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Abstract. Let X1, X2, . . . , Xn be independent random variables uniformly distributed on [0, 1]. We observe these sequen-
tially and have to stop on exactly one of them. No recall of preceding observations is permitted. What stopping rule minimizes
the expected rank of the selected observation? What is the value of the expected rank (as a function of n) and what is the limit
of this value when n goes to infinity? This full-information expected selected rank problem is known as Robbins’ problem, and
its general solution is unknown. In this work we consider a continuous time version of the problem in which the observations
follow a Poisson arrival process on R+ × [0, 1] of homogeneous rate 1. Translating the problem in this setting, we prove that,
under reasonable assumptions, the corresponding value function is bounded, Lipschitz continuous and differentiable. We also
derive a differential equation for this function. Our main result is that the limiting value of the Poisson embedded problem
exists and is equal to that of Robbins’ problem.
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1 Introduction

This paper summarizes the recent continuous-time approach to Robbins’ problem of Bruss and Swan
(2009) and discusses open questions related with this approach.

1.1 Robbins’ problem

Let X1, X2, . . . , Xn be a sequence of iid observations, sampled from the uniform distribution on [0, 1].
A decision maker observes the Xk’s sequentially and has to stop on exactly one of them. No recall of
preceding observations is permitted. What stopping rule minimizes the expected rank of the selected
observation? What is the value v(n) of the minimal obtainable expected rank and what is its limit v =
limn→∞ v(n)?

This full-information expected selected rank problem is known as Robbins’ problem. This denom-
ination was coined at the International Conference on Sequential Search and Selection in Real Time
(Amherst 1990) when Herbert Robbins brought the problem to public attention. Although the corre-
sponding no-information expected-rank problem was solved in 1964 (see Chow et al. (1964)), and sig-
nificant results on the full-information version were obtained in the mid-nineties (see Bruss and Ferguson
(1993, 1996) and Assaf and Samuel-Cahn (1996)), some fundamental questions are still open (see the
survey paper Bruss (2005) and references therein). This lack of progress is mainly due to the optimal
strategy being fully history dependent, which means that the decision to stop on an arrival Xk depends
on the full set of values {X1, . . . , Xk−1}. The problem is therefore intrinsically infinite dimensional,
and any hope for progress lies in finding an alternative approach that bypasses this complexity.

Recently, Gnedin (2007) proposed a limit model for optimal stopping problems with rank-dependent
loss, in which the process is chosen to be a homogeneous Poisson point process in the strip [0, 1]× R+

with intensity measure dt dx. Hence in this model time runs from zero to one, and there are infinitely
many arrivals and a well-defined smallest one in any strip [s, s + ∆s] × R+. With this model, Gnedin
obtains bounds on the stopping value for Robbins’ problem and, in particular, shows that the full-history
dependence of the optimal decision process persists in the limit.

Our model is similar to Gnedin’s in that we also consider a version of Robbins’ problem for a
random number of arrivals occurring according to a Poisson process. Our model is not a limit model,
however, and our goal is different. We aim to construct an alternative approach which allows for direct
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comparison with Robbins’ problem for finite n.

1.2 The Poisson embedded Robbins’ problem

The problem is as follows. A decision maker observes opportunities occurring according to a planar
Poisson process of homogeneous rate 1 on R+ × [0, 1]. Here the first coordinate stands for time and
the second for the corresponding value. He inspects each arrival and has to chose exactly one before a
given time t > 0. Decisions are to be made immediately upon inspection, and no recall of preceding
observations is permitted. The loss incurred for selecting an arrival is defined as its absolute rank, that
is the number of observations in [0, t] which are not larger. If no decision has been reached before the
given time t, then the loss is equal to some non-negative function of t, sayΠ(t). At all times the decision
maker has the knowledge of the full history of the process, and his objective is to use a non-anticipating
strategy which minimizes his expected loss.

Let (T1, X1), (T2, X2), . . . denote the point arrival process. The random variables T1 ≤ T2 ≤ . . .
are the arrival times of a homogeneous Poisson counting process (N(s))s≥0 of rate 1, with associated
i.i.d. random values X1, X2, . . .. With this notation, the absolute rank of the kth arrival Xk is defined
with respect to t as

R
(t)
k =

N(t)∑
j=1

1{Xj≤Xk},

where the sum is set to 0 if N(t) = 0. The loss incurred for selecting Xk at time Tk is then

R̃
(t)
k := R

(t)
k 1{Tk≤t} +Π(t)1{Tk>t}, (1)

and the objective of the decision maker is to use a stopping time τ which minimizes E(R̃(t)
τ ). Since

we only allow stopping upon inspection, the set of adapted strategies is restricted to the collection T of
all random variables with values in the set {Tr}r≥1 of arrival times of the point process, which satisfy
{τ ≤ s} ∈ Fs, where

Fs = σ
{
(N(u))0≤u≤s, (T1, X1) . . . , (TN(s), XN(s))

}
,

and where it is understood that Fs = σ{(N(u))0≤u≤s} for all s for which N(s) = 0. Such stopping
rules are called “canonical stopping times” (see Kühne and Rüschendorf (2000) or Gnedin (2007)).

