Multi-stage procedures for estimation in a random one way model
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Abstract. Hamdy et al. (1992) introduced various multi-stage procedures to construct fixed-width confidence intervals for
the mean of the random one-way model. Using a more general set, in this paper, multi-stage procedures like, two-stage and
three-stage procedure are proposed for the minimum risk point estimation of the mean of a random one way model taking
loss function to be general absolute with general cost of sampling. Second-order asymptotics for the proposed estimation
procedures are also obtained. The model can be adapted to the process of sub-sampling with equal sizes where variation
among the primary units as well as the secondary units is unknown.
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1 Formulation of the problem

Consider the model Y, =pu+7 +e,.i=12..nj=12...1 €))
where T, ~NID(0,0; ) and €, ~NID(©0, 0. ). © = {,u eR;0,,0,e R" } the parameter space is assumed
unknown. Based on a random sample of n treatments with 7; equal samples per treatment, we let

M  be the over all sample mean and jointly M , MST and MSE constitute a complete sufficient
statistic foryt, o; ando>. Also M, MST and MSE are independently distributed with

M ~ N(u(ro? +62)/ in) ;. a-)MST/(ro? +02) ~ y2, and

n(r-1) MSE/ 67 ~ XYooy -

Let the loss incurred in estimating & by M be

LM =AM -u|%+ Cn”. ©)
Then, the risk corresponding to the loss (2) is
R ©-wa) K |rno? +a)in|"* +cn” . 3)

where K" =(Aa/2)2/r)"T((r, +1)/2)/T(1/2).

And, the sample size n, which minimizes the risk R, (C) is

n, = (K */CB)"“*P [(rlo-tz + 0'2)]a/(a+2ﬁ), @)

e

and
R, (C)=(2B/a+1)Cn 5)
But in the absence of any knowledge about Gf and O':, there does not exist any fixed sample

size procedure which minimizes R, (C) simultaneously for all O't2 and G:. Hence the problem of
estimation of 4 arises via the estimation of n.

In the following sections, we have proposed two multi-stage procedures to estimate /4 when n,
the sample size, which minimizes the risk, is unobtainable.

2 The two-stage procedure
We start with a sample of size m (=2), where m is chosen in such a manner that

m=o0 (C Hav2f) ), as C—0 and 151%1 (m/n,) <1. Based on these m observations, we compute MST.
—

Then the second-stage sample size being given by

N = max. {m, [(K /CB) " (MST )“““*2‘3]* +1} , ©)



where [Y ]+ denote the largest positive integer less than Y. Then estimate 4 by M using N

observations. The risk associated with the ‘two-stage’ procedure is

2/)K (0! +0.)""?
R, <c>=cnf{( )Cn((;ﬂ’ﬂ)/a ) E(ny/N)*"* + E(N/n,)”
0

Next, we establish second-order asymptotics for the proposed two-stage procedure.

Lemma 1. For the proposed (6) procedure
Lim (N/ny) =1 as.,
C—0

and for k>0, and C — 0,
E(MST*)=(r,07 + 02 ) +o(C22)

Proof. From (6), we have the inequality

(k" 1cp)"*? (MsT) P < n< (K7 1CB)" P (MSTY"**P sm

or

/ 2
o [(a+2 B) <

[msT lro? +o? )] < N, < [MST /(ro? + 02 )]a/(a+2ﬁ)

+m/ n,

which leads to the desired result (8) after using Kolmogrov’s SLLN and a choice of m.

n—1)MST

ince
Since (’"1 0';2 N O-ez

)~ Z(zn—l) » W get

n—1
(ro? +02)" F( 2 +Kj

n—1 K I n-1
2 2
and the result from O’Neill et al.(1973) that

a_bF(a +b)/Fa =1+0(a™'),asa—> oo , we obtain (9).
The main results are now obtained in the following theorem:

E[msT*]=

Theorem 1. For the two-stage procedure given by (6), as C—0,

1
E(N) = n0+5 +o(1),

1
E(N*)=n; #p+ +o(CH“2Py " and

R . (O=C (oc + 2[3) n0ﬁ‘2 +o (C(a+2)/(a+2/3) )
Proof. Denoting by
T =1-{ (K* /Cﬁ)zl((x+2ﬁ) (MST)a/(a+2,6) -[(K* /C,B)Z/(‘“zﬁ) (MST)O!/(a+2,8)]+ .

we can write
EN)= (K™ /CB)M P g{(MST)™“*P Le(T,).
It follows from Hall (1981) that T, —L5U(0,]) asC—0.

