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Abstract: This paper deals with optimal two-stage tests for two simple
hypotheses. The structure of both the optimal decision rule and the optimal
continuation rule is given. The results are applied to the optimal two-stage
tests for a Wiener process with a linear drift, and to obtain an asymptotically
optimal test for two close hypotheses in the case of locally asymptotically
normal statistical experiment. The numerical results of comparison between
the optimal Neyman-Pearson test, Wald’s SPRT and the proposed optimal
two-stage test are given.

1 The structure of an optimal two-stage test

In this section, we give the structure of an optimal two-stage test for two
simple hypotheses.

Let us assume that we can observe in a statistical experiment a random
variable X (the first stage of the experiment), and, depending on it, either
stop at the first stage or get to a second stage, obtaining an additional portion
of observations Y . In both cases we have to take a final decision about the
distribution from which X and Y come. This type of experiment can be
thought of as an alternative to fixed-size sampling, as in the Neyman-Pearson
test, and to completely sequential tests like the Wald’s sequential probability
ratio test (SPRT).

Let us assume that the vector (X,Y ) follows a parametric distribution
with a probability density function fθ(x, y) with respect to a product-measure
µ1×µ2 on the space of values of (X,Y ), so fθ(x) =

∫
fθ(x, y)dµ2(y) being the

marginal density function of the first-stage component X with respect to µ1.
For two simple hypotheses H0 : θ = θ0 and H1 : θ = θ1 let us define

a test as a triplet of measurable functions (φ1(x), φ2(x, y), χ(x)), all of them
taking values in [0, 1], interpreting them as follows: φ1(x) being the condi-
tional probability, given a first-stage observation x, to reject H0, φ2(x, y) the
conditional probability, given observations up to the second stage (x, y), to
reject H0, and χ(x) being the conditional probability, given the first-stage
observation x, to get to the second stage (to continue sampling).

So the power function of the test will be defined as

P (θ) = Eθ [φ1(X)(1 − χ(X)) + φ2(X,Y )χ(X)]

(the total probability to reject H0 given θ).
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We are interested in minimizing P (θ0) and 1 − P (θ1) which are, respec-
tively, the error probabilities of the first and the second kind, and some quan-
tities related to a cost of observations. As the first stage is always present,
the only variable part is related to C(θ) = Eθχ(x), which is the probability
of continuing observations up to the second stage, given θ.

As usual in statistical hypotheses testing, we start from a sort of Bayesian
set-up: we will be interested in finding tests which minimize the average total
loss (ATL):

π0P (θ0) + π1(1 − P (θ1)) + π0c0C(θ0) + π1c1C(θ1)

where π0 and π1 can be interpreted as prior probabilities of H0 and H1,
respectively, and c0 and c1 some constants giving some weight to any of the
two average observation costs measured by C(θ0) and C(θ1).

Let a− be equal to a, if a < 0, and a− = 0 otherwise, and let I(A) be the
indicator function of the event A.

The following theorem gives the structure of the test with the minimum
ATL.
Theorem 1. The minimum average total loss is equal to π1+Z "

l1(x)− +

„Z
l2(x, y)−dµ2(y) − l1(x)− + π0c0fθ0(x) + π1c1fθ1(x)

«−#
dµ1(x)

where l1(x) = π0fθ0(x) − π1fθ1(x), l2(x, y) = π0fθ0(x, y) − π1fθ1(x, y), and
this minimum is achieved by a test with

φ1(x) = I({l1(x) < 0})
φ2(x, y) = I({l2(x, y) < 0}) (1)

χ(x) = I({
∫

l2(x, y)−dµ2(y) − l1(x)− + π0c0fθ0(x) + π1c1fθ1(x) < 0})

Proof. For any test (φ1(x), φ2(x, y), χ(x)) let us represent the ATL−π1 as∫
l1(x)φ1(x)(1 − χ(x))dµ1(x)

