Multi-stage procedures for estimation in a random one way model

Rahul Gupta

Department of Statistics, University of Jammu,
Jammu, J and K State, India.
(email: rahul_jammu@rediffmail.com)

Abstract

Hamdy et al. (1992) introduced various multi-stage procedures to construct fixed-width confidence intervals for the mean of the random one-way model. Using a more general set, in this paper, multi-stage procedures like, two-stage and three-stage procedure are proposed for the minimum risk point estimation of the mean of a random one way model taking loss function to be general absolute with general cost of sampling. Second-order asymptotics for the proposed estimation procedures are also obtained. The model can be adapted to the process of sub-sampling with equal sizes where variation among the primary units as well as the secondary units is unknown.

Keywords. Two-Stage, Three-Stage Procedures, Risk, Regret, Second-order approximations.

1 Formulation of the problem

Consider the model $\quad Y_{i j}=\mu+\tau_{i}+e_{i j}, \mathrm{i}=1,2, \ldots, \mathrm{n} ; \mathrm{j}=1,2, \ldots, r_{1}$
where $\tau_{\mathbf{i}} \sim \operatorname{NID}\left(0, \sigma_{t}^{2}\right)$ and $e_{i j} \sim \operatorname{NID}\left(0, \sigma_{e}^{2}\right) . \Omega=\left\{\mu \in \mathfrak{R} ; \sigma_{t}, \sigma_{e} \in \mathfrak{R}^{+}\right\}$, the parameter space is assumed unknown. Based on a random sample of n treatments with r_{1} equal samples per treatment, we let $M_{\text {.. }}$ be the over all sample mean and jointly $M_{\text {.. }}$, MST and MSE constitute a complete sufficient statistic for $\mu, \sigma_{\mathrm{t}}^{2}$ and σ_{e}^{2}. Also $M_{\text {.. }}$, MST and MSE are independently distributed with

$$
\begin{aligned}
& M_{. .} \sim \mathrm{N}\left(\mu,\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right) / r_{1} \mathrm{n}\right) ; \quad(\mathrm{n}-1) M S T /\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right) \sim \chi_{(n-1)}^{2} \text { and } \\
& \mathrm{n}\left(r_{1}-1\right) M S E / \sigma_{e}^{2} \sim \chi_{\left(n\left(r_{1}-1\right)\right)}^{2} .
\end{aligned}
$$

Let the loss incurred in estimating μ by $M_{\text {.. }}$ be

$$
\begin{equation*}
\mathrm{L}\left(\mu, M_{. .}\right)=\mathrm{A}\left|M_{. .}-\mu\right|^{\alpha}+\quad C n^{\beta} . \tag{2}
\end{equation*}
$$

Then, the risk corresponding to the loss (2) is

$$
\begin{equation*}
R_{n}(\mathrm{C})=(2 / \alpha) K^{*}\left[\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right) / n\right]^{\alpha / 2}+C n^{\beta} \tag{3}
\end{equation*}
$$

where $\quad K^{*}=(A \alpha / 2)\left(2 / r_{1}\right)^{\alpha / 2} \Gamma\left(\left(r_{1}+1\right) / 2\right) / \Gamma(1 / 2)$.
And, the sample size n_{0} which minimizes the risk $R_{n}(\mathrm{C})$ is

$$
\begin{equation*}
n_{0}=(K * / C \beta)^{2 /(\alpha+2 \beta)}\left[\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)\right]^{\alpha /(\alpha+2 \beta)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n_{0}}(C)=(2 \beta / \alpha+1) C n_{0}^{\beta} \tag{5}
\end{equation*}
$$

But in the absence of any knowledge about σ_{t}^{2} and σ_{e}^{2}, there does not exist any fixed sample size procedure which minimizes $R_{n}(C)$ simultaneously for all σ_{t}^{2} and σ_{e}^{2}. Hence the problem of estimation of μ arises via the estimation of n.

