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Preface

Prague Stochastics 2006, held in Prague from August 21 to 25, 2006, is an interna-
tional scientific meeting that continues the tradition of organising Prague confer-
ences on stochastics, established here five decades ago. The first Prague Conference
on Information Theory, Statistical Decision Functions and Random Process was ini-
tiated by Antońın Špaček in 1956. Prague Symposia on Asymptotic Statistics were
founded by Jaroslav Hájek in 1973. This year, we are commemorating the 80th
anniversary of the birth date of this untimely deceased outstanding scientist.
Traditionally, the scope of the proceedings, as well as the conference itself, is quite
extensive; the topics range from classical to very up-to date ones. It covers both
methodological and applied statistics, theoretical and applied probability and, of
course, topics from information theory. We hope that all readers will find valuable
contributions and a number of papers of their interest in this rich spectrum of
scientific ideas.
The printed part contains the plenary and invited papers, and the list of all contri-
butions published in the volume. The CD disc, attached as an official part of the
book with the same ISBN code, contains all accepted papers.
The editors would like to express their sincere thanks to the authors for their valu-
able contributions, to the reviewers for prompt and careful reading of the papers,
and to the organisers of the sections for the help with the entire reviewing process.
Our thanks also go to our colleagues, in particular to Pavel Boček and Tomáš
Hobza, for their technical editorial work. Without their devotion and diligence, the
proceedings would never be completed.
It is our pleasure to acknowledge that Prague Stochastics 2006 is held under the
auspices of the Mayor of the City of Prague, the Bernoulli Society for Mathematical
Statistics and Probability, and the Czech Statistical Society.

Prague, June 2006 Marie Hušková, Martin Janžura



Locally most powerful two-stage tests
Andrey Novikov

Abstract: The problem of testing a simple hypothesis against a composite one-
sided alternative is considered. The aim is to find a test which maximizes the slope
of the power function at the point of the null-hypothesis over all tests with fixed
levels of the first-kind error probability and of the average sample number under the
null-hypothesis. For the two-stage tests, the structure of the optimal decision rule
and the optimal continuation rule is given (the observations are not supposed to
be independent). Numerical results on the efficiency of the optimal two-stage tests,
with respect to both the optimal fixed sample-size test and the optimal sequential
test by R.Berk, are given.
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Key words: Statistical hypotheses testing, two-stage test, sequential test, regular
experiment, LAN, locally most powerful test, simple hypothesis, composite alter-
native

1 Introduction

This work is motivated by recent results of the author ([8], [9]) on two-stage hy-
potheses tests for two simple parametric hypotheses based on regular statistical
experiments.

In that case, the optimal two-stage tests perform rather competitively with
respect to the optimal sequential tests known as sequential probability ratio tests
(SPRT), due to A. Wald [11]. At the same time, the SPRT’s are known to be
optimal essentially for independent and identically distributed observations (see, for
example, [2]), while the two-stage tests have the advantage that they are applicable
to any stochastic sequence of observations, and are relatively easy to evaluate (see
[8], [9]). In some sense, they are simply ”two-step” versions of the well-known
Neyman-Pearson test (see, for example, [4]), and with essentially the same way of
proof (see [8]), so they are nearly as universal as the Neyman-Pearson test. The real
problem of their applicability is the lack of situations in which a simple hypothesis
against a simple alternative is to be tested.

An approach to sequential testing a simple hypothesis against a composite al-
ternative has been proposed by R. Berk in [1]. Again, due to [1], the optimal
(called locally most powerful) sequential test exists in the case of independent and

Acknowledgement. The author wishes to thank the anonymous referee for his valuable sug-
gestions on the improvement of the article.
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identically distributed observations. There are no known results on optimality of se-
quential hypotheses testing for more general stochastic sequences in the framework
of this approach.