+
∫ (∫

l2(x, y)φ2(x, y)χ(x)dµ2(y)
)

dµ1(x) (2)

+
∫

(π0c0fθ0(x) + π1c1fθ1(x))χ(x)dµ1(x)

The first term in (2) is greater or equal than∫
l1(x)I({l1(x) < 0})(1 − χ(x))dµ1(x) (3)

because l1(x)(φ1(x) − I({l1(x) < 0}))(1 − χ(x)) ≥ 0 for any 0 ≤ φ1(x) ≤ 1
(this is an almost literal repetition of the proof of the Neyman-Pearson’s
theorem).
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The second term in (2) is greater or equal than∫ (∫
l2(x, y)I({l2(x, y) < 0})χ(x)dµ2(y)

)
dµ1(x), (4)

because l2(x, y)(φ2(x, y)−I({l2(x, y) < 0}))χ(x) ≥ 0 for any 0 ≤ φ2(x, y)≤1.
So from (2-4) we have that the (2) is greater or equal than∫

l1(x)I({l1(x) < 0})(1 − χ(x))dµ1(x)

+
∫ (∫

l2(x, y)I({l2(x, y) < 0})χ(x)dµ2(y)
)

dµ1(x) (5)

+
∫

(π0c0fθ0(x) + π1c1fθ1(x))χ(x)dµ1(x)

which is equal to∫
l1(x)−dµ1(x)

+
∫ (∫

l2(x, y)−dµ2(y) − l1(x)− + π0c0fθ0(x) + π1c1fθ1(x)
)

χ(x)dµ1(x)

and in the same way as above this is greater or equal than∫
l1(x)−dµ1(x)

+
∫ (∫

l2(x, y)−dµ2(y) − l1(x)− + π0c0fθ0(x) + π1c1fθ1(x)
)−

dµ1(x)

which proves the first affirmation of Theorem 1.
The second one is immediate in view of the above proof (any step in it

does not take to an inequality if the functions φ1, φ2 and χ are defined as
in (1)), so test (1) is the optimal one.

2 Testing hypotheses about a drift of a Wiener process

2.1 The structure of the optimal two-stage test

Let us assume that we observe a Wiener process with a linear drift W (t)+θt.
Without loss of generality we can assume that W (t) is standard and that we
are interested in testing the null hypotheses that θ = θ0 = 0, taking as the
alternative some θ �= 0.

At the first stage of the experiment, we observe the process up to a time t1,
keeping observing, if necessary, a time t2 more at the second stage.
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So, in terms of the above section, denoting by ϕ(x) the standard normal
probability density function we have:

fθ(x) = f1
θ (x) = 1√

t1
ϕ(x−θt1√

t1
), fθ(x, y) = f1

θ (x)f2
θ (y)

f2
θ (y) = 1√

t2
ϕ(x−θt2√

t2
)

the two components (X,Y ) being independent.
By Theorem 1, for any given π0, π1, c0, c1, t1, t2 the optimal two-stage test

is given by

φ1(x) = I({Z1(x) > π0/π1})
φ2(x, y) = I({Z1(x)Z2(y) > π0/π1})

χ(x) = I({E{(π0 − π1Z1(X)Z2(Y ))−|X = x}
−(π0 − π1Z1(x))− + π0c0 + π1c1Z1(x) < 0})

where Z1(x) = exp(xθ − θ2t1/2), Z2(y) = exp(yθ − θ2t2/2) are so-called
likelihood ratios:

Z1(x) =
f1

θ (x)
f1
0 (x)

, Z2(x) =
f2

θ (y)
f2
0 (y)

.

It is easy to see that the continuation rule is based on the function

g(z) = E0(π0 − π1zZ2(Y ))−

and is equivalent to proceed to the second stage if and only if z = Z1(X) is
such that

g(z) < (π0 − π1z)− − π0c0 − π1c1z. (6)

It is easy to observe that the function g(z) is concave, and the right-hand side
of (6) is piece-wise linear and concave, too. So if there are z satisfying (6), it
is equivalent to a < z < b with some a, b such that a < π0/π1 < b.

