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Abstract. Multivariate control charts are valuable tools in industrial quality control. They are designed to detect changes in
any direction. Changes can occur in either the location or the variability of the correlated multivariate quality characteristics
calling for methodologies for detecting changes in the covariance matrix. We recall Shewart’s famous dictum that proper
quality control involves both the mean and the variance of the process. This paper develops a reasonably fast algorithm to
compute the new value of the covariance matrix each time a new row is added to the data set. We will show later how the
computation of the generalized variance and the trace can be easily accelerated from this algorithm.
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1 Introduction

Several methodologies for monitoring the covariance matrix are available. The generalized variance
of Montgomery and Wadsworth (1972) involves charting the determinant of S. Another methodology
consists of charting the trace of the covariance matrix S, Reynolds and Cho (2006). Another alternative
is the generalized likelihood ratio (GLR) statistic, which was proposed as a chart quantity by Alt (1984).
In each case, we have to compute the covariance matrix S of the data.

When dealing with individual observations rather than rational groups, one has to recompute the
covariance matrix each time a new observation is added to the data. This task can be a burdensome
process essentially when we have a huge data set.

Let Si be the conventional sample covariance matrix of the data up to observation i, i = p+1, . . . , n
where n is the number of observations in the data. Some applications using the sample covariance matrix
are:

1. Generalized variance of Si

2. Trace of Si

3. Generalized likelihood ratio (omitting unneeded constants), GLR = tr(Si)− log|Si| − p

4. Criterion for multiple change-point of multivariate data, C =
∑n

i=1 ri log |Si|

We estimate the covariance matrix in the first section. In the second section, we discuss some appli-
cations and the algorithm is presented in the third section.

2 Estimation of the covariance matrix

Assume that the p component vector Xi, i = 1, 2, ..., n is a sequence of independent distributed p-
dimensional random vectors with mean vector µ and covariance matrix Σ. An unbiased estimator of Σ
is the sample covariance matrix.

S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′ (1)
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where X̄ = 1
n

∑n
i=1 Xi.

The sample covariance matrix gives a picture of the correlation between each variable in the sample.
Now,

S =
1

n− 1
CC′ (2)

where C is the unique p × p lower triangular matrix satisfying ( 2). Since n ≥ p + 1, S is clearly a
symmetric positive definite matrix with probability 1 (w.p.1), so that C in ( 2) is unique with probability
1– sea Eaton (1983). Then C is the square root matrix of S also known as the Cholesky factor of S

3 Applications
3.1 Total sample variance
The total sample variance is defined as the trace of the sample covariance matrix S. It describes the
variability of the data without taking into account the covariances. Let sii be the ith diagonal element of
the sample covariance matrix, the trace of S is tr(S) =

∑p
i=1 sii. Also, the trace of S can be constructed

from the Cholesky factor by using the following result

tr(S) =
1

n− 1
tr(CC′)

=
1

n− 1

p∑
i=1

i∑
k=1

c2
ik

where the cij are the elements of the matrix C.

3.2 Generalized sample variance
The generalized sample variance provided a single-number summary of the sample covariance matrix.
It is defined as the determinant of the sample covariance matrix |S|. Another way to compute the gener-
alized sample variance is to use the Choloseky decomposition of |S|. Let cii be the ith diagonal element
of the Cholesky factor C, then

|S| = 1
(n− 1)p

(
p∏

i=1

cii)2 (3)

Proof.

|S| = 1
(n− 1)p

|CC′|

=
1

(n− 1)p
|C|2

=
1

(n− 1)p
(

p∏
i=1

cii)2

So, the generalized sample variance can be obtained as the product of the square of the diagonal
element of the Cholesky factor C divided by (n− 1)p.

3.3 Logarithm of the generalized sample variance
When dealing with likelihood function or generalized likelihood ratio, the logarithm of the generalized
sample variance is the quantity of interest.

log(|S|) = −plog(n− 1) + 2
p∑

i=1

log(cii) (4)
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The logarithm of the generalized variance is twice the sum of the logarithm of the diagonal elements of
the Cholesky matrix C minus the term plog(n− 1)

4 Computation

It is as important to monitor the process mean vector as the process variability. Several methods were
proposed to monitor the process variability. One of them is the generalized variance. This yields to
compute a sequential generalized variance. The procedure is as follows:

