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Abstract: In this work, we consider a general problem of testing two simple
hypotheses about the distribution of a discrete-time stochastic process with in-
dependent values. The structure of optimal sequential tests is characterized. As
a criterion of optimization the average sample number under a third hypothesis
is taken, which does not necessarily match one of the two hypotheses under
consideration (a version of the modified Kiefer-Weiss problem).

In the particular case of independent and identically distributed observa-
tions, we describe the class of all sequential hypotheses tests which share the
optimality property with the sequential probability ratio test (SPRT), as well
as characterize the class of optimal sequential tests in the modified Kiefer-Weiss
problem. .,

As an illustration of the general results, we characterize the structure of
the optimal sequential tests for processes with independent values which are
stationary beginning from some fixed time on.
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1. Introduction. Problem Set-Up

Let X1, X5,...,Xn,... be a discrete-time stochastic process with independent
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values, whose distribution depends on an unknown “parameter” §. We consider
the classical problem of testing a simple hypothesis Hy : § = 0y against a simple
alternative H1 : 0= 91, 00 7& 91.

The main goal of this article is to characterize the structure of optimal
sequential tests in this problem.

Following Ferguson [5] we define a (randomized) sequential hypothesis test
as a pair (¢, ¢) of a stopping rule ¢ and a decision rule ¢, with

wz(wlaw%"'awna"')a

and

¢=(¢1a¢27'--a¢n7-")5

where the functions
Un = Un(21,22,...,2p), n=12...,
and
On = On(T1,22,...,Zn), n=12...
are supposed to be some measurable functions with values in [0, 1], which have
the following meaning. )

The value of ¢p(x1,...,zy) is interpreted as the conditional probability
to stop and proceed to decision making, given that we came to stage n of the
experiment and that the observations up to stage n were (z1,z2,...,2,). If
there is no stop, the experiments continues to the next stage and an additional
observation z,; is taken. Then the rule ¥, is applied to 1,9, ..., ZTn, Tn+1
in the same way as above, etc., until the experiment eventually stops.

It is supposed that when the e;{periment stops, a decision to accept or to
reject Hy is to be made. The function ¢,(z1,...,z,) is interpreted as the con-
ditional probability to reject the nuyll-hypothesis Hy, given that the experiment
stops at stage n being (x1, ... ,xn) the data vector observed.

The stopping rule 9 generates, by the above process, a random variable 7
(stopping time) whose distribution is given by
Py(r=n)=Eg(1 — 1)1 — ¥2) ... (L — tn—1)¥n.
Here, and throughout the paper, we interchangeably use 1, both for
wn($1,$1, ce ):Z:n)
and for
w'n(X17X15 R 7Xn)7

and so we do for any other function of observations F;. This does not cause
any problem if we adopt the following agreement: when F;, is under probability
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or expectation sign, it is F,(X1,...,Xp), otherwise it is F,(z1,...,Zn).

For practical reasons, we are interested in tests satisfying

(T < 00) = ZP@ (1.1)

for any @ involved in the problem, and, ﬁrst of al}, for 8 = 6y and 8 = 6;.
For a sequential test (¢, ¢) let us define

(¥, 8) = Pyy(reject Ho) = > Ego(1 = 1) . (1 = Yn-)¥ndbn  (12)
n=1 .
and

B, ) = Py, (accept Ho) = 3 gy (1 — 1) (1 ~ Yn-1)tbn(l — én). (1.3)
n=1

The probability a(i, ¢) is called the type I error probability, and (v, ¢) is
called the type II error probability. Normally, we would like to keep them below
some specified levels: )

(Y, ¢) < a (1.4)

and

B, ¢) < B (1.5)
with some o, 8 € (0, 1).
Another important characteristic of a sequential test is the average sample

number:
(o0}

N@B;¢) = Egm = > nEg(1—t1)... (1 = Pn_1)tn. (1.6)
n=1

Our main goal is minimizing N(60;v) over all sequential tests subject to
(1.4) and (1.5).

For independent and identically distributed (i.i.d.) observations the prob-
lem of minimizing (1.6) under conditions (1.4) and (1.5), when 6 # 6y and
6 # 01, is known as the modified Kiefer-Weiss problem (see [15]), being the
original Kiefer-Weiss problem minimizing supy N(0;v) under (1.4) and (1.5)
(see [7]).
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2. General Results. Existence and Uniqueness

In a rather standard way (see [10], see also an earlier work [1] for a slightly
different sequential testing problem), the problem of minimization of (1.6) under
constraints (1.4) and (1.5) is reduced to minimization of the Lagrange-multiplier
function:

where Ag > 0 and A1 > 0 are some constant multipliers.

The following theorem is an immediate consequence of the idea of the La-
grange multiplier method.

Let A be a class of tests. -

Theorem 1. (see [11]) Let there exist Ao > 0 and A\; > 0 and a test
(v*, &%) € A such that for any other test (¢, ¢) € A

L{y*,¢") < L(¥, ¢) (2.2)
holds and such that
a(y”,¢") =a and B(Y*,9%) =B. (2.3)
Then for any test (v, ¢) € A satisfying
o(,0) <a and B(y¥,0) <8 (2.4)
it holds .
N(8:47) < N(&; ). (2.5)

The inequality in (2.5) is strict if at least one of the equalities (2.4) is strict.