Due to this fact, it is obvious that the optimal two-stage test has the
form:

φ1(x) = I({Z1(x) > π0/π1})
φ2(x, y) = I({Z1(x)Z2(y) > π0/π1}) (7)

χ(x) = I({a < Z1(x) < b}),
or, in other words, the optimal rule says:

1. Observe X. Stop observations at this stage if Z1(X) < a (accepting
H0), or if Z1(X) > b (rejecting H0); continue observing otherwise.

2. At the second stage, obtain Y. Accept H0 if

Z1(X)Z2(Y ) < π0/π1

and reject it otherwise.

It is interesting to note that of c0 and/or c1 ( the costs of additional ob-
servations) are sufficiently large, there are no solutions to (6), so the optimal
test will stop at the first stage.
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2.2 Comparison between optimal tests

Let us now pose a more realistic problem in relation with the two-stage tests.
Let us suppose that t1 and t2 are not fixed in advance, but are to be

sought in order to minimize the average total loss of the form

π0P (θ0) + π1(1 − P (θ1)) + π0c0N(θ0) + π1c1N(θ1), (8)

say, where N(θ) = t1 + t2C(θ) is the average ”sample number” in the two-
stage experiment, given θ.

For any fixed t1 and t2 the solution is given by the above test, and the
problem turns to be essentially numerical: to find (t1, t2) giving a minimum
to (8) using the optimal test in the form of (7), say. It is obvious that
test (7) has four parameters (t1, t2, a, b), and the minimum ATL in (8) can
be calculated minimizing over all of them. Properly saying, parameters a
and b are uniquely defined by (6) for any t1, t2, but there is no explicit way
to calculate them, so we prefer to optimize over them as well, which is an
equivalent procedure due to the results above.

We developed a program module (unit, in terms of Borland Pascal 6.0) for
numerical optimization of (8), given any π0,π1,c0,c1. This module is available
from the author.

Below we present some results of evaluation of optimal tests.
The most appropriate context of such an evaluation seems to be a com-

parison between different competing tests including the optimal two-stage
test above.

So we compare the optimal two-stage test with the classic Neyman -
Pearson and Wald’s test, similar to [1]. Obviously, an optimal test (7) with
P (θ0) = α and 1 − P (θ1) = β, would minimize

π0c0N(θ0) + π1c1N(θ1)

among all the (two-stage) tests with error probabilities of the first and second
kind not exceeding α and β, respectively. So it is interesting to compare its
average sample number(ASN) N(θ0) and N(θ1) with the ASN of the Neyman-
Pearson and Wald’s test (see [1], see also [4]) .

The following table contains the respective characteristics of the three
competing tests for a series of α = β evaluated for the null hypothesis θ = 0
against the alternative θ = 1. The numbers in the respective columns are the
ASN of the three tests which correspond to the same level of α = β indicated
in column ”α”.

The results above give a very clear evidence that two-stage tests have
rather competitive properties concerning the average sample number.

The following table gives an idea about the parameters of the respec-
tive optimal two-stage test. Because Z1(x) and Z2(y) in (7) are monotone
functions of x and y respectively, the parameters of the two-stage test are
given in terms of x and y rather than in terms of Zi. For example, to
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α Wald Neyman- Two-Stage
Pearson

0.0072 9.71 23.94 15.17
0.0150 8.12 18.83 12.48
0.0231 7.15 15.91 10.84
0.0313 6.44 13.87 9.66
0.0396 5.87 12.32 8.73
0.0480 5.40 11.09 7.97
0.0563 5.00 10.07 7.33
0.0646 4.65 9.20 6.77
0.0729 4.34 8.46 6.28
0.0811 4.07 7.81 5.85
0.1563 2.32 4.08 3.22
0.2161 1.46 2.47 2.00

Table 1: Average sample number.

achieve α = β = 0.0072, you have first to observe the process up to the time
11.54 (t1), then if the value x of the process at that time is less than 2.58 (a),
then accept H0 and stop observing. If x is greater than 8.96 (b) then stop
observing as well, and reject H0. Otherwise keep observing for 16.53 time
units more (t2), obtaining the value y of the process at the end of this period.
Based on this, accept H0 if y < 14.03 (c) and reject H0 otherwise.