The main aim of this paper is to study the properties of two-stage tests of a
simple hypothesis against a composite alternative in the framework of the approach
of R. Berk. Because of particular simplicity of two-stage tests, we do not need some
of the assumptions made in [1], in particular, we do not suppose the independence
of the observations at the two stages of the statistical experiment.

In Section 2, we study the structure of the optimal two-stage test in a rather
general context of statistical experiment. To deal with the derivative of the power
function we discuss some regularity conditions, which guarantee its existence.

In Section 3, we apply the results of Section 2 for optimal two-stage tests to
testing hypotheses about the drift of a Wiener process with a lineal drift and give
some numerical results on the efficiency of the optimal two-stage tests with respect
to both optimal one-stage tests, and to the locally most powerful sequential test of
R. Berk.

2 The structure of the optimal two-stage tests

In this section, we give a general framework for two-stage hypotheses tests, and
describe the structure of the optimal two-stage test.

2.1 General framework. Definitions

Let us assume that we can observe in a statistical experiment a random variable X
(the first stage of the experiment), and, depending on its value, either stop at the
first stage or get to a second stage, obtaining an additional portion of observations
Y . In any case we have to take a final decision about the distribution from which the
vector (X,Y ) comes. This type of experiment can be thought of as an alternative
to fixed-size sampling, as in the Neyman-Pearson test, and to completely sequential
tests like the Wald’s sequential probability ratio test. For example, the usual fixed
sample-size test is a particular case of this scheme, corresponding to never going to
the second stage, and making the inference on the base of the X-observation.

Let us assume that the vector (X,Y ) follows a parametric distribution with a
probability density function fθ(x, y) with respect to a product-measure µ1 ⊗ µ2 on
the space of values of (X,Y ), where θ ∈ Θ ⊂ R is some parameter. Thus, fθ(x) =∫
fθ(x, y)dµ2(y) is the marginal density function of the first-stage component X

with respect to µ1.
Let θ0 be such that there exists θ1, θ0 < θ1 6∞ for which [θ0, θ1) ⊂ Θ. In this

paper, we deal with testing the simple hypothesis H0 : θ = θ0 against the composite
one-sided alternative H1 : θ > θ0.

For a pair of hypotheses H0 and H1 let us define a (two-stage) test as a triplet
of measurable functions (φ1(x), φ2(x, y), χ(x)), all of them taking values in [0, 1],



556 Prague Stochastics 2006

with the following interpretation:

• φ1(x) being the conditional probability, given a first-stage observation x, to
reject H0,

• φ2(x, y) the conditional probability, given observations up to the second stage
(x, y), to reject H0, and

• χ(x) being the conditional probability, given the first-stage observation x, to
get to the second stage (to continue sampling).

The functions φ1(x), φ2(x, y) can be considered as (randomized) decision rules
at the respective stages of the experiment, and χ(x) as a (randomized) continuation
rule. So, for example, the particular case χ(x) ≡ 0 corresponds to a ”fixed sample-
size” test, with no observations at the second stage (in fact, in this case φ2(x, y)
has to play no role, although formally we have to give some value to it, for example
φ2(x, y) ≡ 0 or φ2(x, y) ≡ 1, or whatever. In what follows we will see that it does
not have any importance for the performance of the test).

As usual in the context of hypotheses testing we define the power function as
the (total) probability to reject H0 when the true parameter of the distribution of
(X,Y ) is θ:

P (θ) = Eθ [φ1(X)(1− χ(X)) + φ2(X,Y )χ(X)] . (1)

As in [1], we are interested in maximizing P ′(θ0) and minimizing P (θ0) (called
the error probability of the first kind). Also, we have to take into account the cost
of additional observations, if any. As the first stage is always present, the only
variable part is naturally related to

C(θ) = Eθχ(X), (2)

the probability of continuing observations up to the second stage, given θ. As in
[1], we will only pay attention to the value of C(θ) under H0, i.e. C(θ0).

