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Abstract. Statistical analysis of change point detection and estimation has received much attention recently. The problem
of detecting a single change-point is not an easy task. Multiple change-point models arise when there are more than one
change-point. In a amultiple change-point problem, the number of changes and their location are unknown. This paper
develops an exact algorithm to detect, estimate the change-points for multivariate Gaussian model.
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1 Introduction

Change-point models are becoming important in numerous research fields and practical applications in-
cluding economics, finance, medicine, and mulitmedia processing. The change detection problem has
been studied for decades in many frameworks. One can refer to the books of Basseville and Nikiforov,
Brodsky and Darkhovsky, and Carlstein et al. for a detailed bibliography. Dealing with a single break-
point is relatively straightforward. Likelihood ratio tests for several common models are easy to define.
Theoretical results and asymptotics are given in Csorgo and Horvath, 1987. The methods used are based
on the availability of a sequential data and the detection of the change point uses the past observations
as the only available information. Dealing with more than one change-point complicates matters con-
siderably, from both the computational and inferential aspects. One approach is the hierarchic binary
splitting algorithm proposed by Vostrikova (1981). She proved that the algorithm is consistent. The hier-
archic solution makes choices that are optimal at each step, but not necessarily in terms of minimizing the
overall residual sum of squares. Therefore, the hierarchical segmentation procedure does not guarantee
the optimum splits if there are more than two segments.

The multiple change-point problem has several issues

1. choosing suitable parametric forms for the within-segment models, deciding whether there is any
change (hypothesis testing problem),

2. locating the segment boundaries (estimation problem),
3. and deciding the appropriate number of change-point (model selection problem).

In this paper, we study the problem of simultaneous changes in the mean vector and covariance
matrix of a multivariate Gaussian model.

2 Multivariate change point model

Once a model is specified, our task is to estimate the location of the change-points and the parameters
within segments. In this estimation step, the number of segments has to be fixed. We study the problem
of simultaneous changes in the mean vector and covariance matrix of a multivariate normal data. We
start by listing the assumptions.

A1 : The p component vector Xi, i = 1, 2, ..., n is a sequence of independent distributed p-dimensional
normal random vectors.
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A2 : We have k subsegments with k − 1 change-points, τ = (τ1, τ2, . . . , τk−1). For notational conve-
nience, we will also bracket the whole sequence with notional change-points τ0 = 0, τk = n.

A3 : The data within subsegment j is identically and independently distributed (i.i.d) multivariate normal
with mean vector µj and covariance matrix Σj , this means for

τj−1 < i ≤ τj , Xi ∼ N(µj ,Σj)

(all µ and Σ are unknown).

Inferentially, we are interested in the following hypothesis test:

H0: No change-point, that is k = 1
Ha: k subsegments with k−1 change-points τ = (τ1, τ2, . . . , τk−1) and µj 6= µj−1 or Σj 6= Σj−1, j =
2, . . . , k.

2.1 The maximum likelihood method

Under H0, the log likelihood is

log L0(θ) = −np

2
log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

(Xi − µ)′Σ−1(Xi − µ) (1)

where θ = (µ,Σ) and |Σ| represents the determinant of Σ

Under Ha, the k subsegments are assumed to be statistically independent as the vector Xi has a
p-dimensional multivariate normal distribution. So, the log likelihood is

log L1(θ) = −np

2
log(2π)− 1

2

k∑
j=1

rj log |Σj | −
1
2

k∑
j=1

τj∑
i=τj−1+1

(Xi − µj)
′Σ−1

j (Xi − µj) (2)

where rj = τj − τj−1 is the number of vectors in the jth subsegment, µj is the unknown mean
vector of the jth subsegment, Σj is the unknown covariance matrix of the jth subsegment, and
θ = (µ1,Σ1), (µ2,Σ2), . . . , (µk,Σk) .

Maximization of the likelihood is a two-step procedure. If the changepoints τj are given, then the
MLEs of the mean vectors and covariance matrices follow from the standard one-way Manova layout.

Result Under the assumptions A1-A3, -2 times the log-likelihood, from which the multiple change-
point for the multivariate Gaussian model of X under Ha can be deduced, is

−2 log L1(θ̂) = np(log(2π) + 1) +
k∑

j=1

rj log |Σ̂j | (3)
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Proof. Let substitute the estimated θ from eq (4) in (3)

−2 log L1(θ̂) = np log(2π) +
k+1∑
j=1

rj log |Σ̂j |+
k+1∑
j=1

τj∑
i=τj−1+1

(Xi − µj)
′Σ̂

−1
j (Xi − µj)

= np log(2π) +
k+1∑
j=1

rj log |Σ̂j |+
k+1∑
j=1

tr(Σ̂
−1
j

τj∑
i=τj−1+1

(Xi − µj)(Xi − µj)
′)

= np log(2π) +
k+1∑
j=1

rj log |Σ̂j |+
k+1∑
j=1

tr(Σ̂
−1
j rjΣ̂j)

= np log(2π) +
k+1∑
j=1

rj log |Σ̂j |+
k+1∑
j=1

prj

= np log(2π) +
k+1∑
j=1

rj log |Σ̂j |+ np

= np(log(2π) + 1) +
k+1∑
j=1

rj log |Σ̂j |

For the optimization step, we omit the irrelevant constant np(log(2π) + 1) and focus our attention to∑k
j=1 rj log |Σ̂j |. The likelihood function is not continuous in τj so usual optimization techniques fail.