Because of Theorem 1, the problem is to find the structure of tests mini-
mizing L(y, ¢), over all sequential tests (¢, ¢).

And the first step to this, rather standard as well (see, e.g., [8], [5], [13], [3],
[4], [10]), is to get a “universal” decision rule ¢* which minimizes L(¢, ¢) over
all decision rules ¢.

Let us suppose that any X; has a probability “density” function
Jou(x)
(Radon-Nicodym derivative of its distribution) with respect to a o-finite mea-
sure 4 on the space of its “values”, ¢ =1,2,3...

Because of the independence, for any n = 1,2,3..., the “vector” (X1, X2,
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.., Xn) of the first n observations has the “density” function

fg(mla T2y0-e afEn) = Hfo,i(l‘i)
i=1

with respect to the product-measure v, = Q@ u® - - - ® p of u n times by itself.
Let T4 be the indicator function of the event A.

The universal decision rule is given by the following

Theorem 2. (see [11]) For any Ao > 0 and A\ > 0 and for any sequential
test (¥, ¢)

L, 8) > L($, ¢) (2.6)
=Y [0 = dna)n [0 + min oy S )] dvn (27)
n=1
with
¢*:(¢I7¢§a"'a¢;a':'>a (28)
where

¢n —_ ¢n(m1, . ,xn) = I{'\Ofgo(-zl,-~q$n)§>\lfgl (xl,...,zn)} . (29)

Now, the problem of minimizing L(%, ¢) is reduced to that of minimizing
L(%, ¢*): indeed, if there is (for some class of stopping rules A) a stopping rule
Y* € A such that L(y*, ¢*) < L(v, ¢*) for any other stopping rule ¢ € A, then
for any sequential test (¢, ¢) with ¥ € A we have .

L(%,¢) > L($,¢") = L(¥*,¢"),

where the first inequality is due to Theorem 2. Thus, our problem is reduced to
an optimal stopping problem, namely, to that of minimizing, over all stopping
rules ¢ € A,

L) = Li,¢) =S /(1 — ) e (L= Yt )n 0D + Il dvm,  (2.10)
n=1
where, by definition,

In = min{ o fg, M fg }-

Let us consider first the class Ay of all truncated stopping rules, i.e. those
with d)N = 1.
The following theorem is an immediate consequence of Theorem 3 in {11].
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Theorem 3. Let iy € Ay be any (truncated) stopping rule. Then

L) 2 1+ [ VY @)du(a), (2.11)
where V{’ = Iy, and recursively for k=N - 1,N —2,...1
VY = min{ly, f§ + / V& du(zei)}- (2.12)
The lower bound in (2.11) is achieved if
Y1 o= I{tN LI VY duan))
Uv-2 = Iy cpN-2 rvN duen_1)} (2.13)
Y= I{llsfgl+f VN dp(z2)}*

Remark 1. Necessary and sufficient conditions of optimality (see Remark
5 in [11]): .

If the lower bound (2.14) is achieved by a test ¢ € Ay, then for r =
,2,...N-1

Yr = {lr<f9 +f ,._Hdu (zr41)} + 7"'1{lr =fi+f ,__Hdp (zr41)}
vr-almost anywhere on

{(x1,22,...,2r) : 1 —=2p)(1 —2)...(1 ~%r_1) > 0},
where v, = v,(x1,...,2,) are some measurable functions, 0 < v, < 1, for any
r=12,...,N—-1.
On the other hand, there is an equality in (2.11) for any stopping rule of
this type.

To treat the case of “purely sequential” tests, we need some additional work
to be done. First of all, let us define for any stopping rule ¢

N-1
In@) = X [(L=61) o (0= bam)alnf§ + )
n=1

+/(1-w1)---(1—¢N_1) (N +in) dun. (2.14)

This is the Lagrange-multiplier function for ¢ truncated at N, i.e. the rule with
the components YN = (1,2, ..., ¥n_1,1,...): Ly(y) = L(yN).
From the proof of Lemma 3 [11] it is easy to see that if N(;9) < oo then
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Ly(¥) — L(¥), as N — oo, if
/(1 — )1 = ). (1 — v_1)lndin — 0, as N — oo, (2.15)

This gives place to the following definition.

Let us call the problem of hypotheses testing ¢runcatable if (2.15) is satisfied
for any stopping rule ¢ with N(6;) < oo.
A sufficient condition for that is obviously

/lNdl/N — 0, as N — oo. (2.16)

Lemma 1. For any case of i.i.d. observations, i.e.

fo0,j(x) = fo,(x) and fo, j(z) = fo,(x)
for any j = 1,2,..., the problem of testing Hy : 6 = 6y vs. Hy : 8 = 0 is
truncatable if

w{z : foo(z) # fo,(x)} > 0. (2.17)
Proof. Let us start with noting that
/lNdl/N = Ep, min {Xo, M1 Zn}, (2.18)
where
Zn = Zn(X1,..., X H;Z:(X

We show first that Zy — 0 as N — oo in Py,-probability. Indeed, for any
e>0

Po,(Zn > €) = Py, (Zn)M? > €/2) < e 1/2E, (H ;ol (Xi )) 0
90

Y fo, (Xe)\ 2 _
(E“"’ (755) 0

as N — oo, because, by (2.17),

o (25" <1

Now, it suffices to note that
Env =min{dg, M Zn} — 0, as N — oo,
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in Fy,-probability as well, and
0 < &N < Ao,
SO
Egp,én — 0, as N — oo,
which is equivalent to (2.16). O

Remark 2. For testing Hy : 8§ = 0y vs. Hy : § = 6, condition (2.17) is
always supposed because otherwise Hy and Hy state the same distribution, and
the statistical problem is meaningless.