In the following sections, we have proposed two multi-stage procedures to estimate μ when n , the sample size, which minimizes the risk, is unobtainable.

2 The two-stage procedure

We start with a sample of size $m(\geq 2)$, where m is chosen in such a manner that $\mathrm{m}=\mathrm{o}\left(C^{2 /(\alpha+2 \beta)}\right)$, as $\mathrm{C} \rightarrow 0$ and $\operatorname{Lim}_{\mathrm{C} \rightarrow 0}\left(\mathrm{~m} / n_{0}\right)<1$. Based on these m observations, we compute MST.
Then the second-stage sample size being given by

$$
\begin{equation*}
\mathrm{N}=\max .\left\{\mathrm{m},\left[\left(\mathrm{~K}^{*} / \mathrm{C} \beta\right)^{2 /(\alpha+2 \beta)}(\mathrm{MST})^{\alpha /(\alpha+2 \beta}\right]^{+}+1\right\} \tag{6}
\end{equation*}
$$

where $[Y]^{+}$denote the largest positive integer less than Y . Then estimate μ by $M_{\text {.. }}$ using N observations. The risk associated with the 'two-stage' procedure is

$$
\begin{equation*}
R_{N}(\mathrm{C})=\operatorname{C} n_{0}^{\beta}\left\{\cdot \frac{(2 / \alpha) K^{*}\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{\alpha / 2}}{C_{0}^{(\alpha+2 \beta) / \alpha}} E\left(n_{0} / N\right)^{\alpha / 2}+E\left(N / n_{0}\right)^{\beta}\right\} \tag{7}
\end{equation*}
$$

Next, we establish second-order asymptotics for the proposed two-stage procedure.
Lemma 1. For the proposed (6) procedure

$$
\begin{align*}
& \operatorname{Lim}_{C \rightarrow 0}\left(N / n_{0}\right)=1 \quad \text { a.s., } \tag{8}\\
& \text { and for } \mathrm{k}>0, \text { and } C \rightarrow 0 \\
& \mathrm{E}\left(M S T^{k}\right)=\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{k}+\mathrm{o}\left(C^{2 /(\alpha+2 \beta)}\right) \tag{9}
\end{align*}
$$

Proof. From (6), we have the inequality

$$
\left(K^{*} / C \beta\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)} \leq \mathrm{N} \leq\left(K^{*} / C \beta\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}+\mathrm{m}
$$

or

$$
\left[M S T /\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)\right]^{\alpha /(\alpha+2 \beta)} \leq \mathrm{N} / n_{0} \leq\left[M S T /\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)\right]^{\alpha /(\alpha+2 \beta)}+\mathrm{m} / n_{0}
$$

which leads to the desired result (8) after using Kolmogrov's SLLN and a choice of m .
Since $(n-1) M S T /\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{\sim} \chi_{(n-1)}^{2}$, we get

$$
\begin{equation*}
E\left[M S T^{K}\right]=\frac{\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{K}}{\left(\frac{n-1}{2}\right)^{K}} \frac{\Gamma\left(\frac{n-1}{2}+K\right)}{\Gamma\left(\frac{n-1}{2}\right)} \tag{10}
\end{equation*}
$$

and the result from O'Neill et al.(1973) that

$$
a^{-b} \Gamma(a+b) / \Gamma a=1+\mathrm{o}\left(a^{-1}\right), \text { as } \mathrm{a} \rightarrow \infty, \text { we obtain (9). }
$$

