Sequential Detection of Change-Points in Linear Models

Boris Brodsky

(CEMI RAS, Moscow, Russia)

In this report the problem of sequential detection of change-points in linear models is considered. Suppose the multivariate system with structural changes is described by the following model:

$$Y(n) = \Pi X(n) + \nu_n, \quad n = 1, 2, \dots,$$
(1)

where $Y(n) = (y_{1n}, \ldots, y_{Mn})'$ is the vector of endogenous variables; $X(n) = (x_{1n}, \ldots, x_{Kn})'$ is the vector of pre-determined variables; $\nu_n = (\nu_{1n}, \ldots, \nu_{Mn})'$ is the vector of errors. ' is the transposition symbol.

Remind that the class of pre-determined variables (X(n)) includes all lagged endogenous variables (Y(n-1), Y(n-2), ...), as well as all exogenous variables (predictors) for this system.

The $M \times K$ matrix Π changes abruptly at some unknown change-point m, i.e.

$$\Pi = \Pi(n) = \mathbf{a}I(n \le m) + \mathbf{b}I(n > m), \quad n = N, N + 1, \dots$$
(2)

where $\| \mathbf{a} - \mathbf{b} \| > 0$.

Now let us formulate assumptions about the random noise process ν_n and predictors X(n) defined on the probability space $(\Omega, \mathfrak{F}, \mathbf{P})$. Consider a filtration $\{\mathcal{F}_n\}, \mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \mathcal{F}_n \subset \mathfrak{F}$, where \mathcal{F}_n is the volume of information available at the instant n.

Suppose that predictors X(n) and noises ν_n are continuously distributed and strictly stationary and the following conditions are satisfied:

1) the vector $X(n) = (x_{1n}, \ldots, x_{Kn})^{\overline{'}}$ is \mathcal{F}_{n-1} measurable.

2) there exists a continuous matrix function $V(t), t \in [0, 1]$ such that for any $0 \le t_1 \le t_2 \le 1$

$$D_N(t_1, t_2) = \frac{1}{N} \sum_{j=[t_1N]}^{[t_2N]} X(j) X'(j) \to \int_{t_1}^{t_2} V(t) dt, \quad P - \text{a.s. as } N \to \infty,$$

where $\int_{t_1}^{t_2} V(t) dt$ is the positive definite matrix;

3) the random vector sequence $\{(X(n), \nu_n)\}$ satisfies ψ -mixing and the unified Cramer condition.

4) $\{\nu_n\}$ is a martingale-difference sequence w.r.t. the flow $\{\mathcal{F}_n\}$.

The idea of our method is based upon the "moving window" statistic for sequential detection of a change-point. Suppose the size of this window is defined by a certain large parameter N. For any $n = N, N + 1, \ldots$ consider N last vectors of observations $Y(i), X(i), i = n - N + 1, \ldots, n$. The method of detection is constructed as follows. First, consider the $K\times K$ matrices:

$$\mathcal{T}^{n}(1,l) = \sum_{i=1}^{l} X(i+n-N)X'(i+n-N), \quad l = 1, \dots, N, \quad (3)$$

second, the $K\times M$ matrices:

$$z^{n}(1,l) = \sum_{i=1}^{l} X(i+n-N)Y'(i+n-N), \quad l = 1, \dots, N,$$
(4)

and third, the decision statistic

$$Y_N^n(l) = \frac{1}{N} (z^n(1,l) - \mathcal{T}^n(1,l)(\mathcal{T}^n(1,N))^{-1} z^n(1,N)).$$
(5)

where l = 1, ..., N, $Y_N^n(N) = 0$ and by definition, $Y_N^n(0) = 0$.

Fix the number $0 < \beta < 1/2$. For detection of the change-point m > N, we define the stopping time

$$\tau_N = \inf\{n : \max_{[\beta N] \le l \le N} \|Y_N^n(l)\| > C\}$$
(6)

where C is a certain decision threshold, ||A|| is the Euclidean norm of the matrix A.

1) Probability of type 1 error ("false decision"):

$$\alpha_N = \sup_n P_0\{\max_{[\beta N] \le l \le N} \|Y_N^n(l)\| > C\},\tag{7}$$

2) Probability of type 2 error ("missed goal"):

$$\delta_N = P_m\{\max_{m \le n \le m+N} \max_{[\beta N] \le l \le N} \|Y_N^n(l)\| \le C\}.$$

This characteristic describes the situation when the decision statistic does not exceed the boundary C for a sample with a change-point, i.e. for $m \leq n \leq m + N$.

3) The normalized delay time in change-point detection:

$$\gamma_N = (\tau_N - m)^+ / N, \tag{8}$$

where $a^+ = \max(0, a)$.

Theorem 1.