2.2 Differentiability of the power function

To deal with the derivative of the power function (1), we have to be sure that it
exists. In [1], there are conditions ensuring the differentiability of P (θ) for the
experiment consisting in observing sequentially independent and identically dis-
tributed random variables X1, X2, . . . , Xn, . . . and any stopping time τ based on
it, for which Eθτ < ∞. In our case, in view of (1) the conditions for existence
of the derivative might be very mild. A very natural candidate for this is some
differentiability condition of the family {fθ(x, y)}θ∈Θ at θ = θ0. Essentially, we
need the possibility to calculate the derivative of the power function (1) at θ = θ0
differentiating under the integral sign.

So, we will suppose that at θ = θ0 the following condition holds.
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C1. The power function P (θ) (1) of any two-stage test is differentiable and there
exists a µ1 ⊗ µ2-integrable function ψθ(x, y) such that

P ′(θ) =
∫
ψθ(x, y) [φ1(x)(1− χ(x)) + φ2(x, y)χ(x)] dµ1 ⊗ µ2(x, y)

Typically, one would expect that ψθ(x, y) = f ′θ(x, y) = ∂fθ
∂θ (x, y) if this derivative

exists. If it does not, but C1 still holds, we will keep using this notation, i.e.

f ′θ(x, y) ≡ ψθ(x, y) (3)

by definition.
There are different ways to guarantee C1. A very closely related discussion can

be found in [5], where some references to earlier papers are given.
In particular, it is easy to see that condition C1 is satisfied if fθ(x, y) is L1-

differentiable in the following sense (cf., e.g., [5]).
C2. There exists a function ψθ(x, y) such that

∫
|ψθ(x, y)|dµ1 ⊗ µ2(x, y) < ∞

and ∫
|fθ+u(x, y)− fθ(x, y)− ψθ(x, y)u|dµ1 ⊗ µ2(x, y) = o(u),

as u→ 0.
In a rather standard way, in turn, this condition holds if

√
fθ(x, y) is L2-

differentiable in the following sense (see, for example, [3]).
C3. There exists a function ψθ(x, y) such that

∫
ψ2
θ(x, y)dµ1⊗µ2(x, y) <∞ and∫

(
√
fθ+u(x, y)−

√
fθ(x, y)− ψθ(x, y)u)2dµ1 ⊗ µ2(x, y) = o(u2),

as u→ 0.
Although C2 seems to be more natural in the context of hypotheses testing,

C3 may be preferable dealing with regular statistical experiments and/or locally
asymptotically normal (LAN) experiments (see, for example, [3]).

In what follows, we will only use condition C1, seemingly close to the weakest
possible one.

Note that in all conditions C1-C3 we need in effect only the right-differentiability
at θ = θ0 due to the essence of our testing problem.

Concluding this section let us note that condition C1 implies that for any one-
stage test φ1(x) (with χ(x) ≡ 0) by Fubini’s theorem

P ′(θ) =
∫
φ1(x)

[∫
ψθ(x, y)dµ2(y)

]
dµ1(x),

justifying the notation

f ′θ(x) ≡
∫
ψθ(x, y)dµ2(y). (4)
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2.3 Optimal two-stage tests

To study the structure of the optimal test let us start with a Lagrange-multiplier-
type optimization. Let λ and c be two positive constants. Then our Lagrange
function is

P ′(θ0)− λP (θ0)− cC(θ0) (5)

with P (θ) defined by (1) and C(θ) defined by (2).
In what follows we use the following notation:

a+ =
a+ |a|

2

and

I(A) =

{
1, if A occurs,
0, if not.

Theorem 1. Let condition C1 at θ = θ0 be fulfilled. Then the maximum value of
(5) over all two-stage tests is equal to∫ (

l1(x)+ + ρ(x)+
)
dµ1(x) (6)

with
ρ(x) =

∫
l2(x, y)+dµ2(y)− l1(x)+ − cfθ0(x), (7)

l1(x) = f ′θ0(x)− λfθ0(x),

l2(x, y) = f ′θ0(x, y)− λfθ0(x, y).