The main results are now obtained in the following theorem:
Theorem 1. For the two-stage procedure given by (6), as $\mathrm{C} \rightarrow 0$,

$$
\begin{align*}
& \mathrm{E}(\mathrm{~N})=n_{0}+\frac{1}{2}+\mathrm{o}(1), \tag{11}\\
& \mathrm{E}\left(N^{2}\right)=n_{0}^{2}+n_{0}+\frac{1}{3}+\mathrm{o}\left(C^{\alpha /(\alpha+2 \beta)}\right), \text { an } \mathrm{d} \tag{12}\\
& \mathrm{R}_{\mathrm{g}}(\mathrm{C})=\mathrm{C}(\alpha+2 \beta) n_{0}^{\beta-2}+\mathrm{o}\left(C^{(\alpha+2) /(\alpha+2 \beta)}\right) \tag{13}
\end{align*}
$$

Proof. Denoting by
$T_{m}=1-\left\{\left(K^{*} / C \beta\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}-\left[\left(K^{*} / C \beta\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}\right]^{+}\right\}$,
we can write

$$
\begin{equation*}
\mathrm{E}(\mathrm{~N})=\left(K^{*} / C \beta\right)^{2 /(\alpha+2 \beta)} \cdot \mathrm{E}\left\{(M S T)^{\alpha /(\alpha+2 \beta)}\right\}+\mathrm{E}\left(T_{m}\right) \tag{14}
\end{equation*}
$$

It follows from Hall (1981) that $T_{m} \xrightarrow{L} U(0,1)$ as $\mathrm{C} \rightarrow 0$.

Utilizing this result and (9), we obtain that, as $C \rightarrow 0, \mathrm{E}(\mathrm{N})=n_{0}+\frac{1}{2}+\mathrm{o}(1)$.

Furthermore,

$$
\begin{equation*}
E\left(N^{2}\right)=\left(K^{*} / C \beta\right)^{4 /(\alpha+2 \beta)} \mathrm{E}\left\{(M S T)^{2 \alpha /(\alpha+2 \beta)}\right\}+2\left(K^{*} / C \beta\right)^{2 /(\alpha+2 \beta)} \mathrm{E}\left((M S T)^{\alpha /(\alpha+2 \beta)} T_{m}\right) \tag{15}
\end{equation*}
$$

And it follows from Cauchy-Schwartz Inequality that

$$
\begin{aligned}
\operatorname{Cov}^{2}\left\{(\mathrm{MST})^{\alpha /(\alpha+2 \beta)}, \mathrm{T}_{\mathrm{m}}\right\} & \leq \operatorname{Var}\left\{(M S T)^{\alpha /(\alpha+2 \beta)}\right\} \operatorname{Var}\left(T_{m}\right) \\
& =\frac{1}{12}\left\{E(M S T)^{2 \alpha /(\alpha+2 \beta)}-\left(E(M S T)^{\alpha /(\alpha+2 \beta)}\right)^{2}\right\}
\end{aligned}
$$

which on applying (9) gives that, as $\mathrm{C} \rightarrow 0, \operatorname{Cov}^{2}\left\{(M S T)^{\alpha /(\alpha+2 \beta)}, T_{m}\right\} \leq \mathrm{o}(1)$, implying that $(M S T)^{\alpha /(\alpha+2 \beta)}$ and T_{m} are asymptotically uncorrelated. Applying this result, we obtain from (15) that, as $\mathrm{C} \rightarrow 0$,

$$
\begin{gathered}
\mathrm{E}\left(N^{2}\right)=\left(K^{*} / C \beta\right)^{4 /(\alpha+2 \beta)}\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{2 \alpha /(\alpha+2 \beta)}\left\{1+o\left(C^{2 /(\alpha+2 \beta)}\right\}+\frac{1}{3}+\left(K^{*} / C \beta\right)^{2 /(\alpha+2 \beta)}\right. \\
.\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{\alpha /(\alpha+2 \beta)}\left\{1+o\left(C^{2 /(\alpha+2 \beta)}\right\},\right. \text { and (12) follows. }
\end{gathered}
$$

