
Blondiaux and Derobert  A New Method for a One-Shot Unblinded Sample Size 
Reassessment in Two-Group Trials : How & When ? 

1

A New Method for a One-Shot Unblinded Sample Size Reassessment in 
Two-Group Trials : How & When ? 

Elodie Blondiaux1 and Eric Derobert1 

1 Department of Statistics, Sanofi-Aventis Research, 
1, avenue Pierre Brossolette, 
91385 Chilly-Mazarin Cedex, France 
(e-mails: elodie.blondiaux@sanofi-aventis.com ; eric.derobert@sanofi-aventis.com) 
 

Abstract. In two-group clinical trials, it has become usual, when performing a single interim unblinded sample size reas-
sessment, to prevent the inflation of the Type-I error by using the weighted statistics proposed by Cui, Hung, Wang (1999). 
Keeping unchanged the targeted between-treatment difference, we used this statistics and followed the driving principle of 
considering that a sample size is optimal when the derivative of the power with respect to the sample size has reached some 
implicit value. Then we developed new strategies in order to express a) an optimally reassessed sample size as a function of 
the Z-statistic obtained at the first stage (at any interim analysis time, i.e. at any information fraction f (0<f<1)), b) an opti-
mal information fraction fopt for the interim analysis, obtained as a function of (α, β), the Type-I and Type-II error rates. We 
adapted preliminary “conceptual” findings into a finally proposed “pragmatic” strategy. This pragmatic strategy was com-
pared to two adaptive design methods of the literature (Cui, Hung, Wang, 1999; Denne, 2001) and to one adaptive method 
sometimes proposed, based on the current trend. We used the information fraction f = 0.5 and our optimal fopt ≈ 0.9 (found 
for usual values of α and β). When the interim analysis is performed at f=0.5, our method provides good results. When the 
interim analysis is performed with 90% of the data information, methods become roughly comparable. Our finding of an 
optimal time for reassessment is in fact useful for all methods. Results suggest that a sample size reassessment is more bene-
ficial when performed close to the planned end of a trial, allowing a study with borderline interim results to be saved. 
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1 Introduction 
In the recent years, several methods have been developed for modifying some features of two-group 
clinical trials, based on the unblinded look at the data collected until some interim time-point. The 
required sample size is the main feature which can be reassessed in this way. The major issue in such 
adaptive designs is how to prevent the inflation of the global Type-I error: this had been sometimes 
obtained by astutely combining appropriate rules for futility and reassessment (see for example Shun 
(2001)). However it is much more flexible and rigorous to use either the weighted statistics proposed 
by Cui, Hung, Wang (1999) or the method based on the conditional rejection error probability pro-
posed by Schäfer-Müller (2001). These two methods are in fact equivalent in the case of a single in-
terim look and reassessment (Vandemeulebroecke, 2006) considered in this work. A connected ques-
tion is how to determine an appropriate time to perform the unblinded reassessment. 
 
Based on the weighted Cui-Hung-Wang statistics, we develop new strategies in order to determine 
how and when an interim sample size reassessment should be performed. Section 2 presents the pro-
posed model and argues about keeping the original targeted difference as the basis for reassessment. It 
also introduces the basic idea derived from sample size calculations for a fixed design, which drives 
all the further calculations. Section 3 shows the results obtained with the so-called “conceptual” and 
“pragmatic” strategies. Section 4 compares our results with those obtained with two adaptive design 
methods of the literature (Cui, Hung, Wang, 1999; Denne, 2001) and to one adaptive method some-
times proposed, based on the current trend. 

2 Model, Bettings and Driving Principle 

2.1 The Model 
In the comparison of two treatment groups (typically: an experimental drug vs a control or a placebo), 
with 1:1 randomization, normal model and unit variance σ²=1, we want to test H0 : δ=0 vs Ha : δ >0, 
where δ is the true unknown treatment difference. The total sample size originally planned N is: 

²/)²uu(4N Δβα +=  , where α and β are the Type-I and Type-II error rates, Δ is the targeted treat-
ment difference, ua is the (1-a) quantile of the standard normal distribution. 
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We consider a two-stage procedure with one interim analysis performed at the information fraction 
f ∈ ]0; 1[, where we consider the statistics: 2/f.Nd Z obsf =  ; 
dobs is the observed treatment effect at the interim analysis (first stage). 
 