The maximum value (6) is achieved at any two-stage test of the form:

φ1(x) = I({l1(x) > 0}) + γ1(x)I({l1(x) = 0}), (8)
φ2(x, y) = I({l2(x, y) > 0}) + γ2(x, y)I({l2(x, y) = 0}), (9)

χ(x) = I({ρ(x) > 0}) + γ3(x)I({ρ(x) = 0}), (10)

where γ1(x), γ2(x, y) and γ3(x) (randomization constants) are some measurable
functions taking values in [0,1].

Proof. In what follows θ = θ0.
Let us start with a fixed continuation rule. For any χ(x) fixed let us find the

maximum value of (5). As C(θ) depends only on χ(x), it suffices to find a maximum
of

P ′(θ)− λP (θ) =
∫ ∫

(f ′θ(x, y)− λfθ(x, y))φ1(x)(1− χ(x))dµ1(x)dµ2(y)+

+
∫ ∫

(f ′θ(x, y)− λfθ(x, y))φ2(x, y)χ(x)dµ1(x)dµ2(y) =
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=
∫

(f ′θ(x)− λfθ(x))φ1(x)(1− χ(x))dµ1(x)+

+
∫ ∫

(f ′θ(x, y)− λfθ(x, y))φ2(x, y)χ(x)dµ1(x)dµ2(y), (11)

were we used condition C1 to calculate P ′(θ) and definitions (3) and (4).
The first summand on the right-hand side of (11) does not exceed∫

(f ′θ(x)− λfθ(x))+(1− χ(x))dµ1(x),

because their difference is equal to∫
(f ′θ(x)− λfθ(x))(I({f ′θ(x)− λfθ(x) > 0})− φ1(x))(1− χ(x))dµ1(x), (12)

which is non-negative due to

(f ′θ(x)− λfθ(x))(I({f ′θ(x)− λfθ(x) > 0})− φ1(x)) > 0,

because 0 6 φ1(x) 6 1.
At the same time we see that the difference (12) is equal to 0 if φ1(x) has the

form (8).
In the same way we see that the second summand on the right-hand side of (11)

does not exceed ∫ ∫
(f ′θ(x, y)− λfθ(x, y))+χ(x)dµ1(x)dµ2(y),

and, again, this maximum is achieved if φ2(x, y) has the form (9).
Now we have that for any χ(x)

P ′(θ)− λP (θ)− cC(θ) 6∫
(f ′θ(x)−λfθ(x))+(1−χ(x))dµ1(x)+

∫ ∫
(f ′θ(x, y)−λfθ(x, y))+χ(x)dµ1(x)dµ2(y)

−c
∫
χ(x)fθ(x)dµ1(x)

=
∫

(f ′θ(x)− λfθ(x))+dµ1(x)

+
∫ (∫

(f ′θ(x, y)− λfθ(x, y))+dµ2(y)− (f ′θ(x)− λfθ(x))+ − cfθ(x)
)
χ(x)dµ1(x)

=
∫
l1(x)+dµ1(x) +

∫
ρ(x)χ(x)dµ1(x). (13)
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In the same way as above we see that the second term on the right-hand side of
(13) does not exceed ∫

ρ(x)+dµ1(x), (14)

and that it coincides with (14) if χ(x) has the form (10).
From this fact and (13) we conclude that

P ′(θ)−λP (θ)−cC(θ) 6
∫
l1(x)+dµ1(x)+

∫
ρ(x)+dµ1(x) =

∫
(l1(x)++ρ(x)+)dµ1(x),

with the equality if the test has the form (8)-(10).

Note. From the proof it is obvious that, more generally, to reach the maximum
value (6) the relations (8)–(10) may be satisfied almost everywhere.