Suppose the above assumptions 1),3),4) are satisfied. Then for any C > 0 the following exponential upper estimate for the "false alarm" probability holds:

$$\alpha_{N} \leq \phi_{0}(C_{1}) \begin{cases} \exp(-\frac{TNC_{1}\beta}{4\phi_{0}(C_{1})}), \quad C_{1} > hT \\ \exp(-\frac{NC_{1}^{2}\beta}{4h\phi_{0}(C_{1})}), \quad C_{1} \leq hT, \end{cases}$$
(9)

where the constants h, T and $\phi_0(C_1) \ge 1$ are taken from Cramer's and ψ -mixing condition, respectively, $C_1 = C/(1 + \sqrt{K})$.

Consider the $K \times K$ matrix

$$A(t) = \int_{0}^{t} V(\tau) d\tau, \quad 0 \le t \le 1.$$

Define I = A(1). For any $0 < t \le 1$ the matrix A(t) is positive definite. For any $0 \le \theta \le 1$, consider the function

$$g(\theta) = \|A(\theta)(E - I^{-1}A(\theta))(\mathbf{a} - \mathbf{b})'\|_{\mathcal{H}}$$

where E is the unit matrix $K \times K$.

Theorem 2.

Suppose the above conditions 1)-4) are satisfied and rank(D) = M, where $D = (E - I^{-1}A(\theta))(\mathbf{a} - \mathbf{b})'$. Assume also that the sequence $D_N(0, 1)$ from condition 2) is uniformely bounded for any $\omega \in \Omega$. Denote $d = (g(\tilde{\theta}) - C)/(1 + \sqrt{K})$. Then the following exponential upper estimate holds for type 2 error:

$$\delta_N \le L_1 \exp(-L_2 dN),\tag{10}$$

where constants $L_1 > 0, L_2 > 0$ do not depend on N.

The relative delay time γ_N tends almost surely to a deterministic limit as $N \to \infty$:

$$\gamma_N = \frac{(\tau_N - m)^+}{N} \to \gamma^* \quad P_m - \text{a.s. as } N \to \infty, \tag{11}$$

where γ^* is the minimal root of the equation g(t) = C, $0 < \gamma^* < 1$.

Moreover, for any finite N and $0 < \epsilon < 1$ the following exponential inequality holds $(v = \epsilon/(1 + \sqrt{K}))$:

$$P_m\{|\gamma_N - \gamma^*| > \epsilon\} \le \mathcal{L}_1 \exp(-\mathcal{L}_2 v N)$$
(12)

where constants $\mathcal{L}_1 > 0$, $\mathcal{L}_2 > 0$ do not depend on N.

Experiments

In this section we present results of a simulation study of the proposed method in comparison with other well known tests for detecting structural changes in model coefficients, i.e.

- Fluctuation test (Chu, et al. (1996))

- CUSUM test based on 'historical' OLS residuals (Ploberger, Kramer (1992))

- CUSUM test based on recursive residuals (Horvath, et al. (2004))

The following *regression model* was considered:

$$y_i = c_0 + c_1 x_i + \epsilon_i, \quad i = 1, 2, \dots,$$

where $x_i = 2 + \xi_i$ and $\epsilon_i, \xi_i \sim \mathcal{N}(0, 1)$ are independent Gaussian random sequences.

In order to estimate the false alarm rate, the regression model without structural changes was considered with $c_0 = 0$, $c_1 = 1$. Then models with a change-point in the coefficient c_1 were considered.

Method

a) CUSUM test based on 'historical' OLS residuals

Parameter $c_{\alpha}(\gamma) = 2.2365$ of this test was chosen to ensure the false alarm rate pr = 0.05.

Table 1. Performance characteristics of CUSUM test based on 'historical' residuals (5000 replications, pr - empirical false alarm rate, w_2 - type 2 error, $E\tau$ - average delay time)

n		25	50	100	200
pr		0.02	0.02	0.015	0.02
$c_1 = 1.5$	w_2	0.004	0	0	0
	$E\tau$	23.9	25.3	29.9	38.4
$c_1 = 1.3$	w_2	0.32	0.04	0.002	0
	$E\tau$	59.0	71.1	65.4	74.3
$c_1 = 1.2$	w_2	0.65	0.36	0.07	0.0
	$E\tau$	68.6	131.4	150.9	159.9

b) CUSUM test based on recursive residuals

In Table 2 we demonstrate the corresponding results for the CUSUM test based on recursive residuals. The parameter a = 1.5 of this test was chosen in order to ensure the empirial false alarm rate pr = 0.02.