2
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®
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1
Utilizing this result and (9), we obtain that,asC — 0, EN)=n, +5 +o(1).

Furthermore,
E(N?)=(K" 1CB) P e{MST)*" P L2 (K" 1 CBYY 2P £ (MST)“" )T ) (1s)
And it follows from Cauchy-Schwartz Inequality that

Cov? ((MST)* P T} <var ((MST)*"**# y var (T, )
=$ { E(MST)ZH/(DHZﬂ) _ (E(MST)DK/(DK+2ﬂ) )2 } .

which on applying (9) gives that, as C—0, Cov’ {(MST)*"“**# T }<o(1), implying that
(MST)“/(””M ' and T, are asymptotically uncorrelated. Applying this result, we obtain from (15)
that, as C—0,

E(Nz):(K / Cﬁ)4/(a+2ﬂ) ("16;2 O_:)Za/(a+2ﬁ) {1 (Cz/(mzﬁ) }+ ; (K /Cﬁ)z/(mzﬁ) .
(ro ? +62)“/(“+2ﬂ) 1+0(C2/(’”2'B) , and (12) follows.
1~ e

We can write (7) as
R, (C)=C noﬁE [f (N/ 7111,

al2 (a+2p)/a

where f(x) ={@a)K" (r,0,” +062)**1cn d

yx e xP

Expanding f(x) around ‘x=1" by second-order Taylor’s series, we obtain f0r|U - 1| < |x - 1| ,

x—1)*
f00 = (1) (0 + 5 @),
Also, we have
Cn? 2 2\a/2 28)/2
RN(C)an”(C)+2 CEN-n)(@a) K" (ro,” +0) " cni* ",
ny

@l2xal2+nU"“"*2 L B(B-1U"2.

And for sufficiently small C, both U and U ! are bounded. From 8), U—=>1asC—0.
Thus, utilizing these results, (10) and (11), one gets (12) and the theorem follows.

3 The Three-Stage Procedure

Let 77 € (0,1) be specified. We start with a sample of size m(=2), where m is chosen in such a
manner that m=o0 (C 2(as2f )) as C—0 and Lim sup (m/n,)<1. Then, denoting by [Y] - the

largest positive integer <Y, we collect M-m more observations at the second stage, where,

+

2 (a+2p)
j (MST) " P L +1L (16)

cp

Finally, at the third stage, we take N-M observations, where

M=max m,| 1] [

3



Cp

After stopping, we estimate (£ by M .

K 2/a+2) +
N=maxi M, {[—J .(MST)“/(‘”Z'B)} +1}. 17

The risk associated with the three-stage procedure is same as that given by (7).
We first establish some basic lemmas.
Lemma 2. For the three-stage procedure as C — 0,

E(N)=n, —;{3a+ 2,B}+%+0(1), (18)

2n(a+2p)

E(v?)=n; + Q2= Na+28)-4a) {w(a— 28)+ Ga+26)-nlar+ 2ﬁ)(3a—2ﬁ)}
T T 2]
+%+O(C%I+Zﬁ)j_ (19)

Proof. By the definition of N, we have

E(N)=1+1 say (20)

where

+

) 2/(a+2 )
1=E| NI| {M <m}U Ng[n{g_ﬁ} (MST)a/<a+z/s)] +1

and

K 2i(a+2) *
n=g| NI||{| =— (MST)""“*P L +1>M
Cp

It follows from Hall (1981) that,as C— 0,

I =o() 210

Now, denoting by

+

K* 2/(a+25) Kk 2/(a+25)
T, =1-17 — (MST)*"**P —| g = (MsT)*" 2P| L
Ccp cp

we can write

K 26(a+2B)

M=| — E{(MST)“““”/”) }+ E(T,).
cp

It follows from Hall (1981), as C— 0,7}, tends to U(O,l). Thus, as C— 0,

K* 2(a+2p) 1
1= (—j E{MsT) "« }4 - 22)
cB 2



And utilizing the results that (n-1) MST / (1,07 + 0. ) ~ Z(Zn_l) , and a well known result of

O’Neill et al.(1973) that x T'(x+ y)/T'(x) =1+ 0(x7"), as x — oo, we get,

(r 0.2 +0_2)a/(a+2ﬂ)
17t e

2(a+2p)(nn,)

Using (23), (22), (21) and (20), we get (18).