Remark 3. Similarly to Lemma 1, any testing problem for which
feo,j(l') = feo(x) and f91,j(m) = fo, (.Z‘)
for any j > k, with some natural k > 1, is truncatable if (2.17) is fulfilled.
If

fo0.5(2) = foo.5+7(x) and fo, j(z) = fo, j+7(2)
for any j > 1, with some natural T > 1 (the periodical case mentioned in [9]),
then similar arguments show that the testing problem is truncatable if

plz 2 foo,5(x) # for,5(z)} >0, (2.19)

at least for some j =1,... T — 1.

Remark 4. Even if a problem is not truncatable, Theorem 3 still can be
used to find optimal sequential tests in An for any N > 1.

For any r = 1,2,... let us define

Vi =Vi(z1,...,2,) = lim VTN(wl,...,xT)
. N—co
(which always exists because by Lemma 4 [11]
VN (2, 20) 2 VIV (2, 20) (2.20)
forany N>landr=1,...N).
Lemma 2. For any truncatable testing problem
inf L($) = 1+ / Vi(@)du(z), (2.21)
where the infimum is taken over all stopping rules 1.

Proof. Let us denote
U=inf L), Uy =1+ [ W (2duo)
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By Theorem 3, for any N =1,2,...
Un = inf L(3).
N = inf (%)
Obviously, Uy > U for any N =1,2,..., so
lim Uy >U. (2.22)
N—ooo

Let us show first that there is an equality in (2.22).

Suppose the contrary, i.e. that limy_o Uy = U + 4¢, with some € > 0. We
immediately have from this that

Uv>U + 3¢ (2.23)
for all sufficiently large N.

On the other hand, by the definition of U there exists a i such that U <
L(¥) U +e.

Because, for a truncated testing problem, Ly (¢¥)) — L(¢), as N — oo, by
Lemma 3 [11], we have that

Lnv(¥) SU + 2 (2.24)

for all sufficiently large N as well. Because, by definition, Ly(v) > Uy, we
have that

Unv <U + 2¢
for all sufficiently large N, which contradicts (2.23).

Now, (2.21) follows from the Lebesgue Monotone Convergence Theorem,
because

lim Uy =1+ lim [ V¥ (@)du(z) =1+ / Vi(@)du(e)
N—oo N—oo
in view of (2.20). O

For any truncatable testing problem the following theorem is an immediate
consequence of Theorem 4 and Theorem 5 [11] and Lemma 2.

Theorem 4. If there exists an optimal stopping rule ¥*:
inf L($) = L(¥"), (2.25)
then

. vr = I{lr<f5+f Veprdu(ers1)} T %I{lr=f5+f Vegrdu(zri1)} (2.26)
vp-almost anywhere on {(1 — ¢7)...(1 —¥>_;) > 0} with some measurable
function v, = v,(x1,...,z,) such that 0 < v, <1, forany r =1,2,3,....

On the other hand, any 1* defined by (2.26) is optimal in the sense of (2.25)
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if
> Ep(1—4) ... (1 —yn_y)ty = 1. (2.27)

If (2.27) is not fulfilled for any choice of ., r = 1,2,..., then there is no
optimal sequential test for the testing problem.

Remark 5. A simple sufficient condition for (2.27), and hence for the
optimality, is that

Py (min {XoZR, M Zx} > 1) — 0, (2.28)
as N — oo, where '
fo,,i
Z; =] 225, j=0,1.
H f01

Indeed, in view of (2.26)
Eo(1—¢1)(1 = 93)... (1 — ¢¥x) < Eo(1 —9f) < Po(ln > f§'
+ /VNHdu(xNH)) < Py(In > fY) = Py (min { M Z}, M Z}y} > 1) — 0,
as N — oo, by (2.28).
Thus,

Eg(l—y1) Q1 —93)...68l —¢y) — 0, as N — oo, (2.29)
which is equivalent to (2.27).

3. Structure of Optimal Tests for Independent Observations

In a large class of testing problems for independent observations the optimal
tests of Theorems 3 and 4 take a much simpler form. In this section we will see
that they are based on “probability ratios” for the distributions involved.

Let us suppose that for any i = 1,2,...
{z: foi(x) =0} C {z: fo,i(x) =0} U{z: fo,i(z) =0}. (3.1)
In some sense, this means that the distribution corresponding to 6 “lies
between” those corresponding to 6y and 6.

For example, if

foi(z) = % forz € [0, 0]
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(uniform distribution on [0,6]) then (3.1) is fulfilled if 6 € [y, 0] and not
fulfilled otherwise.