We can write (7) as $R_{N}(C)=\mathrm{C} n_{o}{ }^{\beta} \mathrm{E}\left[\mathrm{f}\left(\mathrm{N} / n_{0}\right)\right]$,
where $\mathrm{f}(\mathrm{x})=\left\{(2 / \alpha) K^{*}\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{\alpha / 2} / \mathrm{C} n_{0}^{(\alpha+2 \beta) / \alpha}\right\} . x^{-\alpha / 2}+x^{\beta}$.
Expanding $\mathrm{f}(\mathrm{x})$ around ' $\mathrm{x}=1$ ' by second-order Taylor's series, we obtain for $|U-1| \leq|x-1|$,

$$
\mathrm{f}(\mathrm{x})=\mathrm{f}(1)+(\mathrm{x}-1) f^{\prime}(1)+\frac{(x-1)^{2}}{2!} f^{\prime \prime}(U)
$$

Also, we have

$$
\begin{aligned}
& R_{N}(C)=R_{n_{0}}(C)+\frac{C n_{0}^{\beta}}{2 n_{0}^{2}} \mathrm{E}\left(\mathrm{~N}-n_{0}\right)\left\{(2 / \alpha) K^{*}\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{\alpha / 2} / \mathrm{C} n_{0}^{(\alpha+2 \beta) / 2}\right\} \\
& .(\alpha / 2)(\alpha / 2+1) U^{-(\alpha / 2+2)}+\beta(\beta-1) U^{\beta-2}
\end{aligned}
$$

And for sufficiently small C , both U and U^{-1} are bounded. From (8), $\mathrm{U} \xrightarrow{\text { a.s }} 1$ as $\mathrm{C} \rightarrow 0$.
Thus, utilizing these results, (10) and (11), one gets (12) and the theorem follows.

3 The Three-Stage Procedure

Let $\eta \in(0,1)$ be specified. We start with a sample of size $\mathrm{m}(\geq 2)$, where m is chosen in such a manner that $\mathrm{m}=\mathrm{o}\left(C^{-2 /(\alpha+2 \beta)}\right)$ as $\mathrm{C} \rightarrow 0$ and $\operatorname{Lim}_{C \rightarrow 0} \sup \left(m / n_{0}\right)<1$. Then, denoting by $[Y]^{+}$- the largest positive integer $<\mathrm{Y}$, we collect M-m more observations at the second stage, where,

$$
\begin{equation*}
\mathrm{M}=\max \left\{m,\left[\eta\left\{\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)} .(M S T)^{\alpha /(\alpha+2 \beta)}\right\}\right]^{+}+1\right\} \tag{16}
\end{equation*}
$$

Finally, at the third stage, we take N-M observations, where

$$
\begin{equation*}
\mathrm{N}=\max \left\{M,\left[\left\{\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)} .(M S T)^{\alpha /(\alpha+2 \beta)}\right\}\right]^{+}+1\right\} . \tag{17}
\end{equation*}
$$

After stopping, we estimate μ by $M_{\text {. }}$.
The risk associated with the three-stage procedure is same as that given by (7).
We first establish some basic lemmas.
Lemma 2. For the three-stage procedure as $\mathrm{C} \rightarrow 0$,

$$
\begin{equation*}
\mathrm{E}(N)=n_{0}-\frac{1}{2 \eta(\alpha+2 \beta)}\{3 \alpha+2 \beta\}+\frac{1}{2}+0(1) \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
E\left(N^{2}\right)=n_{0}^{2} & +\frac{\{(2 \eta-1)(\alpha+2 \beta)-4 \alpha\}}{2 \eta(\alpha+2 \beta)} n_{0}+\left[\frac{2 \alpha(\alpha-2 \beta)+(3 \alpha+2 \beta)-\eta(\alpha+2 \beta)(3 \alpha-2 \beta)}{2 \eta^{2}(\alpha+2 \beta)^{2}}\right] \\
& +\frac{1}{3}+o\left(C^{2 /(\alpha+2 \beta)}\right) . \tag{19}
\end{align*}
$$