We develop a method for adapting the original sample size N into a new total sample size Nnew at this 
interim time-point, and use, at the final analysis, the Cui-Hung-Wang statistics: 

sft Zf-1   ZfZ += , (with 2/f.N-Nd Z newsups = ; dsup is the treatment effect to be observed on 
the post-interim data (second stage)).  
This test statistics can be used regardless of the way chosen for modifying the sample size.  

2.2 Bettings: Targeted vs Observed difference 
Unlike some approaches to adaptive designs, here we opt to maintain the aim of showing the origi-
nally targeted between-treatments difference Δ. Indeed we assume that, in a Phase III trial, we know 
enough on the treatment and on the disease to choose a reasonable and realistic target.  
 
Some adaptive methods change the original objective. They assume that the treatment difference dobs 
observed at the interim analysis has become the most plausible value for the treatment effect, and bet 
on it. However, we consider that dobs remains only an estimation and should not be taken for granted. 
By definition, an estimator is subjected to variability: even if dobs is the most plausible value of the 
treatment effect, there are many other reasonable values. Furthermore, if the targeted Δ is in the con-
fidence interval of dobs, the interest of betting on a new target is questionable. For example, 
if dobs = Δ/2, based on half of the data (f=0.5 is a common practice in interim analyses), its 95% con-
fidence interval would be [-0.49 Δ : 1.49 Δ] if α=0.025 and β=0.20 or [-0.36 Δ : 1.36 Δ] 
if α=0.025 and β=0.10. Then, why consider Δ/2 as the new target, whereas the true effect can always 
be Δ (as well as 0 !) and could be either an unexpectedly high effect or a deleterious one ? Moreover, 
from a regulatory point of view, a change of target could be possibly challenged: resuming the exam-
ple above, it is quite uncertain whether Δ/2 (or some other fraction of Δ) would still be clini-
cally interesting. 
 
Actually this “targeted vs observed” debate should perhaps not be as agitated as it is sometimes. 
In fact, because  2/f.Nd Z obsf =   can also be written  f).uu).(/d( Z obsf βαΔ += ,  
any reassessment rule considered as a function of (f, α, β, Zf, Δ) could be equally viewed as a function 
of (f, α, β, Zf, dobs) and vice versa. Differences occur of course in construction and interpretation. But 
ultimately, the operating properties of the methods (whatever the way they are built) is really what 
does count. 

2.3 What is, implicitly, an optimal sample size ? 
As there is no universal definition of an optimal sample size, we must first define the optimality crite-
rion to be used. Here we develop the idea that the pre-specified power (1-β), associated with the ini-
tially planned sample size N, would not be considered as meaningfully increased if one extra patient 
was included. This gives a “limit value” for the derivative of the power (considered as a function of 
the sample size N), which will serve defining an optimality criterion when finding how and when the 
sample size should be reassessed. 

More precisely, if we call n= r.N any possible sample size, then a standardized “limit value” LP is 
obtained when r=1 (i.e. when the calculated sample size N controls the targeted power). It holds that: 
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Coming now to the adaptive strategy of reassessment, for every possible value of f and Zf, this rate LP 
will be compared to the increase of the conditional power for each new patient in the second stage of 
the adaptive design. We will stop to include patients when the derivative of the conditional power will 
reach down the defined bound and the corresponding number of patients Nnew will be the optimal 
sample size. 

Based on the same principle, we will also define an optimal time fopt for the interim analysis by using 
LP for comparing the average increase of the sample size and the average increase of the uncondi-
tional power obtained for each value of f. 

3 Conceptual and pragmatic strategies of reassessment 

3.1 Conceptual strategy 
The mathematical properties of the above driving principle allowed us first developing a “conceptual” 
strategy, and led us to elicit a natural futility region for every triplet (α, β, f) which provides a condi-
tional power (at the interim analysis) CP(zf )=Prob {Zt>uα | Zf=zf } at least equal to 50%. 