Supposing that (3.1) is satisfied, the Lagrange-multiplier function L(%) (2.2)
can be expressed in terms of the probability ratios

0 — 9 fooi(xi)
zp = zp(1, . H Fas(@) and
foui (3.2)
z
zt = z2l(zy,. . z0) = H }f;’z(xz
1 ‘L

Indeed,

L) =Y / (L= 1) (1 = Ynor)n [+ min{Ao £, A f3 1] Tisp oy dvm
n=1

+ Z /(1 - ’l/ll) . (1 - ’l/}n_l)’l/Jn min{/\vofgg, /\1f0n1 }I{fg;":O}an'
n=1

But min{Aofg,, \1fz, } = 0 on {f§ = 0} because of (3.1), so the second term is
null. Thus,

=Y "Ep(1 = ¢1)...(1 = ¥n1)¥n [n +min{ X023, M1z1}] (3.3)

(cf. [10]). Here, and in what follows, we assume that any expectation corre-
sponding to a “density” function f(x)

Eg(X) = [ 9a)f (@)du(a)
is understood as ‘
Eg(X) = /Q(E)f(m)f{f(z);eo}du(ﬂﬂ),

so we do not need to care about the definition of g(z) on {f(x) = 0}.

For example, there is no problem with the definition of 20 and z} on the
right-hand side of (3.3) when f =0.

In view of (3.3), it seems very natural that in this case the optimal stopping
rules of Theorems 3 and 4 are functions of z0 and z! only. Let us prove this
and find the structure of the corresponding optimal tests in terms of z0 and z}.

Lemma 3. Under condition (3.1), forany N> 1 andr=1,2,...,N
V= fgpﬁv(zg,zﬁ)l{fpo}, (3.4)

where the functions pY = pN(zo,21), are defined for any zg,z; > 0 for any
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N>1,r=1,...,N in the following way:

P%(ZO,Zl) = g(20,21)
with g(2g, 21) = min{ 29, A\121}, and recursively for any r = NN — 2,...,2

p’rI‘v—l(zm Zl) = min {9(207 21)7 1+ E9p11'v (ZO %’:({;z(:)) y 21 %':((‘;)((:))) } . (35)

Proof. By induction over r = N,...,1. For r = N we have
VI{}’ = min{AoféZ, Alfé\f} = fév min{ o2y, Alzzlv}f{fg‘bo} = févg(z?wzzlv)f{f;’w}
by virtue of (3.1).

Let us suppose that (3.4) is satisfied for some r =2,...,N.

Then

VI = g min{a(ea, ) 1+ [ for (e (2 Ddu(an)}

= f5 ' min{g(22_1,2} ), 1

# [ fortanat (8 ome) 2 Jorle ) ey = 150 (80 58)

if £;71>0.
If £, = 0 then by (3.1) again we have that min{)\ofgo_l,)\lfgl‘l} =0, so,
by (2.12), V¥, = 0.

Thus, (3.4) is satisfied for 7 — 1 as well. a
Lemma 4. Forany N >1,r=12,...,N

pr (20, 21) > pr (20, 21) (3.6)
for any 29 > 0, 21 > 0. :

Proof. By induction over r = N, N — 1,...,1 again.
Forr=N
pi (20, 21) = glz0,21) = py (20, 21)
by (3.5).
Let us suppose (3.6) for some 7 = N, N —1,...,2. Then

r(Xr 1,7 Xr
:011}[—1(20’ z1) = min {9(207 z1),1+ Egp,J.V (ZO j;‘f;(),;(()(r)) i f.;,;(g(r))) }

> min‘{g(zo, z1),1 + EgplN+H1 (zo ];f:’r(gr)) , 21 J:fgr((j((r))) } = pivfll (20,21). O
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By Lemma 4, for any r = 1,2,... there exists
pr(z0,21) = lim pY (29, 21).
N—ooo

Passing to the limit, as N — oo, in (3.5), we have

T T 1,7 X'r
pr-1(20,21) = min {9(20, 21), 1 + Egp; (20 ];fai;(())('i)) ) 21 f];;;'((Xr))) } (3.7
for any r=2,3,....

Let

R,(20,21) = 1+ Epp, (Z foo 7 (Xr) f"ly’(X’)> .

O hor(X0) " for(Xr)

Any optimal test in is now of the form

Ur = Tig(ap ety <Rrsa (2,200} T ¥ iga02)=Rrsa (2.2} » (3.8)
vr-almost anywhere on {(1 —#1)...(1 — ¢_1) > 0} N {fy > 0}, with some
measurable function v, = y.(z1,...,2;), 0 < v < 1, for any r = 1,2,3,...

(Theorem 4).

For the case of independent and identically distributed observations consid-
ered in [10] (which is always truncatable by Lemma 1) we now have a broader
class of optimal tests: the optimal tests of type (3) [10] correspond to a par-
ticular case of (3.8), when 7 = 1 0 7 = 0 for any r > 1. This extension is
because of the randomization of stopping rules we admit in this article. This
extension is irrelevant for the problem of minimization of L() as such, but may
be important for the original problem of minimizing the average sample number
(1.6) under restrictions (1.4) and (1.5) (see Theorem 1), because it broadens
the class of tests to seek for complying with (2.3), quite like the randomization
of decision rules in the Neyman-Pearson problem is important for finding tests
with a given a-level (see, for example, [8]).