More than that, it is not difficult to see that if the maximum (6) is reached,
then

φ1(x)(1− χ(x)) = (I({l1(x) > 0}) + γ1(x)I({l1(x) = 0})) (1− χ(x)),

φ2(x, y)χ(x) = (I({l2(x, y) > 0}) + γ2(x, y)I({l2(x, y) = 0}))χ(x),

χ(x) = I({ρ(x) > 0}) + γ3(x)I({ρ(x) = 0}),

almost everywhere, so this is the necessary and sufficient condition for reaching the
maximum value (6).

2.4 Locally most powerful two-stage tests

Let us show now how the result of the preceding section can be applied to finding
locally most powerful two-stage tests.

Suppose first that we observe, in two stages, a discrete-time stochastic process
X1, X2, . . . , Xn, . . . . In terms of the preceding section we have: X = (X1, X2, . . . ,
Xn1) and Y = (Xn1+1, Xn2+2, . . . , Xn1+n2), where n1 (n2) is the number of obser-
vations taken at the first (second) stage of the experiment.

Obviously, for any n1 and n2 fixed, Theorem 1 gives us the form of the optimal
test, which maximizes

P ′(θ0)− λP (θ0)− cN(θ0) (15)

over all tests with n1 observations at the first and n2 at the second stage of the
experiment, where N(θ) = n1 + n2C(θ) is the average sample number.

Let us denote by ∆ the class of all two-stage tests of the form (8)–(10) with
x = (x1, x2, . . . , xn1) and y = (xn1+1, xn1+2, . . . , xn1+n2), corresponding to any
combination of n1 > 1, n2 > 1, λ > 0 and c > 0.

By Theorem 1, for any fixed λ > 0 and c > 0 any two-stage test has its
corresponding test in ∆ with a greater (or equal) value of the Lagrange function
(15).

Let us start with the locally most powerful two-stage tests now.
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From now on, for a two-stage test φ =< φ1, φ2, χ > let us use P (θ;φ) and
N(θ;φ) for its power function and average sample number, respectively.

As in [1], we are interested in finding a test maximizing P ′(θ0;φ) over all two-
stage tests φ with

P (θ0;φ) 6 α, (16)

and
N(θ0;φ) 6 ν, (17)

where α ∈ (0, 1) and ν > 0 are some fixed numbers (locally most powerful test at
θ = θ0).

Let
L(φ;λ, c) = P ′(θ0;φ)− λP (θ0;φ)− cN(θ0;φ) . (18)

Let us suppose now that for some λ > 0 and c > 0 there is a test φ∗ ∈ ∆ such
that

sup
φ∈∆

L(φ;λ, c) = L(φ∗;λ, c), (19)

and let α = P (θ0;φ∗) and ν = N(θ0;φ∗).
It is easy to see that in this case φ∗ is the locally most powerful test among all

two-stage tests satisfying (16) and (17).
Indeed, if φ is any such test, then

L(φ;λ, c) 6 L(φ∗;λ, c)

= P ′(θ0;φ∗)− λP (θ0;φ∗)− cN(θ0;φ∗) = P ′(θ0;φ∗)− λα− cν (20)

because of Theorem 1 and (19).
On the other hand, because of (16) and (17),

L(φ;λ, c) = P ′(θ0;φ)− λP (θ0;φ)− cN(θ0;φ) > P ′(θ0;φ)− λα− cν, (21)

Combining (20) and (21) we have

P ′(θ0;φ) 6 P ′(θ0;φ∗),

which proves that φ∗ is locally most powerful.
It is quite obvious that in the same way we can apply the result of the preceding

section for construction of the locally most powerful two-stage test for a continuous-
time stochastic process.

In this case, the observations will be taken from a stochastic process X(t), t >
0, and, in terms of the preceding section, the observations X and Y at the two
stages, of the respective duration t1 and t2, can be taken as X(t1) and X(t1 + t2),
respectively.