Remark 1. We will here use the notation {τ = k} instead of {τ = Tk} to denote the event that the
decision maker selects the kth arrival. Hence the notations Rτ , Xτ and Tτ are well defined and will be
used systematically throughout.

The Poisson embedded Robbins’ problem consists in studying the value function

w(t) = inf
τ
E
(
R̃(t)
τ

)
= inf

τ
E
(
R(t)
τ 1{Tτ≤t} +Π(t)1{Tτ>t}

)
, (2)

including its asymptotic value w = limt→∞w(t), if it exists, as well as the stopping rule τ?t which
achieves this value.

Remark 2. The function Π(t) reflects the loss incurred for selecting no observation before time t. We
call it the penalty function. Although we keep this function unspecified throughout the text, we sup-
pose that Π(0) = 0 and that Π(.) is increasing and differentiable with bounded derivative. Hence this
function is Lipschitz-continuous and satisfies

lim
t→∞

Π(t)
t
≤ κ, (3)

for some κ ∈ (0,∞).
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Remark 3. Note that for all τ , the expected rank of an arrival selected by τ before the horizon t satisfies

E(R(t)
τ ) = E(E(R(t)

τ | FTτ )) = E(rτ + (t− Tτ )Xτ )

where rk =
∑k

j=1 1{Xj≤Xk} is the relative rank of the kth observation. Hence, although the absolute

ranksR(t)
k are not measurable with respect toFTk , the problem of minimizing the loss among all adapted

stopping rules is well defined via that of minimizing E(rτ + (t − τ)Xτ ), as already seen in Bruss and
Ferguson (1993) and Assaf and Samuel-Cahn (1996).

Remark 4. For all τ ∈ T , let wτ (t) = E(R̃(t)
τ ) denote the expected loss incurred by using τ . Then, by

definition of w(t),
0 ≤ w(t) ≤ wτ (t)

for any specific choice of stopping rule τ . Also note that w(t) ≥ 1 for all t such that Π(t) ≥ 1.

2 Properties of the value function
Proposition 1. The value function of the Poisson embedded Robbins’ Problem is bounded on R and
satisfies

1 ≤ w(t) ≤ 2.33183

for all t sufficiently large.

Outline of the proof: This result is readily obtained by considering a specific subclass of stopping rules
of the form τ = inf {i ≥ 1 such that Xi ≤ ϕ(Ti)} , for ϕ(·) some real valued function defined on R+.
Such rules are called memoryless threshold rules because decisions depend only on the values of the
arrivals and not otherwise on the history of the process. They have been studied in the discrete setting
by Bruss and Ferguson (1993, 1996) and Assaf and Samuel-Cahn (1996), and in a continuous time limit
model by Gnedin (2007).

Straightforward computations of the value of these rules show that, for sufficiently well-behaved
threshold functions ϕ(·),

wτ (t) = 1 + (Π(t)− 1) e−µ(t) + 1
2

∫ t

0
ϕ(s)2(t− s)e−µ(s)ds

+1
2

∫ t

0

∫ s

0

(ϕ(s)− ϕ(u))2

1− ϕ(u)
due−µ(s)ds,

(4)

where µ(s) =
∫ s
0 ϕ(u)du, s ≤ t. This result concurs with that obtained by Assaf and Samuel-Cahn

(1996) for the corresponding rules in the discrete settings. Now choose

ϕ(s) := ϕt,c(s) =


c

t− s+ c
if 0 ≤ s ≤ t,

1 otherwise.

For all c > 1, the corresponding memoryless threshold rule is well defined and satisfies P (Tτ <∞) =
1. Writing out (4) for this choice of ϕ(·), one sees that wτ (·) is increasing and converges to the limit

lim
t→∞

wτ (t) = 1 +
c

2
+

1
c2 − 1

.

This last expression is minimal in c = 1.9469... and the corresponding limiting value is 2.33182....
Hence the value function of the Poisson embedded Robbins’ problem is bounded on R and satisfies

1 ≤ w(t) ≤ 2.33183 (5)

for all t sufficiently large.
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Remark 5. These values (the upper bound and the minimal c achieving this bound) are identical to those
obtained by Bruss and Ferguson (1993) and Assaf and Samuel-Cahn (1996) for the discrete problem.
They also coincide with those obtained by Gnedin (2007).