Instead, the problem can be formulated as a partitioning problem where the goal is to obtain the best
partition of the grid {1, . . . , n} into k segments. Once the breakpoints τj are found, we can estimate the
corresponding µ̂j and Σ̂j .

2.2 Dynamic programming solution
Dynamic programming was introduced by Bellman and Dreyfus (1962) and is a recursive approach
based on the Bellman’s principle of optimality. Auger and Lawrence (1989) were the first to use it in
the context of segmentation problems. The objective function is Sk =

∑k
j=1 rj log |Σ̂j |. The dynamic

programming takes advantage of the additivity of the objective function. This additivity property was
called separability by Bellman. The separability of the objective function allows us to draw an analogy to
the shortest path problem. The objective function Sk can be seen as the total length of a path connecting
point 1 to point n, so our task is to find the shortest path to travel from point 1 to point n with k − 1
steps. The steps are the change-points τ1, . . . , τk − 1.

Let
∑k

j=1 rj log |Σ̂j | =
∑k

j=1 Q(τj−1, τj), the dynamic programming recursion is defined as fol-
lows:

1. F (1,m) = Q(0,m), m = p + 1, p + 2, . . . , n
2. F (k, m) = minh F (k − 1, h) + Q(h, m), m = p(k − 1) + 1, . . . , n.

Each segment must contain at least p+1 readings to ensure that the covariance matrix is nonsingular.
Next, using Bellman’s principle of optimality “subpaths of optimal paths are themselves optimal”, the
breakpoints obtained are guaranteed to be global maximum.

3 Number of change-points

To be useful, the methodology also needs a rule for deciding how many segments are needed to model
the data. While the objective is a maximized likelihood, and is in principle amenable to likelihood ratio
testing, the problem does not satisfy Cramer regularity, and so conventional asymptotics are inapplicable.
Several methods to select the number of change-points are available in the literature. Yao, 1988 proposed
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a method using the Schwarz’s information criterion where the number of change-points k is chosen
to minimize a penalized likelihood function. We propose using the SIC and adding the penalty term
p(p + 3)(k − 1) log(n)/2 proposed by Chen and Gupta, 2000 to -2 log-likelihood (equation ??). Also,
SIC gives an asymptotically consistent estimate of the order of the true model. Applying SIC to our
problem yields

SIC(k) = np(log(2π) + 1) +
k∑

j=1

rj log |Σ̂j |+
p(p + 3)(k − 1)

2
log(n) (4)

For each fixed k up to some maximal value K, we compute the SIC using equation ?? and the
number of change present in the dataset is the value k∗ that minimizes SIC(k).

4 Example

The steam turbine system data set is presented and discussed in Mason and Young, 2002. It consists of a
Phase I data set of 28 observations on a steam turbine system. Measurements are made on the following
variables: fuel usage (Fuel), the amount of steam (Steam Flow) produced, the steam temperature (Steam
Temp), the megawatt-hour production (MW) of the turbine, the coolant temperature (Cool Temp), and
the absolute pressure (Pressure) observed from the condenser, so we have p = 6. Mason and Young
claim that this baseline Phase I data is in control and then can be used to calibrate the control chart for
the phase II monitoring.

This Phase I data set was followed by 16 Phase II vectors. We will ignore the distinction Mason
and Young drew between the two sequences, and apply our methodology to the combined dataset of 44
observations.

We execute the segmentation fitting K = 5 segments, obtaining as by-products the optimal change-
points for 2 and 3 segments. The results of our fit in the table ?? below .

k SIC(k) τ̂

1 1881.1 No change
2 1846.4 14
3 1873.2 14, 28
4 1936.6 15, 24, 31
5 2004.6 7, 15, 24, 31

Table 1. Estimated Change-points With All Data

1. The SIC suggests a single change-point model for this data (SIC(k) attains its minimum for k =2,
cf table ) and the change-point is located at case 14.

2. The estimation portion can be solved as follow. Given a change-point at case 14, segment 1 which
consists of cases 1 to 14 has mean vector µ1 and covariance matrix Σ1. An estimate for µ1 is

µ̂1 = (236900, 178000, 849, 21, 54, 29)′

and an estimate of Σ1 is

Σ̂1 =



10232560 −72202.73 −204.41 41.77 178.82 −8.59
−72202.73 126635.1 245.47 −0.045 12.55 1.09
−204.41 245.47 1.19 0.00 0.033 −0.0022
41.77 −0.045 0.00 0.0009 0.002 0.0003
178.82 12.55 0.033 0.002 0.031 0.0055
−8.59 1.09 −0.0022 0.0003 0.005 0.0037





Guidelines for Authors 5

Segment 2 consists of cases 15 to 44 and has mean vector µ2 and covariance matrix Σ2. An estimate
for µ2 is

µ̂2 = (240000, 182200, 844, 21, 54, 29)′

and an estimate of Σ2 is

Σ̂2 =



65274200 35746000 −7403.54 4129.98 −98.34 −334.33
35746000 25336201.28 −4828.76 2852.75 391.22 −328.24
−7403.54 −4828.76 4.74 −0.57 0.08 0.05
4129.98 2852.75 −0.57 0.37 0.03 −0.03
−98.34 391.22 0.08 0.03 0.13 −0.02
−334.33 −328.24 0.05 −0.03 0.02 0.009


5 Conclusion

Multiple change-point problems are of interest in different areas of data analysis. This paper presents an
effective and fast algorithm to solve the problem when the data can be represented by a Gaussian model.
It solves the algorithmic problem of finding the optimal heteroscedastic segmentation, and is helpful for
retrospective segmentation of multivariate sequences.
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