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In this report the problem of sequential detection of change-points in
linear models is considered. Suppose the multivariate system with structural
changes is described by the following model:

Y (n) = ΠX(n) + νn, n = 1, 2, . . . , (1)

where Y (n) = (y1n, . . . , yMn)
′ is the vector of endogenous variables;

X(n) = (x1n, . . . , xKn)
′ is the vector of pre-determined variables; νn =

(ν1n, . . . , νMn)
′ is the vector of errors. ′ is the transposition symbol.

Remind that the class of pre-determined variables (X(n)) includes all
lagged endogenous variables (Y (n−1), Y (n−2), . . . ), as well as all exogenous
variables (predictors) for this system.

The M ×K matrix Π changes abruptly at some unknown change-point
m, i.e.

Π = Π(n) = aI(n ≤ m) + bI(n > m), n = N,N + 1, . . . (2)

where ‖a− b‖ > 0.
Now let us formulate assumptions about the random noise process νn and

predictors X(n) defined on the probability space (Ω,F,P). Consider a fil-
tration {Fn}, F1 ⊂ F2 ⊂ . . .Fn ⊂ F, where Fn is the volume of information
available at the instant n.

Suppose that predictors X(n) and noises νn are continuously distributed
and strictly stationary and the following conditions are satisfied:

1) the vector X(n) = (x1n, . . . , xKn)
′ is Fn−1 measurable.

2) there exists a continuous matrix function V (t), t ∈ [0, 1] such that for
any 0 ≤ t1 ≤ t2 ≤ 1

DN (t1, t2) =
1
N

[t2N ]∑
j=[t1N ]

X(j)X
′
(j) →

t2∫
t1

V (t)dt, P − a.s. as N →∞,

where
t2∫
t1

V (t)dt is the positive definite matrix;

3) the random vector sequence {(X(n), νn)} satisfies ψ-mixing and the
unified Cramer condition.

4) {νn} is a martingale-difference sequence w.r.t. the flow {Fn}.
The idea of our method is based upon the "moving window" statistic for

sequential detection of a change-point. Suppose the size of this window is
defined by a certain large parameter N . For any n = N,N + 1, . . . consider
N last vectors of observations Y (i), X(i), i = n−N + 1, . . . , n.
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The method of detection is constructed as follows. First, consider the
K ×K matrices:

T n(1, l) =
l∑

i=1

X(i+ n−N)X
′
(i+ n−N), l = 1, . . . , N, (3)

second, the K ×M matrices:

zn(1, l) =
l∑

i=1

X(i+ n−N)Y
′
(i+ n−N), l = 1, . . . , N, (4)

and third, the decision statistic

Y n
N (l) =

1
N

(zn(1, l)− T n(1, l)(T n(1, N))−1 zn(1, N)). (5)

where l = 1, . . . , N, Y n
N (N) = 0 and by definition, Y n

N (0) = 0.
Fix the number 0 < β < 1/2. For detection of the change-point m > N ,

we define the stopping time

τN = inf{n : max
[βN ]≤l≤N

‖Y n
N (l)‖ > C} (6)

where C is a certain decision threshold, ‖A‖ is the Euclidean norm of the
matrix A.

1) Probability of type 1 error ("false decision"):

αN = sup
n

P0{ max
[βN ]≤l≤N

‖Y n
N (l)‖ > C}, (7)

2) Probability of type 2 error ("missed goal"):

δN = Pm{ max
m≤n≤m+N

max
[βN ]≤l≤N

‖Y n
N (l)‖ ≤ C}.

This characteristic describes the situation when the decision statistic does
not exceed the boundary C for a sample with a change-point, i.e. for m ≤
n ≤ m+N .

3) The normalized delay time in change-point detection:

γN = (τN −m)+/N, (8)

where a+ = max(0, a).