Defining  q=Nnew/N, it holds that: } )uu.(f-q
f-1

uz.f
(0,1)N{ Prob)CP(z

-f
f βα

α
++<=  [1] 

Then equating ∂CP/∂q = LP, an expression of the Zf interim Z-statistic depending on Nnew is derived 
and allows an indirect calculation of Nnew : 
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This equation has a unique solution for Nnew on condition that: 
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zf=z0 is the natural bound for futility ; it leads to the maximum Nnew=N[f+exp(uβ²)]. 
[Note: when zf goes under z0, CP(zf )<50% and solutions for Nnew exist (they are obtained from another Equation than Equa-
tion[2]). But paradoxically, the sample size reassessment would then become less important than N[f+exp(uβ²)] despite the 
worst interim results: this has been the reason for considering z0 as the natural bound for futility.] 

The pre-specified power (1-β) and the conditional power CP(zf ) are linked by the remarkable relation: 
f)-(qln-uu 2

)CP(z-1 f β=  [3] 

Unfortunately, for usual values like α=0.025, β=0.10, f=0.5, the futility bound is z0=-4.60 (with 
Nnew=5.67 N). A complementary futility approach (not described here) led to z0=-1.83 and 
Nnew=3.26 N. 

Therefore this conceptual strategy does not seem reasonable in practical situations. Indeed, an obsti-
nate blind application of the above would mean that having observed, from half of the data, disap-
pointing values like dobs=-2.01Δ (z0=-4.60) or dobs=-0.80Δ (z0=-1.83), would lead to pay such a big 
price as recruiting 3 to 6 times the number of patients originally planned. Extra constraints must defi-
nitely be added to the method in order that it meets practical requirements. 

3.2 Pragmatic strategy 
Constraints on the reassessed sample size 
On the one hand, it follows from Equation[3] that, in the conceptual strategy, the conditional power is 
equal to the pre-specified power iff q=1+f. Therefore we chose N(1+f) as the maximum value of Nnew 
(q≤1+f). Because f ∈ ]0; 1[, a final reassessed sample size could never exceed 2 times the originally 
planned sample size. 



Blondiaux and Derobert  A New Method for a One-Shot Unblinded Sample Size 
Reassessment in Two-Group Trials : How & When ? 

4

On the other hand, the conceptual strategy allowed reducing the sample size. It was not impossible at 
all to be confronted to the final negative result of a promising but shortened study. The odds are that 
the popularity of a statistician having promoted this solution would also be shortened. In the prag-
matic strategy, we therefore propose to force Nnew ≥ N (q≥1). 

Finally: N ≤ Nnew ≤ N(1+f) ≤ 2N   [or  1 ≤ q ≤ (1+f) ≤ 2=qmax]. 

Constraints on the futility rules 
Two additional rules were considered: 

i) stopping the trial if the first stage results are in the wrong direction (zf < 0), then the futility bound 
should be ≥ zmin(1)=0, 

ii) as in the conceptual strategy, stopping the trial if the conditional power (under Δ) is less than 50% ; 
from Equation[1] and q≤1+f, it follows: 

f
f-1uu(u

= z
).

min(2)
βαα +−

 

The complete reassessment rule of the pragmatic strategy 
Let’s note zf the statistics observed at the first stage, and the special values z1+f  = {zf | q=1+f} and z1 = 
{zf | q=1}; from Equation [2], these values are: 
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), then stop for futility, 

If max{ zmin(1), zmin(2)} ≤ zf  ≤ z1+f  , then q=1+f, 

If z1 ≤ zf ≤ z1+f  , then q is such as zf verifies Equation [2] (a linear interpolation between 1 and (1+f) 
may be an acceptable alternative for estimating q), 

If zf ≥ z1 then q=1. 

Optimal time to perform the sample size reassessment 
The LP criterion is used again when selecting the optimal information fraction fopt for reassessment. 
For each possible value of f, we calculate (under Δ) the unconditional power (1-β)f and the average qf . 
The optimal fopt is then defined as the value f at which [(1-β)f – LP.qf ] is maximum. If ever this 
maximum value was less than (1-β) – LP (the criterion calculated with the original power and q=1), it 
would mean that the fixed design is better than any adaptive one. 
 
For usual values of α=0.0125, 0.025 and β=0.05, 0.10, 0.15, 0.20, we found that the optimal informa-
tion fraction to perform the interim analysis is about 0.9. 