Ba+28)+o(CH**P) 23)

E(MST)[Z/([HZ'B) — (rlatz + O_Z)a/(a+25) _

Furthermore, we have

+

K* 2/(a+23) g
E(N>)=E (C_ﬁj (MST)*** | 41

so that, as C — 0, result (19) follows, after some algebraic adjustments.

®

Lemma 3. For Ne (0,1),as C =0, P(N< ‘r]no)= O(m_r lwhere r’is any positive integer.

Proof. Let n,, =[nn,]". It follows from the definition of N that

KV 2/(a+2P)
P(N<nn,)<P (C_B] (MST)* P < nnoi

<P max|MST - (5,6} +0?)
m<M<n,
=0(m™),
by Hajek-Renyi inequality(See Sen (1981)).

>(r,c + 62){1 -n(‘”zﬁ)’“}}

Lemma 4. For any 0(>0), as C— 0,

E(N°)=n’ —L[z(wﬂ) +2n(a+2B8) — (a—1)(a—28+2)n’"
An(a+2p)
+ 0( C—(S—l)/(a+2ﬁ)) . (24)
2&17(&1)
EN)=n’+-——" [2@a+1)+2n(a+28)— (5 -1)(a-28+2)]
An(a+2p)
+0o( C—(é‘—l)/(a+2ﬁ) ) (25)

Proof. We can write

ECN?)=nf E[f ().
where f(x)= x°. Expanding f(x) around ‘x=1" by Taylor’s expansion, we obtain for

Ww—1<|(N/n,)-1|,

2
n

o0

2
E(N®)=n’| 14 (8/n)E(N —n,) + 5(52—1) E{(N—no) WHH

Now, utilizing the fact that for o (>0), W 2is uniformly integrable, Lemma 2 and also using that
W—2 31 ,as C— 0, we obtain



E(Nﬁ):ng[ui —;(3a+1)+l +&;D.
n, | 2n(a+2p) 2 2n,

_{n§+((277—1)(a+2ﬁ)—4a) 0y Sl

n,—2n; +———n,
2n(a+24) n(a+2p)

and (24) follows after some algebra.

Using the Taylor’s expansion for N 9 the fact that for & >0), W2 s uniformly integrable,

2 o-1
—n, +n, } 1+o(n, )

Lemma 2 and also utilizing that W—%% $1as C>0, we get
. | @n-1)a+2p)-4a
1 17, 8(5+1) L e Y I
E(N nd ) = n(;‘s — &15(5+1)|:_ - 4 _:| + n(;(é‘+2) n
2la+2) 2 2 o (Ba+1) ,
=2ny +—F——<n, —n, +n
n(a+2.)
+o (n;((m) )

and (25) holds after some simplifications.

Theorem 3. For the three-stage procedure as C— 0 ,

(C)es [ CU 2 gy
Rg(C)—(ajna +[4nj{(a+2ﬁ)+(a 4n) an0}+0(C).

Proof. Using Lemma 4 and definition of R, (C), we get,asC— 0,

R (C)—(gjnw’”ﬁ) wuw{wu—z (@+2B) +a(a+2B)}+o()
S \a) °dn(a+2p) g

1
C {n - m{wﬁ 2n(a+28)}H+ 0(1)} -C(l/a+)n,
C

[ &, 28 ol
—(aj[no + @t 2 {6a+2 2n(a+28)+a(a+ 2,3)}}

1 C
C[no - m{wur 2n(o + 2[)’)}} "o Cn, +0(C),

and the theorem follows.
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