In particular, any test (3.8) is optimal in the sense if Theorem 1, i.e. for
any sequential test (1, ¢) such that

a(¥,¢) < a(y*,¢") and B(¥,¢) < B(v*, ¢7) (3.9)
(with the decision rule ¢* defined in Theorem 2) it holds
N(0;9") < N(6,v), (3.10)

and (3.10) is strict if one of the inequalities in (3.9) is strict.

More than that, if a(y,¢) = a(¥*,¢%), B(¢,¢) = B(¥*,¢*) and N(6;¢) =
N(0,v¢*) then by Theorem 4 the stopping rule ¢ has to have the form (3.8) as
well (probably, with some other v, r =1,2,...).
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There is a detailed study of properties of the non-randomized optimal tests
in [10] for the i.i.d. case.

Our focus in what follows will be on the “non-stationary” observations case
(see [9]), i.e. the case when fy, vary “in time”. Because the approach based
on Bayesian formulation (see [9]) was not very successful (see [12]), we would
like to propose another one, based on the present theory.

We will focus our attention to the minimization of N(fg; ), i.e. minimiza-
tion of the average sample size under one of the two competing hypotheses.
Because the hypotheses are interchangeable, this will obviously give us a way
to minimize N (61;v) as well. This not necessarily gives us the same test, but
occasionally it does (e.g. for i.i.d. observations). If it is not the same test, we
will have two optimal tests, and at least we always have the choice, which one
to prefer. As an alternative, we can minimize a weighted average sample size,
in form of

TN (0o;9) + (1 — m)N (615 9),
which can be solved using essentially the same technique.

The existence of the optimal sequential test from Bayesian point of view is
proved in [4] for a very broad class of discrete-time stochastic processes, on the
basis of the general theory of optimal stopping (see, for example, [3]). A more
direct approach in [9] for independent observations, based on the technique of
[5], gives much more explicit results on the structure of the sequential Bayesian
tests. Our general results [11], based on the same principles as the treatment
of sequential problems in [5], allow to unify all existing results. In what follows
we show how it works for the case of independent observations.

We will use the form (3.8) of the optimal sequential test in this particular
case of 8 = 0.

Because in this case z{ = 1 (see (3.2)) let us express all the elements of
(3.8) in terms of

fela :
=2z =
T H feo’
(see (3.2)), simply omitting the first argument in all the functions involved. In
particular, we have:

o(2) = minfho, Mz}, R(2) = g(2), (3.11)
N -= min 2 N f91, ( )
0 = min {1+ Bl (2225, (3.12)

pr(z) = I&Enoopfy(z)’ (3.13)
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pres(s) = min {g(2), 1+ Eupy (%—g—;) b (3.14)
Ry(2) = Eaypr (jﬁj—%—;) . (3.15)

Finally, by Theorem 4 we have that any optimal sequential test minimizing
L(%) has the form (see (3.8)):

Y = Lig(z)<Brsr(z0)} T Vrl{g(zr)=Rrsa1(20)} > (316)
vr-almost anywhere on {(1 — #1)...(1 —+r—1) > 0} N {fg, > 0}, with some
measurable function v, = v (z1,...,2r), 0 < v <1, forany r =1,2,3,....

A more specific structure of the optimal stopping rule can be obtained from
the properties of the functions involved (i.e., g(z), pr(2), Br(2)).

Lemma 5. The functions pr(z) defined in (3.11)-(3.15) have the following
properties:

i) they are concave and continuous on [0, ),
ii) they are non-decreasing on [0,00),
iii) o’ (0) = pr(0) =0 and p'(o0) = Pr(oo) = Ao,

Proof. Let us start with the following simple lemma which will be useful at
different stages of the proof.

Lemma 6. Let ¢ be any concave function on [0,00). Then

X
E00¢ (zfely”'( 7'))
f00,1‘ (XT)
is a concave function of z.
Proof. This is a straightforward consequence of the concavity of ¢. 3
i) Let us prove by induction over r = N, N — 1,...,1 that pf.v are concave.

For r = N pY(z) = g(z) is concave as a minimum of two concave functions
(in this particular case, lineal ones).

Suppose that p¥(z) is concave. Then, observing (3.12), we see that pY ; is
a minimum of two concave functions (the second one is concave by Lemma 6).
Thus, p¥ ; is concave as well.

The function pr(z) = limy_.0 pN (2) is also concave as a limit of concave

functions. Because p¥(z) > 0 and p,(z) > 0 are concave, they are continuous
in (0, 00) (see, for example, Section 3.18 of [6]).
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g(2) — 0 as z — 0, then the continuity at z = 0 will follow from iii).

In addition, pY(z) < g(z) (by (3.12)), and p,(2) < g(z) (by (3.14)), and

ii) By induction as well.

For r = N it is obvious. If pX(z) is non-decreasing then by (3.12) p_, is
non-decreasing as well. Thus, p, is non-decreasing as a limit of non-decreasing
functions.

iii) Starting from p¥(0) = g(0) = 0, by a straightforward induction we
obtain that pX(0) = 0 for any r < N. Thus, p,(0) = limy_.s p (0) = 0.

By a similar induction, using the Lebesgue Monotone Convergence Theo-
rem, we have p (00) = Ag.

By ii), the limit lim, .o pr(2z) = A, exists for any r = 1,2,.... Passing to
the limit, as 2 — oo, in (3.15) we see that A\._; = min{)o,1 + A}, for any
r=23,....