Theorem 1.
Suppose the above assumptions 1),3),4) are satisfied. Then for any C > 0

the following exponential upper estimate for the “false alarm" probability
holds:

αN ≤ φ0(C1)


exp(−TNC1β

4φ0(C1)
), C1 > hT

exp(− NC2
1β

4hφ0(C1)
), C1 ≤ hT,

(9)
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where the constants h, T and φ0(C1) ≥ 1 are taken from Cramer’s and
ψ-mixing condition, respectively, C1 = C/(1 +

√
K).

Consider the K ×K matrix

A(t) =

t∫
0

V (τ)dτ, 0 ≤ t ≤ 1.

Define I = A(1). For any 0 < t ≤ 1 the matrix A(t) is positive definite.
For any 0 ≤ θ ≤ 1, consider the function

g(θ) = ‖A(θ)(E − I−1A(θ))(a− b)
′‖,

where E is the unit matrix K ×K.

Theorem 2.
Suppose the above conditions 1)-4) are satisfied and rank(D) = M ,

where D = (E − I−1A(θ))(a−b)
′ . Assume also that the sequence DN (0, 1)

from condition 2) is uniformely bounded for any ω ∈ Ω. Denote d = (g(θ̃)−
C)/(1+

√
K). Then the following exponential upper estimate holds for type

2 error:
δN ≤ L1 exp(−L2dN), (10)

where constants L1 > 0, L2 > 0 do not depend on N .
The relative delay time γN tends almost surely to a deterministic limit

as N →∞:

γN =
(τN −m)+

N
→ γ∗ Pm − a.s. as N →∞, (11)

where γ∗ is the minimal root of the equation g(t) = C, 0 < γ∗ < 1.
Moreover, for any finite N and 0 < ε < 1 the following exponential

inequality holds (v = ε/(1 +
√
K)):

Pm{|γN − γ∗| > ε} ≤ L1 exp(−L2vN) (12)

where constants L1 > 0,L2 > 0 do not depend on N .

Experiments
In this section we present results of a simulation study of the proposed

method in comparison with other well known tests for detecting structural
changes in model coefficients, i.e.

- Fluctuation test (Chu, et al. (1996))
- CUSUM test based on ’historical’ OLS residuals (Ploberger, Kramer

(1992))
- CUSUM test based on recursive residuals (Horvath, et al. (2004))
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The following regression model was considered:

yi = c0 + c1xi + εi, i = 1, 2, . . . ,

where xi = 2 + ξi and εi, ξi ∼ N (0, 1) are independent Gaussian random
sequences.

In order to estimate the false alarm rate, the regression model without
structural changes was considered with c0 = 0, c1 = 1. Then models with a
change-point in the coefficient c1 were considered.

Method
a) CUSUM test based on ’historical’ OLS residuals
Parameter cα(γ) = 2.2365 of this test was chosen to ensure the false

alarm rate pr = 0.05.

Table 1. Performance characteristics of CUSUM test based on ’histori-
cal’ residuals (5000 replications, pr - empirical false alarm rate, w2 - type 2
error, Eτ - average delay time)

n 25 50 100 200
pr 0.02 0.02 0.015 0.02

c1 = 1.5 w2 0.004 0 0 0
Eτ 23.9 25.3 29.9 38.4

c1 = 1.3 w2 0.32 0.04 0.002 0
Eτ 59.0 71.1 65.4 74.3

c1 = 1.2 w2 0.65 0.36 0.07 0.0
Eτ 68.6 131.4 150.9 159.9

b) CUSUM test based on recursive residuals
In Table 2 we demonstrate the corresponding results for the CUSUM test

based on recursive residuals. The parameter a = 1.5 of this test was chosen
in order to ensure the empirial false alarm rate pr = 0.02.