Again, by Theorem 1, the optimal two-stage test has the form (8)–(10) with
x = x(t1) and y = x(t1 + t2), where x(t1) and x(t1 + t2) are the observed values of
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X(t1) and X(t1 + t2), respectively, and fθ(x, y) corresponds to the two-dimensional
distribution of (X(t1), X(t1 + t2)). Because of this, all the elements of the optimal
two-stage test (8)–(10) are relatively easy to calculate, nearly as easy as in the case
of the discrete-time stochastic process above.

Acting in the same way as above in this section (see (19) and what follows), we
can find the locally most powerful two-stage test in this case as well.

It is worth mentioning that, generally speaking, there is no guarantee that this
way we can find the locally most powerful two-stage test for any given α and/or
ν (and even for some of them), but neither is it there in the case of [1], even for
independent and identically distributed observations.

As a promising fact let us note that in any case the optimization problem (19)
is essentially numerical (two-dimensional optimization), so there is a hope that, in
any concrete case, it can be solved with more or less difficulty, at least numerically.

3 Example: A Wiener process with a lineal drift

In this section, we apply the results of the preceding section to the case of testing
hypotheses about the drift of a Wiener process with a lineal drift.

We observe the process ξ(t) = W (t) + θt, where W (t) is a standard Wiener
process. At the first stage, we observe ξ(t) up to the time t1, then, if necessary, at
the second stage we observe ξ(t) for t2 time units more.

We are interested in testing H0 : θ = θ0 = 0 vs H1 : θ > 0 using a two-stage
test.

Because (ξ(t1), ξ(t1 + t2)) is a sufficient statistics, we can restrict our attention
to the distribution of the vector (X,Y ), where X = ξ(t1) and Y = ξ(t1 +t2)−ξ(t1).
So, in the terms of the preceding section

fθ(x) = f1
θ (x) =

1√
t1
φ

(
x− θt1√

t1

)
, fθ(x, y) = f1

θ (x)f2
θ (y),

f2
θ (y) =

1√
t2
φ

(
x− θt2√

t2

)
,

φ(x) being the probability distribution function of the standard normal distribution.
In this case (θ0 = 0) it is not difficult to calculate:

f ′θ0(x) = xfθ0(x)

f ′θ0(x, y) = (x+ y)fθ0(x, y)

ρ(x) = (Eθ0(x+ Y − λ)+ − (x− λ)+ − ct2)fθ0(x)

= (
√
t2φ((x− λ)/

√
t2)− |x− λ|Φ(−|x− λ|/

√
t2)− ct2)fθ0(x),

where Φ(x) is the standard normal distribution function.



Locally most powerful two-stage tests 563

To define the optimal continuation rule (see Theorem 1) let us note that ρ(x) > 0
is equivalent to φ(u)−|u|Φ(−|u|) > c

√
t2, where u = (x−λ)/

√
t2. Thus, the optimal

continuation rule is
χ(x) = I({|x− λ|/

√
t2 < a}),

where a = a(c
√
t2) is the positive solution of the equation

φ(u)− |u|Φ(−|u|) = c
√
t2.

Jointly with φ1(x) = I({x > λ}) and φ2(x) = I({x + y > λ}) this gives a
complete description of the optimal test (8)-(10) for any fixed t1 and t2.

Let us denote G(u) = φ(u) − |u|Φ(−|u|) for u ∈ R. Then for any λ > 0 and
c > 0 and t1 > 0, t2 > 0 fixed the value (18) for the above test is equal to

√
t1

(
G

(
λ√
t1

)
− c

√
t1

)
+
√
t2Eθ0

(
G

(
ξ(t1)− λ√

t2

)
− c

√
t2

)+

(22)

To find the locally most powerful test following the plan of Section 2.4, we need
to find the supremum of (22) over all t1 > 0 and t2 > 0 (see (19)) for any λ > 0
and c > 0 fixed.

