. Biometrica 41, 190-199.
- [7] John J. Peterson, Suntara Cahya, Enrique del Castillo, 2002. A general approach to confidence regions for optimal factor levels of response surfaces. Biometrics 58, 422-431.
- [8] Myers RH, Montgomery DC. 2002. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 2nd ed. John Wiley & Sons, New York.
- [9] Jorge Domínguez Domínguez. 2010. Optimización estadística de procesos multi-respuesta. Carta informativa, Sociedad Matemática Mexicana, número 65, 2010.

[10] Geoffrey Vining, Raymond H.Myers. 1990 Combining Taguchi and Response Surface Philosophies: A Dual Response Approach Vol.22, No.1.