If for some r > 2 A, = Ag then, obviously, A\; = Ao for any ¢ < r.

Let us suppose that there is a finite number & such that A\; = 1+ Aj41 < Ag
for any ¢« > k. This easily conducts to a contradiction because in such a case
for any m > k we would have

M=14+Xg11 =2+ Xgyo=--=(Mm—k)+ In < Ao,
which can not be true if m — k > Ag because A, > 0. Thus, A\, = )¢ for any
r>1.

To finalize the proof just note that the concavity of R, (z) is due to Lemma 6,
the continuity at z = 0 follows again from the Lebesgue monotone convergence
theorem, as well as the fact that R,.(0) = 0 and R,(00) = Ao. i

The above properties allow to give to the inequality
g9(2r) <14 Rrya(zr)
defining the optimal stopping rule in (3.16) a simple equivalent form:
zr & [Ar, By).
Let us define for any r =1,2...
Ay =sup{z:0< 2 < X/A1, 1+ Rry1(2) 2 g(2)},
B, = inf{z: Ao/A1 < 2, 1+ Rry1(2) > g(2)}.

Because 1+ R,11(0) =1 > ¢(0) =0 and 14+ R,41(00) = 1+ Xg > g(o0) = Ag

(by Lemma 5) it follows that 4, >0y B, < cc.

On the other hand, if A, = B, = X\o/A\1 then 1 + R,4+1(z) > g(2) for any
z >0, and {1+ R,4+1(2) > g(2)} is non-empty if and only if 14+ R,41(Ao/A1) =
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9(Ao/A1) = Ao.
Otherwise A, < Ag/A1 < B,. In this case, we have the following

Lemma 7. A, < z < B, if and only if g(2) > 1+ Rr4+1(2).

Proof. By Lemma 5 all the functions involved are continuous, so g(A,) =
1+ Rr+1(A;) and g(Br) = 1 4+ Ry+1(By). By definition, we have further 1 +
R,11(2) < g(z) for z € (Ar, Ao/A1]. For the same reason 1 + Rr11(z) < g(2)
for z € [A\o/A1, Br). If now z € [0, A,) then there exists 1 > v > 0 such that
z=(1-~)A,. As R-+1(0) =0, by the concavity of R,,1(z) we have

Rep1((1=7)Ar) 2 (1= v)Rrs1(4r) = (1 —7)(g(4r) — 1).
Therefore,
1+ Rryi(z) 21+ (1 - 7)(g9(Ar) = 1) =7+ (1 —v)g(Ar)

> (1=7)9(Ar) = g((1 =) 4r) = g(2),
which implies 1 + R,11(z) > g(z).
It can be proved analogously that if z € (B, o0) then 1 + R,11(2) > g(2) as
well. O

Any optimal test (3.16) is now of the form

o = {I{zr<Ar or zz>B;} T ¥z =4, or z,=B,} {1+ Rri1(Xo/A1) < Ao,

r 1 otherwise,
i (3.17)
vr-almost anywhere on {(1 —¢1)...(1 —¢¥r—1) > 0} N {fz > 0}, with some
measurable function v, = v (z1,...,2r), 0 <+ <1, where A, and B, are two
roots (possibly coinciding) of the equation

1+ R (2) = g(2), (3.18)
which are uniquely defined by Lemma 7, and A, < A\/A\1 < By, for any r =
1,2,3,....

4. Applications

In this secfion, we obtain a complete solution to the problem of optimal se-
quential hypotheses testing for a particular case of the above framework, when
the process is stationary from some time k on, k > 1.
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4.1. Finitely Non-Stationary Process

Let us suppose that fg,(z) = fa(z) for i > k with some natural k¥ > 1, for
both 8 = 6y and § = 4,. By Remark 3, the problem of testing Ho: 6 = g vs.
H, : 8 =0, is truncatable.

We will suppose that
p{z : fo,(z) # fo,(z)} > 0, (4.1)
otherwise it is easy to see that the optimal sequential test is truncated at k£ — 1.
It follows from (3.11) and (3.12) that
() = PP (2) (4.2)
for any r = k— 1,k,..., N. Passing in (4.2) to the limit, as N — oo, we have
that
pr(z) = pri1(2)
for any r = k — 1,k,.... Let us denote p(2) = pr-1(z). Applying (3.14) with
r = k we immediately have i

p(z) = min{g(z),1 + Eg,p G%‘&%)

for any z > 0.
Applying (3.14) for r = k — 1,k — 2,...,2 successively again, we obtain
fel,k—l(Xk—l))}
fook-1(Xk-1) )
f91,k—2(Xk—2)) !
fook—2(Xk—2) /7
fo.,2(X2)

p1(z) = min{g(z),1 + Eg,p2 (Zm) b

In particular, the bounds A, and B, of the continuation region (see (3.18)),

are defined for r = 1,2,...,k — 2 from
f01 'r+1(X'r+1))
z)=1+E (z’——— , 4.3
g( ) 00p7'+1 fgo’-,-_}_l(X-,._}_l) ( )
and A, =Aand Br=Bforr=k—1,k,..., where A and B are defined from
f01(Xk))
z)=14+FE, (z . 4.4

By Remark 5, any test with bounds defined by (4.3)-(4.4) is optimal: in
this case (2.28) is fulfilled because Z% = 1 (recall that 6 = 6y), and Z}, — 0 in

pr-a(z) = minfg(z), T+ Enp (=

pr-a(s) = minfg(2), 1+ Eappica

&
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Py,-probability, as N — oo (see the proof of Lemma 1).