Surprisingly, for some λ > 0 and c > 0 the maximum value of (22) is equal to 0
and is achieved at t1 = t2 = 0, so the procedure of Section 2.4 fails. The worst of
all is that this happens for large values of λ which are necessary to hold the error
probability (16) at a reasonably low level of α. Our numerical estimations show
that for α ≈ 0.1 or less the maximum value of (22) over all t1 > 0 and t2 > 0 is
0. Nevertheless, for greater values of α the direct maximization of (22) gives us
a definite level-α two-stage test, which turns out to be the locally most powerful
level-α two-stage test, by the results of Section 2.4. Some numerical results for
larger α we show below in this Section.

To treat lower levels of α in this example we propose another plan.
The idea is to start with a fixed t1 > 0 in maximization of (22), say, t1 = 1. It

is easy to see that the maximum of (22) with t1 = 1 over t2 > 0 is achieved at some
t2 = r2. Starting from the pair (1, r2) it is not difficult to construct the two-stage
test giving the maximum to (22) (over t2 > 0) for any fixed t1.

Let us denote by P1(θ;λ, c) the power function of the two-stage test based on
t1 = 1 and t2 = r2 giving the maximum (over t2) to (22) with t1 = 1, and let
P ′1(θ0;λ, c) be its derivative at θ = θ0. Let, finally, be N1(θ0;λ, c) its average
sample number.

For t1 6= 1 we use, respectively, Pt1(θ;λ, c), P ′t1(θ0;λ, c) and Nt1(θ0;λ, c) for the
corresponding characteristics of the test giving the maximum (over t2) to (22) when
t1 is held fixed.

It is not difficult to see that

Pt1(θ0;λ, c) = P1(θ0;
λ√
t1
, c
√
t1), (23)
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P ′t1(θ0;λ, c) =
√
t1P

′
1(θ0;

λ√
t1
, c
√
t1), (24)

Nt1(θ0;λ, c) = t1N1(θ0;
λ√
t1
, c
√
t1). (25)

If now
Pt1(θ0;λ, c) ≈ α (26)

and
Nt1(θ0;λ, c) ≈ ν, (27)

from (23) and (25) we have that

P1(θ0;
λ√
t1
, c
√
t1) ≈ α (28)

and
t1 ≈ ν/N1(θ0;

λ√
t1
, c
√
t1),

and, by virtue of (24),

P ′t1(θ0;λ, c) ≈
√
ν
P ′1(θ0; λ√

t1
, c
√
t1)√

N1(θ0; λ√
t1
, c
√
t1)

. (29)

Thus, to maximize the left-hand side of (29) over all tests subject to (26) and
(27), it suffices to maximize the right-hand side of (29) subject to (28).

So, our candidate for the locally most powerful two-stage test is the test giving
the maximum to

P ′1(θ0;λ, c)√
N1(θ0;λ, c)

(30)

subject to
P1(θ0;λ, c) = α. (31)

The value of (30) is natural to interpret as the efficiency of the two-stage test,
representing the ”specific slope”, per square root of the average sample number
unit. Because of that, let us denote its maximum value by E2 = E2(α) (here 2
stands for ”two-stage”). Some numerical results on the evaluation of E2 can be
found below.

It is very interesting to calculate the relative efficiency of the optimal two-stage
tests with respect to the fixed sample-size test, and to the optimal sequential test.

Let us start with the ”fixed sample-size” tests.
In terms of Section 2.1 it is a ”one-stage” test with no continuation region

(χ(x) ≡ 0). In the context of this example, this means that it is defined by a fixed
time t1 of the observation at the first stage, with no continuation.
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Because the form of the decision rule is fixed by Theorem 1, we have as the
optimal one-stage test φ1(x) = I({x > λ}) with x = ξ(t1). Obviously, the power
function of such a test is P (θ0) = Pθ0(ξ(t1) > λ) = 1 − Φ(λ/

√
t1) and P ′(θ0) =

Eθ0ξ(t1)I({ξ(t1) > λ}) =
√
t1 exp{−λ2/(2t1)}/

√
2π with N(θ) = t1.