Proof. By the definition of N, we have

$$
\begin{equation*}
\mathrm{E}(N)=\mathrm{I}+\mathrm{II}, \text { say } \tag{20}
\end{equation*}
$$

where

$$
\mathrm{I}=\mathrm{E}\left[N I\left(\{M \leq m\} \cup\left\{N \leq\left[\eta\left\{\frac{K^{*}}{C \beta}\right\}^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}\right]^{+}+1\right\}\right)\right],
$$

and

$$
\mathrm{II}=\mathrm{E}\left[N I\left(\left[\left\{\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}\right\}\right]^{+}+1>M\right)\right],
$$

It follows from Hall (1981) that, as $C \rightarrow 0$,

$$
\begin{equation*}
\mathrm{I}=\mathrm{o}(1) \tag{21}
\end{equation*}
$$

Now, denoting by

$$
T_{M}=1-\left\{\eta\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}-\left[\eta\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}\right]^{+}\right\}
$$

we can write

$$
\mathrm{II}=\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)} E\left\{(M S T)^{\alpha /(\alpha+2 \beta)}\right\}+E\left(T_{M}\right) .
$$

It follows from Hall (1981), as $\mathrm{C} \rightarrow 0, T_{M}$ tends to $U(0,1)$. Thus, as $\mathrm{C} \rightarrow 0$,

$$
\begin{equation*}
\mathrm{II}=\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)} E\left\{(M S T)^{\alpha /(\alpha+2 \beta)}\right\}+\frac{1}{2} . \tag{22}
\end{equation*}
$$

And utilizing the results that (n-1) $\operatorname{MST} /\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right) \sim \chi_{(n-1)}^{2}$, and a well known result of
O'Neill et al.(1973) that $x^{-y} \Gamma(x+y) / \Gamma(x)=1+o\left(x^{-1}\right)$, as $x \rightarrow \infty$, we get,
$\mathrm{E}(M S T)^{\alpha /(\alpha+2 \beta)}=\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{\alpha /(\alpha+2 \beta)}-\frac{\left(r_{1} \sigma_{t}^{2}+\sigma_{e}^{2}\right)^{\alpha /(\alpha+2 \beta)}}{2(\alpha+2 \beta)\left(\eta n_{0}\right)}(3 \alpha+2 \beta)+o\left(C^{1 /(\alpha+2 \beta)}\right)$
Using (23), (22), (21) and (20), we get (18).
Furthermore, we have

$$
E\left(N^{2}\right)=E\left\{\left[\left(\frac{K^{*}}{C \beta}\right)^{2 /(\alpha+2 \beta)}(M S T)^{\alpha /(\alpha+2 \beta)}\right]^{+}+1\right\}^{2}
$$

so that, as $\mathrm{C} \rightarrow 0$, result (19) follows, after some algebraic adjustments.
Lemma 3. For $\eta \in(0,1)$, as $C \rightarrow 0, P\left(N \leq \eta n_{o}\right)=O\left(m^{-r^{*}}\right)$, where r^{*} is any positive integer.
Proof. Let $\mathrm{n}_{1 \mathrm{c}}=\left[\eta \mathrm{n}_{0}\right]^{+}$. It follows from the definition of N that

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{~N} \leq \eta \mathrm{n}_{\mathrm{o}}\right) & \leq \mathrm{P}\left[\left(\frac{\mathrm{~K}^{*}}{\mathrm{C} \beta}\right)^{2 /(\alpha+2 \beta)}(\mathrm{MST})^{\alpha /(\alpha+2 \beta)} \leq \eta \mathrm{n}_{\mathrm{o}}\right] \\
& \leq \mathrm{P}\left[\max _{\mathrm{m} \leq \mathrm{M} \leq \mathrm{n}_{\mathrm{c}}}\left|\operatorname{MST}-\left(\mathrm{r}_{1} \sigma_{\mathrm{t}}^{2}+\sigma_{\mathrm{e}}^{2}\right)\right| \geq\left(\mathrm{r}_{1} \sigma_{\mathrm{t}}^{2}+\sigma_{\mathrm{e}}^{2}\right)\left\{1-\eta^{(\alpha+2 \beta) / \alpha}\right\}\right] \\
& =\mathrm{O}\left(m^{-r^{*}}\right)
\end{aligned}
$$