Combining Theorem 4 with Theorems 1 and 2 and with the form of optimal
sequential test (3.17) we have

Theorem 5. For any Ao > 0 and A\; > 0 any test (v*,¢*) based on
stopping time (3.17) with A,, B, defined from (4.3) and A, B defined from
(4.4), with ¢* defined in Theorem 2, is optimal in the following sense: for any
sequential test (i, ¢) such that

a(h,¢) < a(®*,¢) and B, ¢) < B(¢7,¢7) (4.5)

it holds :
N(o; ¥*) < N(6o;%). (4.6)
The inequality in (4.6) is strict if at least one of the inequalities in (4.5) is strict.

If there are equalities in all the inequalities in (4.5) and (4.6) then ¢ has form
(3.17), with possibly another choice of v, r =1,2,....

If all the observations are identically distributed, except, possibly, the first
one (k = 2 in the above case), it is immediate that the bounds of the continu-
ation region are constant (A, = A and B, = B for any r = 1,2,...), see (4.4).
Hence, the optimal test in Theorem 5 acts as the usual sequential probability
ratio test (SPRT) for i.i.d. observations. Because the SPRT minimizes not
only N(6p;1) but also N(61;1), we will pay some more attention to this case
in the following subsection, and prove that, for £k = 2, any test of Theorem 5
minimizes both N(6p;) and N(6;;¢) under conditions (4.5), exactly like an
SPRT does.

4.2. Stationary Process with Non;Stationary Initial Distribution

In this subsection we treat the case fy;(x) = fyg(z) for ¢ > 2 when 6 = 6y and
§ = 6., supposing that f1(z) does not necessarily coincide with fa(z). If it
does, for both 8 = 6, and 6 = 6,, we have the i.i.d. observations as a particular
case of this model.

The aim of this subsection is to prove
Theorem 6. For any A9 > 0 and \; > 0 any test (¢*, ¢*) with
Y = I{zT<A orz>B} T 7TI{zT=A or z,=B}» (4.7)

vr-almost anywhere on {(1 — 1) ... (1 —r_;) > 0} N ({f§ >0} U{f; > 0}),
with some measurable function v, = v,(z1,...,2,), 0 < v < 1, r > 1, where
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A and B are two roots of the equation

1+ R(2) = g(2), (48)
with ¢* defined in Theorem 2, is optimal in the following sense: for any sequen-
tial test (¢, ®) such that

a(¥,4) <a(y*,¢%) and B(y,¢) < B(Y",¢7) (4.9)

it holds
N(6o;¢*) < N(6o;¥) and N(01;9%) < N(61;9). (4.10)
The inequalities in (4.10) are strict if at least one of the inequalities in (4.9) is

strict. If there are equalities in the inequalities in (4.9) and in one of inequalities
(4.10) then ) has form (4.7), with possibly another choice of v, 7 =1,2,....

Proof. To prove the theorem, it is sufficient to show that for any sequential
test of type (4.7) with any 0 < A < B < oo there exist Ag > 0 and A\; > 0 such
that A and B are roots of (4.8) (recall that R(z), g(z) are functions of Ay and
A1, as well as of the densities fg, and fy, ).

First of all, let us recall that we derive the optimal tests of type (4.7) from
minimizing - :

N(bo; %) + Xoa(¥, ¢) + AiB(¥, ¢) (4.11)
with any A9 and A;. It is obvious that we would obtain the same results from
minimizing, instead of (4.11),

cN(fo; ) + Aa(, ¢) + B, ¢) (4.12)

with any ¢ > 0 and A > 0. Essentially; (4.12) is a re-parametrization of (4.11).
All the results above are easily reformulated in terms of ¢ and A instead of A
and A;. In particular, we have

p(z;¢, A) = min{g(z; A),c + R(z;¢,\)},

where

g(z;A) =min{\, 2z}, and R(z)= Egpp (z;Z: E))Z;;C’ /\) ,

being p(z; ¢, A) = limp 00 pn(2; ¢, A), where, in turn, p,(z) are defined starting
from

po(z;c,A) = g(z; ),
and for n = 1,2,... defined recursively:

fo,(X2) /\) }.

pn(z; ¢, A) = min{g(z; A), ¢ + Egopn—1 (Z foo(X2)' "
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As well, (4.8) transforms to

c+ R(z;¢,A) = g(z; A). (4.13)
In exactly the same way as in Lemma 5 it can be shown that R(z;c, A) is concave
and non-decreasing in ¢ and A, when other variables are held fixed. From this

immediately follows, in particular, that it is continuous in ¢ € (0,00). Let us
show that R(z;c, A) is continuous at ¢ = 0 for any fixed z and A as well.

By Lemma 2 we have that
¢+ R(zic,\) = inf{eN (00, ¥) + Aol 6°) + 20(6,6")}  (414)

for an “auxiliary” testing problem Hp : § = 6y vs. H; : § = 6; when all
the observations are supposed identically distributed, i.e. fo1(z) = fo(z), for
0 =0y and 8 = 61, c > 0.