Defining λ in such a way that P (θ0) = α we have:

λ =
√
t1Φ−1(1− α),

where Φ−1(1− α) it the (1− α)-quantile of the standard normal distribution, and
hence for the efficiency E1 = E1(α):

E1 = φ(Φ−1(1− α)). (32)

Again, 1 in E1 stands for ”one-stage”.

Now, let us evaluate the efficiency of the optimal sequential test. Formally, the
case of continuous-time stochastic processes is not covered in [1], so we make use of
the results of [10] extending the locally most powerful tests of R. Berk to processes
with stationary independent increments. Because, as stated in [10], for exponential
families the locally most powerful sequential test is a Wald’s SPRT for a pair of
conjugate values of θ, for which θ0 is an ”exceptional point”, we see that for the
case we are considering the optimal sequential test is an SPRT for two symmetrical
values of θ. Being so, it is easy to calculate the characteristics of the test under H0,
because in this case the SPRT is defined by two constants −A < 0 and B > 0 and
stops when ξ(t) for the first time hits any one of the two boundaries, that is, its
stopping time is τ = sup{t : −A < ξ(t) < B}. Because under H0 there is no drift
(ξ(t) ≡ W (t)), all the characteristics are easy to calculate using the well-known
formulas for the ruin probability. This way, we come to the efficiency E∞ of the
optimal sequential test:

E∞ =
√
α(1− α).

Obviously, it should be E1 < E2 < E∞. In the table below we give the values of
E1, E2 and E∞ for some usual (or interesting) values of α. For convenience, we also
show their relative values RE2 = E2/E1 and RE∞ = E∞/E2 to make visible the
increase in the specific slope from using ”respectively more” stages of the experi-
ment. It should be noted that the increase E2/E1 is really due to one additional
stage of the experiment, while E∞/E2 corresponds to going to an ”infinitely much”
richer experiment, with a continuum of ”stages” in place of two stages as in E2.
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α E1 E2 E∞ RE2 RE∞

50% 0.39894 0.43484 0.50000 1.090 1.150

20% 0.28067 0.32867 0.40063 1.171 1.219

10% 0.17550 0.23374 0.30000 1.332 1.283

5.0% 0.10313 0.16143 0.21794 1.565 1.350

2.5% 0.05844 0.11054 0.15612 1.891 1.412

1.0% 0.02665 0.06733 0.09950 2.526 1.478

0.5% 0.01446 0.04630 0.07053 3.202 1.523

We note that the two-stage hypotheses tests are good competitors to the fully
sequential tests. Taking into account that they do not require the independence of
the observations, and thus are more applicable, they are a good prospect to study
in more details.

Examples of the two-stage tests for dependent observations will be given some-
where else. The example we consider here deals with independent observations for
two reasons. We need this case as a ”reference point” for efficiency evaluation,
because there are no known optimality results of purely sequential tests for reason-
ably general model with dependent observations, and, consequently, the efficiency
comparison of the two-stage tests with purely sequential tests would not be feasi-
ble. Now, we can state that two-stage perform well even in the case of independent
observations. The second reason is that the model considered here serve as the
”limiting” case for a rather broad class of locally asymptotically normal (LAN)
experiments. In particular, we can mention, besides the well-known LAN experi-
ments with independent identically distributed observations (see, e.g., [3]), regular
discrete-time Markov ergodic stochastic processes (see [6], cf. also [7]). We ex-
pect that the optimality results for the Wiener process will have consequences in
asymptotic optimality for a larger class of LAN experiments.

Other promising application of two-stage tests seems to be the problem of testing
a simple hypothesis versus a two-sided alternative, in which case unbiased tests are
needed. As stated in [5] the form of the locally most powerful unbiased sequential
test is difficult to find. At the same time, unbiased two-stage tests are easy to find,
at least in the example we considered here. So the locally most powerful unbiased
two-stage tests are waiting for being studied.
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