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Abstract. Hamdy  et al. (1992) introduced various multi-stage procedures to construct fixed-width confidence intervals for 

the mean of the random one-way model. Using a more general set, in this paper,  multi-stage procedures like, two-stage and 

three-stage  procedure are proposed for the minimum risk point estimation of the mean of a random one way model taking 

loss function to be general absolute with general cost of sampling.  Second-order asymptotics for the proposed estimation 

procedures are also obtained.  The model can be adapted to the process of sub-sampling with equal sizes where variation 

among the primary units as well as the secondary units is unknown. 
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1  Formulation of the problem 

      Consider the model         ijiij eY ++= τµ , i=1,2,…,n; j=1,2,…, 1r                                                                     (1) 
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eσ ). { }+ℜ∈ℜ∈=Ω et σσµ ,; , the parameter space is assumed 

unknown. Based on a random sample of   n treatments with 1r  equal samples per treatment, we let 

..M  be the over all sample mean and jointly ..M , MST and MSE constitute a complete sufficient 
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e
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Let the loss incurred in estimating µ  by 
..M be  

                          L( .., Mµ )=A ..M - µ  α
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β
Cn .                                                                                              (2) 

Then, the risk corresponding to the loss (2) is 
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And, the sample size 
0n  which minimizes the risk 

nR (C) is  
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         But in the absence of any knowledge about 
2

tσ  and
2

eσ , there does not exist any fixed sample 

size procedure which minimizes )(CRn
simultaneously for all 

2

tσ  and
2

eσ . Hence the problem of 

estimation of µ  arises via the estimation of n.  

        In the following sections, we have proposed two multi-stage  procedures to estimate µ  when n, 

the sample size, which minimizes the risk, is unobtainable. 

 

2  The two-stage procedure 
         We start with a sample of size m ( ≥ 2), where m is chosen in such a manner that  

m=o (
)2/(2 βα +

C ), as C → 0 and 
0C

Lim
→

(m/ 0n ) <1. Based on these m observations, we compute MST. 

Then the second-stage sample size being given by 
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where [ ]+
Y  denote the largest positive integer less than Y. Then estimate µ  by 

..M using N 

observations. The risk associated with the ‘two-stage’ procedure is 
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Next, we establish second-order asymptotics for the proposed two-stage procedure. 

 

Lemma 1.   For the proposed (6)  procedure      

                        
0→C

Lim ( )0/ nN   =1      a.s.,                                                                                                                             (8) 

                         and for k>0, and 0→C , 

                         E ( )kMST = ( )k
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Proof.   From (6), we have the inequality 
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which leads to the desired result (8) after using Kolmogrov’s SLLN and a choice of m.  
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and the result from O’Neill  et al.(1973)  that                                                   

    ( ) abaa
b Γ+Γ− / = 1+o (

1−
a ), as a →  ∞  , we obtain (9). 

The main results are now obtained in the following theorem: 

 

Theorem 1.   For the two-stage procedure given by  (6), as C →0,  
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Proof.  Denoting by  
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we can write 
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Utilizing this result and (9), we obtain that, as 0→C ,   E(N)= 0n +
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1
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which on applying (9) gives that, as C 0→ , 
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} ≤ o(1), implying that 

)2/()( βαα +MST  and mT  are asymptotically uncorrelated. Applying this result, we obtain from (15) 

that, as C → 0, 
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Expanding f(x) around ‘x=1’ by second-order Taylor’s series, we obtain for 1−U 1−≤ x , 
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And for sufficiently small C,  both U and 
1−

U  are bounded.  From  (8),   U 1.→ sa
 as C 0→ .   

 

Thus, utilizing these results, (10) and (11), one gets (12) and the theorem follows. 

 

3  The Three-Stage Procedure 
         Let η ∈(0,1) be specified.  We start with a sample of size m( ≥ 2), where m is chosen in such a 

manner that m=o
( )( )βα 2/2 +−

C  as C → 0 and 
0→C

Lim sup ( ) 1/ 0 <nm .  Then, denoting by [ ]+
Y - the 

largest positive integer <Y,  we collect M-m more observations at the second stage, where,  

 

         M=max ( ) .1.,
)2/(

)2/(2
*

















+


































+

+
+

βαα
βα

β
η MST

C

K
m                                                                               (16) 

Finally, at the third stage, we take N-M observations, where 
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After stopping, we estimate µ  by ..M . 

The risk associated with the three-stage procedure is same as that given by (7). 

We first establish some basic lemmas. 

Lemma 2.   For the three-stage procedure as C 0→ , 
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Proof.   By the definition of N, we have 
  

        E ( ) =N I +II, say                                                                                                                        (20) 

 

where  

        I = E { } ( )













































+























≤≤

+

+
+

1
)2/(

)2/(2
*

βαα
βα

β
η MST

C

K
NmMNI U , 

and 

        II = E ( )
































>+


































+

+
+

MMST
C

K
NI 1

)2/(

)2/(2
*

βαα
βα

β
, 

It follows from Hall  (1981)  that, as C 0→ ,  
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And utilizing the results that (n-1) MST / (
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Using  (23), (22), (21)  and (20),  we get  (18). 
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so that, as C 0→ ,  result (19) follows, after some algebraic adjustments. 
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by Hajek-Renyi inequality(See Sen  (1981)). 

 

Lemma 4.  For any (δ >0),  as  C 0→ , 
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Proof.  We can write  
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 Now, utilizing the fact that for δ (>0),  
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W is uniformly integrable, Lemma 2 and also using that 
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Theorem 3.   For the three-stage procedure as C 0→  , 
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and the theorem follows. 
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