Table 2. Performance characteristics of CUSUM test based on recursive
residuals

n 25 50 100 200
pr 0.02 0.02 0.02 0.02

c1 = 1.5 w2 0.02 0 0 0
Eτ 14.48 15.2 19.34 25.17

c1 = 1.3 w2 0.40 0.08 0.002 0
Eτ 26.55 37.91 40.87 46.75

c1 = 1.2 w2 0.71 0.42 0.13 0.0
Eτ 32.4 61.3 83.67 85.08

c) Fluctuation test
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Table 3 below contains the corresponding results of Monte Carlo tests for
the fluctuation test based on ’historical’ regression estimates. The parameter
λ = 7.0 of this test was chosen to ensure the empirical false alarm rate
pr = 0.02.

Table 3. Performance characteristics of the fluctuation test

n 25 50 100 200
pr 0.02 0.02 0.02 0.02

c1 = 1.5 w2 0.32 0.25 0.004 0
Eτ 21.5 28.4 29.5 31.5

c1 = 1.3 w2 0.47 0.43 0.40 0.04
Eτ 157.3 182.7 201.26 207.71

c1 = 1.2 w2 0.93 0.89 0.80 0.55
Eτ 202.2 278.7 345.6 389.7

d) Nonparametric test

C =
σ(maxiEx

2
i )

1/2

√
N

λ,

where σ2 is the dispersion of εi and λ > 0 is the calibration parameter.
We obtain the following formula for computation of λ = th

√
N/2.2361.

The obtained results are reported in Table 4.

Table 4. Decision bounds for the nonparametric test

N 20 50 100 200 300 400 500
p = 0.95 0.65 0.51 0.32 0.24 0.18 0.16 0.14
p = 0.99 0.85 0.65 0.45 0.33 0.27 0.23 0.20

λ 1.7 2.05 2.01 2.08 2.09 2.05 2.00

Table 5. Performance characteristics of the nonparametric test (5000
replications, pr - empirical false alarm rate, w2 - type 2 error, Eτ - average
delay time)

N 100 200 300 400
th 0.45 0.33 0.25 0.21
pr 0.021 0.025 0.015 0.025

c1 = 1.5 w2 0.05 0 0 0
Eτ 18.04 28.4 32.3 35.5

c1 = 1.3 w2 0.13 0.05 0 0
Eτ 29.0 50.1 53.3 62.1

c1 = 1.2 w2 0.43 0.36 0.06 0.01
Eτ 44.4 65.6 85.9 90.5
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2) System of simultaneous equations (SSE)
The following system of simultaneous econometric equations was consid-

ered:
yi = c0 + c1yi−1 + c2zi−1 + c3xi + εi
zi = d0 + d1yi + d2xi + ξi
xi = 0.5xi−1 + νi

εi = 0.3εi−1 + ηi,

where ξi, νi, ηi, i = 1, 2, . . . are independent N (0, 1) r.v.’s.
So (yi, zi)

′ is the vector of endogenous variables, xi is the exogenous
variable, and (1, yi−1, zi−1, xi)

′ is the vector of predetermined variables of
this system.

The dynamics of this system is characterized by the following vector of
coefficients: u = [c0 c1 c2 c3 d0 d1 d2]. The initial stationary dynamics is
characterized by the coefficients [0.1 0.5 0.3 0.7 0.2 0.4 0.6].

Table 8. Decision bounds of the nonparametric test (SSE model)

N 20 50 100 200 300 400
p = 0.95 0.99 0.67 0.49 0.39 0.30 0.25
p = 0.99 1.50 0.85 0.65 0.47 0.38 0.32

th 1.45 0.91 0.65 0.46 0.37 0.32

Table 9. Performance characteristics of the nonparametric test (SSE
model, 5000 replications, pr - empirical false alarm rate, w2 - type 2 error,
Eτ - average delay time)

N 20 50 100 200
th 1.50 0.85 0.65 0.47
pr 0.02 0.03 0.02 0.03

c(6) = 0.95 w2 0.09 0 0 0
Eτ 3.80 1.71 1.21 1.01

c(6) = 0.9 w2 0.19 0.02 0 0
Eτ 4.83 2.46 1.04 1.10

c(6) = 0.8 w2 0.45 0.15 0.04 0
Eτ 6.52 9.20 13.2 11.2
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