Let us take a test based on a fixed sample size: ; = 0, ¢ < ny, = 1
and recall that by Theorem 2 ¢, = I, 13 =M >0} Then the right-hand side of

(4.14) does not exceed
cn + APy, (2fg — Mg > 0) + 2Py (2fg, — Mgy <0)

= cn+ APy, (fg./ f&, = M z) + 2Po, (fg./ o, > 2/A). (4.15)
In the proof of Lemma 1 it is shown that the second summand in (4.15) tends to
0 asn — o0o. In the same way it can be shown that so does the third summand
on (4.15) as well. Thus, for any € > 0 (4:15) does not exceed

nc+ 2e (4.16)

for n large enough, say n > N. If now ¢ < ¢/N then (4.16) does not exceed 3e.
This proves that the right-hand side of (4.14) tends to 0, as ¢ — 0. Formally
speaking, the left-hand side of (4.14) is not defined for ¢ = 0. But in view of
the fact that the right-hand side of (4.14) tends to 0 as ¢ — 0, it is convenient
to put R(z;0,A) = 0 for any A > 0 and for any z > 0, which makes R(z;c, A)
continuous in ¢ € [0, 00).

Lemma 8. For any fixed z R(z;c, \) is continuous, as a function of (c, A),
at any point (cg, Ag) with ¢g > 0, Ag > 0.

Proof. Let us fix any two numbers ¢g > 0 and Ag > 0. Then for any A1, A
such that A1 < Ag < A2 we have
R(z;¢c; M) < R(z;¢,A) < R(z;¢ \2)
if X € [A1, Ao]. Now,
ClLIIClO R(z;c; A1) < liminf R(z;¢,A) < limsup R(z;¢,A) < lim R(z;¢; A2),

c—c0,A— Ao c—eo,A— Ao c—co
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or
R(z;c0; A1) < liminf R(z;¢,A\) < limsup R(z;¢,A\) < R(z;¢0;A2). (4.17)

c—co,A— Ao 0 Ao
Now, letting Ay — Ao and A2 — XAg in (4.17) and noting that
R(z;co; A) = R(z;¢0; Mo), as A — Ao
we obtain that
lim  R(z;¢,A) = R(%;¢0,A0) - O

c—co,A— Ao

Let now A and B be any two numbers, 0 < A < B < oo. For any A,

A € [A, B], let us define ¢ = ¢()\) as a solution of the equation
c+ R(A;c,\) = A. (4.18)

We know that ¢ = ¢()) exists and is unique, because the left-hand side of
(4.18) is a continuous and strictly increasing function of ¢. Moreover, ¢(}) is a
continuous function of A, as an implicit function (4.18) defined by a function
which is continuous in two variables (Lemma 8). In addition, ¢(A) > 0, because
R(A4;¢,A) < min{A4,A\} = A for A > A.

Let us define now

G(A) = A= R(B;c(A), A) — ¢(A),

that is continuous function of A as a composition of two continuous functions.

Let us show that

o

G(A) <0, and G(B)>0. (4.19)
Indeed, ,’
G(A) = A — R(B:c(A), A) — c(A) < A — R(A; c(A), A) — c(A) =0
(by (4.18)).
Let us show now that
G(B) = B— R(B;c¢(B),B) —¢(B) > 0. (4.20)

Taking into account that, by (4.18),
¢(B)+ R(A;¢(B),B) = A,
we see that (4.20) is equivalent to
B - R(B;¢(B),B) > A— R(A;c¢(B),B).
But this is due to the fact that z — R(z; ¢(B), B) is a strictly increasing, at least
in a neighbourhood of z = B: indeed, it is an obviously convex non-negative

function, so there is a 2y > 0 such that it is strictly increasing for z > 2y. Here
zp cannot be greater or equal than B because otherwise R(z;c(B),B) would
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coincide with g(z, B) for any z > 0, which is only possible if fy,(z) = fo, ()
p-almost anywhere.

Thus, (4.19) is proved, so there exists A € (A, B) such that G(A\) = 0, that
is, we found A € (A, B) and ¢ = ¢()\) such that

c+ R(A;¢,A) =A and c+ R(B;c,\) = A,
which is equivalent to (4.13). O

Remark 6. In a particular case of i.i.d. observations, we have here
an alternative, more direct, proof of the optimality of the SPRT (the SPRT
corresponds to v, which coincides with Iy, —4} or with Iy, _py for any r =
1,2,... in (4.7)).

The uniqueness result of Theorem 6 is an extension, to randomized SPRT’s,
of the uniqueness results of Wijsman [16] (see also Remark 6 in Section 7 of
(10]).

Remark 7. Fori.i.d. observations, only the case A <1 < B has practical
sense, because otherwise there is a (trivial) test which, without taking any
observations, achieves a lesser value of the Lagrange multiplier function L(v)
(see also [14], [2], [10], among many others). For the present case, this is not
true any more: the sequential test in Theorem 6 is only meaningful from the
practical point of view if

min{Ag, A1} > 1+ Eg,p (

or A1 <1 < By, in terms of Theorem 5.

f91,1(X1))
foo,1(X1) )’
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