by Hajek-Renyi inequality(See Sen (1981)).
Lemma 4. For any $\delta(>0)$, as $\mathrm{C} \rightarrow 0$,
$\mathrm{E}\left(N^{\delta}\right)=n_{o}^{\delta}-\frac{2 \delta}{4 \eta(\alpha+2 \beta)}[2(3 \alpha+1)+2 \eta(\alpha+2 \beta)-(\alpha-1)(\alpha-2 \beta+2)] n_{o}^{\delta-1}$

$$
\begin{equation*}
+\mathrm{o}\left(C^{-(\delta-1) /(\alpha+2 \beta)}\right) \tag{24}
\end{equation*}
$$

$\mathrm{E}\left(N^{-\delta}\right)=n_{o}^{-\delta}+\frac{2 \delta n_{o}^{-(\delta+1)}}{4 \eta(\alpha+2 \beta)}[2(3 \alpha+1)+2 \eta(\alpha+2 \beta)-(\delta-1)(\alpha-2 \beta+2)]$

$$
\begin{equation*}
+\mathrm{o}\left(C^{-(\delta-1) /(\alpha+2 \beta)}\right) \tag{25}
\end{equation*}
$$

Proof. We can write
$\mathrm{E}\left(N^{\delta}\right)=n_{o}^{\delta} E\left\lfloor f\left(\frac{N}{n_{o}}\right)\right\rfloor$,
where $\mathrm{f}(\mathrm{x})=x^{\delta}$. Expanding $\mathrm{f}(\mathrm{x})$ around ' $\mathrm{x}=1$ ' by Taylor's expansion, we obtain for $|W-1| \leq\left|\left(N / n_{o}\right)-1\right|$,
$\mathrm{E}\left(N^{\delta}\right)=n_{o}^{\delta}\left[1+\left(\delta / n_{o}\right) E\left(N-n_{o}\right)+\frac{\delta(\delta-1)}{2} E\left\{\frac{\left(N-n_{o}\right)^{2}}{n_{o}^{2}} W^{\delta-2}\right\}\right]$.
Now, utilizing the fact that for $\delta(>0), W^{\delta-2}$ is uniformly integrable, Lemma 2 and also using that $\mathrm{W} \xrightarrow{\text { a.s. }} 1$, as $\mathrm{C} \rightarrow 0$, we obtain

$$
\begin{aligned}
\mathrm{E}\left(N^{\delta}\right)= & n_{0}^{\delta}\left[1+\frac{\delta}{n_{0}}\left\{-\frac{1}{2 \eta(\alpha+2 \beta)}(3 \alpha+1)+\frac{1}{2}\right\}+\frac{\delta(\delta-1)}{2 n_{0}^{2}} .\right. \\
& \left.\cdot\left\{n_{0}^{2}+\frac{((2 \eta-1)(\alpha+2 \beta)-4 \alpha)}{2 \eta(\alpha+2 \beta)} n_{0}-2 n_{0}^{2}+\frac{3 \alpha+1}{\eta(\alpha+2 \beta)} n_{0}-n_{0}+n_{0}^{2}\right\}\right]+\mathrm{o}\left(n_{0}^{\delta-1}\right)
\end{aligned}
$$

and (24) follows after some algebra.
Using the Taylor's expansion for $N^{-\delta}$, the fact that for $\delta(>0), W^{\delta-2}$ is uniformly integrable, Lemma 2 and also utilizing that $\mathrm{W} \xrightarrow{\text { a.s. }} 1$ as $\mathrm{C} \rightarrow 0$, we get