4 Comparisons with methods proposed in the literature 

4.1 Common constraints and considerations 
Our pragmatic strategy was compared to two adaptive design methods of the literature (Cui, Hung, 
Wang, 1999; Denne, 2001) and to one adaptive method often proposed, based on the current trend. 
Comparisons were not easy because methods have different objectives and do not necessarily provide 
futility rules. Using such rules for our method and not for the other ones would have unfairly played 
in favour of our strategy. The same futility rules as in the pragmatic strategy were implemented to 
make all the methods comparable, i.e. CP(zf ) ≥ 50% and dobs ≥ 0. Moreover, there is currently no 
golden standard for choosing the optimal information fraction for performing the reassessment. From 
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force of habit, f = 0.5 is frequently chosen as a usual practice. Hence, f = 0.5 and our optimal fopt ≈ 0.9 
were selected for the comparisons. Minimum and maximum sample sizes were also to be defined: we 
have chosen not to decrease the sample size and we imposed that it should not be more than 2 times 
larger than the original one (i.e. Nmax=2N, or  qmax=2). 

4.2 Cui-Hung-Wang method 
The Cui-Hung-Wang reassessment method is based on the ratio of the conditional power calculated 
under dobs and under the original target: 

If CP(dobs)/CP(∆)<γI or CP(dobs)/CP(∆)>γD , a reassessment has to be done. Then, 

 
Two parameters have to be defined: γI, γD . We chose γI =0.8 and γD=1 which are the values selected 
in the Cui, Hung, Wang article. 

4.3 Denne method vs dobs-based method 
The principle of the Denne method is to reassess the sample size in order to have a conditional power 
at least equal to the original power. Because originally, Denne does not propose either a maximum or 
a minimum sample size, and no futility bounds, we adapt his proposal according to the principles de-
fined in 4.1. More precisely:  

If CP(Nmax) < 50% then stop for futility. 

If 50% ≤ CP(Nmax) ≤ 1-β then Nnew=Nmax . 

If CP(Nmax) ≥ 1-β and CP(N) ≤ 1-β  then Nnew={n |CP(n)= 1-β}. 

If CP(N) ≥ 1-β then Nnew=N. 

Whereas the Denne method clearly claims that the conditional power should be calculated under the 
original target Δ, some statisticians advocate that the salvation can only come from using dobs in this 
calculation. Therefore we experimented with the two scenarios, and called the second one “dobs-based 
method”. This second method leads to higher (always positive) futility bounds: 
zmin (dobs-based method) = ])f1).(fq(f/[fu max. −−+α  

4.4 Results 
We chose to present comparisons (Fig. 1) in a very common setting: α=0.025 and β=0.10, with 
Nmax=2N (calculations combining also values α=0.0125 and β=0.20 show similar results). The times f 
for the interim analysis are f=0.5 and f=0.9. We notice that for f=0.9, all methods tend to provide bet-
ter and closer results, so that our optimal f is favourable for all methods. 
 
The Denne method provides results very close to the pragmatic strategy for both values of f. For very 
low values of the true δ, the pragmatic method uses nevertheless a little fewer patients. 
The pragmatic strategy has lower power than Cui-Hung-Wang approach, but saves more patients 
when f=0.5. Choosing one of the two methods depends on the objectives of the trial (what is the 
cost/benefit ratio of showing delta values really lower than the targeted one ?). 
The dobs-based method requires fewer patients than ours but its power is lower than the power con-
trolled by the fixed design when the true treatment effect is larger than 0.8Δ (when the interim analy-
sis is performed at half of the data). The dobs-based method futility bounds are larger than in the other 
strategies since the conditional power is computed under dobs (for f=0.5, the futility bound is 1.01 – i.e. 
dobs=0.44Δ – vs 0 for the other strategies); such a strategy leads clearly to stop many studies which 
would have been successful. 
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f=0.5 f=0.9 

  

  

 
Fig. 1: Power and Standardized Average Sample Size q (Nnew/N)  

as a function of the ratio “True delta” / “Targeted delta” (δ/Δ) 

5 Conclusion 
Finally, it is shown that our pragmatic strategy can be a good solution in adaptive designs. It is also 
shown, more generally, that a sample size reassessment is more useful when performed close to the 
planned end of a trial, allowing a study with borderline interim results to be saved. 
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