α a b c t1 t2
0.0072 2.58 8.96 14.03 11.54 16.53
0.0150 2.01 7.29 11.08 9.30 12.87
0.0231 1.66 6.31 9.38 7.97 10.79
0.0313 1.41 5.62 8.20 7.03 9.36
0.0396 1.22 5.09 7.29 6.31 8.28
0.0480 1.06 4.66 6.57 5.72 7.42
0.0563 0.93 4.30 5.97 5.23 6.72
0.0646 0.82 3.99 5.47 4.81 6.12
0.0729 0.72 3.72 5.03 4.44 5.62
0.0811 0.64 3.49 4.65 4.12 5.18
0.1563 0.16 2.06 2.45 2.22 2.67
0.2161 -0.03 1.39 1.49 1.36 1.61

Table 2: The optimal two-stage test.
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3 Asymptotically optimal two-stage tests for LAN
experiments

In this section we will show how the results of the previous section can be
applied to construct asymptotically optimal tests for a rather broad class of
locally asymptotically normal experiments (LAN).

Let us say that a statistical experiment {X1, X2 . . . Xn} with independent
and identically distributed observations is locally asymptotically normal if for
any ε > 0 there exists n = n(ε) such that the likelihood ratio for two simple
hypotheses θ and θ + ε

Zn
ε =

n∏
i=1

fθ+ε(Xi)/fθ(Xi)

converges weakly, when X1, . . .Xn follow the distribution with the parame-
ter θ, to that of two normal distributions:

Z = exp{ξ − 1/2},

where ξ is a standard normal random variable (cf., e.g., [2]).
The aim of this section is to construct a test of H0 : θ vs H1 : θ + ε

with error probabilities α and β which asymptotically minimizes a weighted
average sample number, as ε → 0.

Theorem 2. Let π0, π1, c0,c1 be such numbers that there exists a two-stage
test (7) minimizing (8) with P (θ0) = α and 1 − P (θ1) = β. Then the two-
stage test taking n1 = [t1n(ε)] observations at the first stage, and additional
n2 = [t2n(ε)] observations at the second stage and defined as

φ1 = I({Zn1
ε > π0/π1})

φ2 = I({Zn1+n2
ε > π0/π1}) (9)

χ = I({a < Zn1
ε < b})

is asymptotically optimal in the sense that it minimizes

lim
ε→0

(π0c0Nε(θ) + π1c1Nε(θ + ε))/n(ε)

in the class of all two-stage tests whose error probabilities of the first and the
second kind asymptotically do not exceed α and β, respectively.

Proof is rather straightforward if we note that due to the LAN condition and
independence of the observations the distributions of Zn1

ε and Zn2
ε defining

test (9) converge weakly to the distribution of Z1 and Z2 in test (7), so its
error probabilities converge to that of test (7), and so the continuation prob-
ability, and thus the average sample number Nε(θ) of the test in Theorem 2
normalized by n(ε) tends to N(θ0) of test (7). The rest of the proof is due
to the optimality of (7).
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Another promising application of two-stage tests seems to be the con-
struction of a test similar to that of Theorem 2 for statistical experiments
with Markov dependent observations (see [3]), in which case the likelihood
ratio behaves exactly the same way as in the case of independent observa-
tions. Unfortunately, a proof as in Theorem 2 does not proceed, because for
dependent observations the structure of continuation rule is not as simple
as in (7) any more. So the problem of finding an optimal sequential test
for non-independent observations is still open even in the simplest case of
two-stage tests.
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