Theorem 1. w(t) is continuous on R and Lipschitz continuous on (t0,∞), for some t0 sufficiently large.

Outline of the proof: The proof of this result relies on upper and lower bounds on the increments w(t+
δ)− w(t) for small δ and large t, namely

−3δ(δ + 1) ≤ w(t+ δ)− w(t) ≤ Lδ,

where L is some positive constant independent of t and δ.

Theorem 2. Let τ?t be the optimal strategy with respect to the horizon t. The value function w(t) is
differentiable and satisfies

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t | x)}dx+ χ(t), (6)

where χ(t) = Π ′(t)P (Tτ?t > t) and w(t | x) is the optimal value conditioned on a first arrival at time
0 of value x which cannot be selected, i.e.

w(t | x) = inf
τ∈T

{
E
(
R(t)
τ 1{Tτ≤t} +Π(t)1{Tτ>t} + 1{Xτ≥x}1{Tτ≤t}

)}
.

Outline of the proof: Though (6) is relatively easy to derive heuristically, obtaining an exact equation
proves to be a lot of work. We first use the continuity of w(t) to justify, for all t, the existence of an
optimal stopping rule τ?t such that w(t) = wτ?t (t). We can then write

w(t) = (1− δ)E(R̃(t)
τ?t
| N(δ) = 0) + δ E(R̃(t)

τ?t
| N(δ) = 1) + o(δ).

Next we prove that

lim
δ→0+

E(R̃(t)
τ?t
| N(δ) = 1) =

∫ 1

0
min{1 + xt, w(t | x)}dx,

and

lim
δ→0+

E(R̃(t)
τ?t
| N(δ) = 0)− w(t− δ)

δ
= Π ′(t)P (Tτ?t > t).

The statement then follows.

3 Existence of the asymptotic value
Our main result is that the classical and the continuous-time Robbins’ problems are asymptotically
equivalent, in that their limiting values exist and are equal. The proof of this result relies on the following
three statements.

Proposition 2. limt→∞w(t) ≥ v.

Outline of the proof: Consider a “half-prophet”Q, who is asked to solve the Poisson embedded Robbins’
problem but is allowed to know in advance the number of observations. Let wQ(t) be her value. Then
clearly w(t) ≥ wQ(t). Moreover, it is easy to see that

wQ(t) ≥
∞∑
k=0

P (N(t) = k) inf
σ
E(R̃(t)

σ | N(t) = k).

Now, since Q knows in advance the number of arrivals, she is in a position to use the optimal stopping
rule for the discrete problem so that her optimal value, infσ E(R̃(t)

σ | N(t) = k), can be expressed in
terms of v(k). After dealing with the impact of the penalty function, the claim follows.
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Proposition 3. Let α ∈ (1
2 , 1) and t > 0. Define βt = bt − tαc and let τ?βt be the optimal strategy for

the discrete problem with βt arrivals. Then

lim
t→∞

w(t) ≤ v + lim
t→∞

tαE(Xτ?βt
).

Outline of the proof: Our approach consists in studying how well the optimal rule τ?βt fares in the con-
tinuous setting. Straightforward conditioning yields

wτ?βt
(t) = wτ?βt

(t | N(t) < βt)P (N(t) < βt) + wτ?βt
(t | N(t) ≥ βt)P (N(t) ≥ βt), (7)

where wτ?βt (t | E) denotes the expected loss under τ?βt conditioned on the event E. First note that the
first term of the rhs of (7) is uniformly bounded by Π(t). Hence our hypothesis on the penalty function
suffice to guarantee that it becomes arbitrarily small as t→∞. Next we prove that

wτ?βt
(t | N(t) ≥ βt) = v(βt) + E(Xτ?βt

)
(
E(N(t) | N(t) ≥ βt)− βt

)
. (8)

A large deviations argument for the second term of (8) then yields the claim.

Theorem 3. Let τ?n be the optimal strategy for the discrete n-arrival Robbins’ problem. Then, for all
p > 1,

E(Xτ?n) ≤ E(Rτ?n)

(
n∑
k=1

apn,k

) 1
p

,

where

apn,k = k2−p
(
n

k

)∫ 1

0
xp+k−1(1− x)n−kdx. (9)

Outline of the proof: Conditioning on the ranks we obtain E(Xτ?n) = E(E(Xτ?n

∣∣ Rτ?n)) =∑n
k=1E(X(k)1{Rτ?n=k}), where X(k) is the kth smallest order statistic of the sample X1, . . . , Xn. The

expectations cannot be factorized. Nevertheless, applying Hölder’s inequality twice (an idea we owe to
F. Delbaen) yields

E(Xτ?n) ≤

(
n∑
k=1

apn,k

)1/p

E(Rτ?n),

where an,k = k−1/q(E(Xp
(k)))

1/p. Theorem 3 follows.