$$
\begin{gathered}
E\left(N^{-\delta}\right)=n_{0}^{-\delta}-\delta n_{0}^{-(\delta+1)}\left[-\frac{1}{2 \eta(\alpha+2 \beta)}+\frac{1}{2}\right]+\frac{\delta(\delta+1)}{2} n_{0}^{-(\delta+2)}\left[\begin{array}{c}
n_{0}^{2}+\left\{\frac{(2 \eta-1)(\alpha+2 \beta)-4 \alpha}{2 \eta(\alpha+2 \beta)}\right\} n_{0} \\
-2 n_{0}^{2}+\frac{(3 \alpha+1)}{\eta(\alpha+2 \beta)} n_{0}-n_{0}+n_{0}^{2}
\end{array}\right] \\
+ \text { +о }\left(n_{o}^{-(\delta+1)}\right),
\end{gathered}
$$

and (25) holds after some simplifications.
Theorem 3. For the three-stage procedure as $\mathrm{C} \rightarrow 0$,

$$
R_{g}(C)=\left(\frac{C}{\alpha}\right) n_{o}^{2 \beta}+\left(\frac{C}{4 \eta}\right)\left\{\frac{2}{(\alpha+2 \beta)}+(\alpha-4 \eta)-\frac{4 \eta}{\alpha} n_{o}\right\}+o(C) .
$$

Proof. Using Lemma 4 and definition of $R_{g}(C)$, we get, as $\mathrm{C} \rightarrow 0$,

$$
\left.\begin{array}{rl}
R_{g}(C)=\left(\frac{C}{\alpha}\right) n_{o}^{(\alpha+2 \beta)} & {\left[n_{o}^{-\alpha}+\frac{\alpha n_{o}^{-(\alpha+2 \beta)}}{4 \eta(\alpha+2 \beta)}\{6 \alpha+2-2 \eta(\alpha+2 \beta)+\alpha(\alpha+2 \beta)\}+o(1)\right]} \\
+ & C\left[\begin{array}{ll}
\left.n_{o}-\frac{1}{4 \eta(\alpha+2 \beta)}\{6 \alpha+2 \eta(\alpha+2 \beta)\}+o(1)\right]-C(1 / \alpha+1) n_{o}
\end{array}\right. \\
=\left(\frac{C}{\alpha}\right)\left[n_{o}^{2 \beta}\right. & +\frac{\alpha}{4 \eta(\alpha+2 \beta)}\{6 \alpha+2 \\
2 \eta(\alpha+2 \beta)+\alpha(\alpha+2 \beta)\}
\end{array}\right] \quad \begin{aligned}
& +\mathrm{C}\left[n_{o}-\frac{1}{4 \eta(\alpha+2 \beta)}\{6 \alpha+2 \eta(\alpha+2 \beta)\}\right]-\frac{C}{\alpha} n_{o}-C n_{o}+o(C),
\end{aligned}
$$

and the theorem follows.

References

Bhat, B.R. (1981). Modern probability theory. Wiley Eastern Limited, New Delhi
Chaturvedi, A., and Gupta, R. (1995). Second-order approximations to two classes of sequential estimation procedures. Statistics 27,159-173.

Hall, P. (1981). Asymptotic theory of triple Sampling for sequential estimation of a mean .Ann.Statistic, 9, 1229-1238.
Hamdy, H.I. and EL-Bassiouni, M.Y.(1992). Fixed-width interval estimation in a random one -way model.. Commun. Statist.-Theor. Math., A21 (1)-169-177.

O'Neill, R.T. and Rohtagi, V.K. (1973). A two-stage procedure for estimating the difference between mean vectors of two multivariate normal distribution. Trabajos De Estadistica Y De Investigation operatica, XXIV, 123130.

Sen, P.K. (1981). Sequential non-parametrics-Invariance principles and Statistical inference John Wiley and Sons Inc., U.S.A..