 Table 2. Performance characteristics of CUSUM test based on recursive residuals

 aaan					
n		25	50	100	200
pr		0.02	0.02	0.02	0.02
$c_1 = 1.5$	w_2	0.02	0	0	0
	$E\tau$	14.48	15.2	19.34	25.17
$c_1 = 1.3$	w_2	0.40	0.08	0.002	0
	$E\tau$	26.55	37.91	40.87	46.75
$c_1 = 1.2$	w_2	0.71	0.42	0.13	0.0
	$E\tau$	32.4	61.3	83.67	85.08

c) Fluctuation test

Table 3 below contains the corresponding results of Monte Carlo tests for the fluctuation test based on 'historical' regression estimates. The parameter $\lambda = 7.0$ of this test was chosen to ensure the empirical false alarm rate pr = 0.02.

n		25	50	100	200
pr		0.02	0.02	0.02	0.02
$c_1 = 1.5$ w_2		0.32	0.25	0.004	0
	$E\tau$	21.5	28.4	29.5	31.5
$c_1 = 1.3$	w_2	0.47	0.43	0.40	0.04
	$E\tau$	157.3	182.7	201.26	207.71
$c_1 = 1.2$	w_2	0.93	0.89	0.80	0.55
	$E\tau$	202.2	278.7	345.6	389.7

 Table 3. Performance characteristics of the fluctuation test

d) Nonparametric test

$$C = \frac{\sigma(\max_i Ex_i^2)^{1/2}}{\sqrt{N}}\,\lambda,$$

where σ^2 is the dispersion of ϵ_i and $\lambda > 0$ is the calibration parameter.

We obtain the following formula for computation of $\lambda = th\sqrt{N}/2.2361$. The obtained results are reported in Table 4.

Table 4. Decision bounds for the nonparametric test

N	20	50	100	200	300	400	500
p = 0.95	0.65	0.51	0.32	0.24	0.18	0.16	0.14
p = 0.99	0.85	0.65	0.45	0.33	0.27	0.23	0.20
λ	1.7	2.05	2.01	2.08	2.09	2.05	2.00

Table 5. Performance characteristics of the nonparametric test (5000 replications, pr - empirical false alarm rate, w_2 - type 2 error, $E\tau$ - average delay time)

N		100	200	300	400
th		0.45	0.33	0.25	0.21
pr		0.021	0.025	0.015	0.025
$c_1 = 1.5$	w_2	0.05	0	0	0
	$E\tau$	18.04	28.4	32.3	35.5
$c_1 = 1.3$	w_2	0.13	0.05	0	0
	$E\tau$	29.0	50.1	53.3	62.1
$c_1 = 1.2$	w_2	0.43	0.36	0.06	0.01
	$E\tau$	44.4	65.6	85.9	90.5

2) System of simultaneous equations (SSE)

The following system of simultaneous econometric equations was considered:

$$\begin{split} y_i &= c_0 + c_1 y_{i-1} + c_2 z_{i-1} + c_3 x_i + \epsilon_i \\ z_i &= d_0 + d_1 y_i + d_2 x_i + \xi_i \\ x_i &= 0.5 x_{i-1} + \nu_i \\ \epsilon_i &= 0.3 \epsilon_{i-1} + \eta_i, \end{split}$$

where $\xi_i, \nu_i, \eta_i, i = 1, 2, \dots$ are independent $\mathcal{N}(0, 1)$ r.v.'s.

So $(y_i, z_i)'$ is the vector of endogenous variables, x_i is the exogenous variable, and $(1, y_{i-1}, z_{i-1}, x_i)'$ is the vector of predetermined variables of this system.

The dynamics of this system is characterized by the following vector of coefficients: $\mathbf{u} = [c_0 \ c_1 \ c_2 \ c_3 \ d_0 \ d_1 \ d_2]$. The initial stationary dynamics is characterized by the coefficients $[0.1 \ 0.5 \ 0.3 \ 0.7 \ 0.2 \ 0.4 \ 0.6]$.

Table 8. Decision bounds of the nonparametric test (SSE model)

N	20	50	100	200	300	400
p = 0.95	0.99	0.67	0.49	0.39	0.30	0.25
p = 0.99	1.50	0.85	0.65	0.47	0.38	0.32
th	1.45	0.91	0.65	0.46	0.37	0.32

Table 9. Performance characteristics of the nonparametric test (SSE model, 5000 replications, pr - empirical false alarm rate, w_2 - type 2 error, $E\tau$ - average delay time)

N		20	50	100	200
th	1.50	0.85	0.65	0.47	
pr		0.02	0.03	0.02	0.03
c(6) = 0.95	w_2	0.09	0	0	0
	$E\tau$	3.80	1.71	1.21	1.01
c(6) = 0.9	w_2	0.19	0.02	0	0
	$E\tau$	4.83	2.46	1.04	1.10
c(6) = 0.8	w_2	0.45	0.15	0.04	0
	$E\tau$	6.52	9.20	13.2	11.2

References

- Chu C., Stinchcombe M. and White H. (1996). Monitoring structural change, *Econometrica* 64: 1045–1065.
- [2] Horvath L., Huskova M., Kokoszka P., and Steinebach J. (2004). Monitoring changes in linear models, *Journal of Statistical Planning and Inference* 126: 225-251.