For fixed p, the coefficients (9) can be shown to behave like n2/p−1 when n is large. Hence, for each
α, one can find p such that nαn2/p−1 → 0, and thus limt→∞ t

αE(Xτ?βt
) = 0. This yields the following.

Theorem 4. The limiting value for the Poisson embedded Robbins’ problem exists and satisfies

w = lim
t→∞

w(t) = v.

4 Open questions
In this final section, we state a number of interesting questions which arose during our exploration of
the mysteries Robbins’ problem.

Question 1: Is w(t) increasing?

Bruss and Ferguson (1993) proved, through a crafty “half-prophet” argument, that v(n) is increasing in
n. Hence, although the value function w(t) need not be increasing for small values of t (because of the
penalty function), it seems reasonable that it should, for an increasing penalty function, have the same
behavior as its discrete counterpart. Interestingly, the “half-prophet” trick fails to hold in the continuous
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setting, and we have found no alternative argument to substantiate the statement that w(t) is increasing.

Question 2: How useful is the integro-differential equation (6)?

Obtaining bounds on v is an important part of contributing to a solution of Robbins’ problem, and the
best bounds known so far are

1.908 < v < 2.327,

(see Assaf and Samuel-Cahn (1996) and Bruss and Ferguson (1996)). Now although (6) is not a differen-
tial equation in the usual sense, it does open the way for an improvement on those bounds. For instance,
it it is easy to show from (6) that, for all t sufficiently large,

w(t) ≤ (c+ t)−c
∫ t

0
(c+ s)cH(s, c)ds + o(t),

where

H(t, c) =
∫ c/t+c

0
(1 + xt)dx +

∫ 1

c/t+c
(w(t |x)− w(t))dx.

Hence estimates on h(t, x) = w(t |x)−w(t) yield estimates on w, and thus on v. We believe that herein
lies hope for improvement on the known bounds on v although, in the present state of our research, this
remains a mere shift in the difficulty. We have so far obtained no significant improvement on the bounds
given above.

Question 3: Is nE(Xτ?n) bounded?

Theorem 3 implies, in particular, that the n-optimal strategy τ?n satisfies limn→∞ n
αE(Xτ?n) = 0 for

all 0 ≤ α < 1. This fails for α = 1. In fact, the estimate (3) does not even suffice to prove that
nE(Xτ?n) is bounded. Now a natural parallel has been drawn between Robbins’ problem and Moser’s
problem (Moser (1956)), in which the objective of the decision maker is to minimize the expected value
of the selected observation. Since ranks and values have limiting correlation one as n → ∞ (Bruss and
Ferguson (1993)), it is then natural to believe that the optimal strategies in both problems should have
similar behaviors, at least asymptotically. Since the optimal strategy τ̂n for Moser’s problem satisfies
limn→∞ (nE(Xτ̂n)) = 2, it seems intuitive that nE(Xτ?n) is – at the least – bounded. We have found no
proof of this assertion, and call it the Assaf–Samuel-Cahn conjecture.

References
Assaf, D. and Samuel-Cahn, E. (1996). The secretary problem; minimizing the expected rank with i.i.d. random variables, Adv.

Appl. Prob., 28, 828–852.
Bruss, F. T. (2005). What is known about Robbins’ problem?, J. Appl. Prob., 42, 108–120.
Bruss, F. T. and Ferguson, T. S. (1993). Minimizing the expected rank with full information, J. Appl. Prob., 30, 616–626.
Bruss, F. T. and Ferguson, T. S. (1996). Half-Prophets and Robbins’ problem of Minimizing the expected rank, Springer

Lecture Notes in Stat. 114, Vol. 1 in honor of J.M. Gani, 1–17.
Bruss, F. T. and Swan, Y. C. (2009). A continuous-time approach to Robbins’ problem of minimizing the expected rank, J.

Appl. Prob., 46, 1–18.
Chow, Y. S., Moriguti, S., Robbins, H. and Samuels, S. M. (1964). Optimal selection based on relative ranks, Israel Journal of

Mathematics, 2, 81–90.
Gnedin, A. V. (2007). Optimal Stopping with Rank-Dependent Loss, J. Appl. Prob., 44, 4, 996–1011.
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