1. For each new observation, compute the new value of the covariance matrix Sn,
2. compute the determinant of Sn,

The reader is referred to Montgomery and Wadsworth (1972) for more details.
Recomputing the covariance matrix each time a new observation is added can be burdensome.
A reasonably fast numerically stable approach is given by use of Cholesky factorizations. Append a

1 to each data vector Xi, writing
Zi = (1,X′

i)
′

Define
Bh,m =

∑m
j=h+1 ZjZ′

j

and form the lower triangular Cholesky factorization
Bh,m = Ch,mC′

h,m

where the Cholesky factor matrix Ch,m is of dimension p + 1. Standard results then show that (writing
cj,j for the jth diagonal element of Ch,m)

|Ah,m| =
∏p+1

j=2 c2
j,j

The attraction of the Cholesky factorization is that adding a new data vector Xm+1, corresponding
Ch,m+1 can be computed from Ch,m and Zm+1 with a fast, stable update (see for example Chambers,
1971).

This leads to the outline algorithm: For each h = 1 to n− p, initialize Ch,h−1 = 0. Then for m = h
to n, calculate Ch,m from Ch,m−1 and Zm using the update. Once enough observations are included to
achieve nonsingularity, use the diagonal elements of Ch,m to compute |Ah,m| and from this log |Ah,m|
for example.

The following algorithm can be used to compute the trace and the generalized likelihood ratio

5 Example

We give an illustration of the algorithm on a small data. The data is presented in the table below.

X1 X2 X3

12 10 7
8 12 8
11 9 9
9 13 10
13 7 11

This data has three variables X1, X2, and X3, and five observations. A direct computation of the
covariance matrix, the unnormalized covariance matrix

∑n
i=1 (Xi − X̄)(Xi − X̄)′, the determinant, the

log determinant, and the Cholesky factor gives:

># Covariance matrix S of the data
> s<-cov(data);s

x1 x2 x3
x1 4.30 -4.40 0.75
x2 -4.40 5.70 -1.25
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x3 0.75 -1.25 2.50

> # Determinant of S
> d<-det(s);d
[1] 11.2

> Log determinant of S
> ldet<-log(d);ldet
[1] 2.415914

> Unnormalized covariance matrix S
> ss<-(n-1)*cov(data);ss

x1 x2 x3
x1 17.2 -17.6 3
x2 -17.6 22.8 -5
x3 3.0 -5.0 10

> Cholesky factor of the numerator
> ch<-chol(ss);ch

x1 x2 x3
x1 4.147288 -4.243737 0.7233642
x2 0.000000 2.188766 -0.8818815
x3 0.000000 0.000000 2.9494117

Next, we will apply the algorithm to the data to compute the determinant and log determinant of S
without computing neither the covariance matrix nor the numerator of the covariance matrix.

> q<-p+1
> rr<-matrix(rep(0,q*q),q,q)
> lndet<-0
> for(m in 1:n){
+ xx<-data[m,];x<-cbind(1,t(xx))
+ rr<-s(x,rr,1,n)
+ }

> # Cholesky factor using the updating algorithm
> print(rr)

[,1] [,2] [,3] [,4]
[1,] 2.236068 23.702321 22.807893 20.1246118
[2,] 0.000000 4.147288 -4.243737 0.7233642
[3,] 0.000000 0.000000 2.188766 -0.8818815
[4,] 0.000000 0.000000 0.000000 2.9494117

> # Remove the first value of the diagonal of the Cholesky
> dchl<-diag(rr);dch<-dchl[-1]

> # Computing the determinant of S
> dets<-prod(dchˆ2)/(n-1)ˆp;dets
[1] 11.2

> # Computing the log determinant of S
> lndet<-2*sum(log(dch))-p*log(n-1);lndet
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[1] 2.415914

The function “s(x,rr,...)” used in the code above is responsible for the update algorithm and is not
provided in this paper. A Fortran code of the updating algorithm of the Cholesky is available in Hawkins
and Maboudou-Tchao (2007). Removing the first row and first column of the updated Cholesky “rr”
yields the Cholesky factor denoted “ch” obtained using the direct approach. Also, the determinant of S,
“dets” is computed using equation ( 3) and the log determinant of S, “lndet” is obtained using equation
( 4). The results match the ones obtained using the direct computation.

6 Conclusion

We show in this paper that when we have to do a sequential estimation of the covariance matrix for a
huge data set, it is interesting to use the Cholesky factorization. As a new case is added, we don’t need
to recompute the new Cholesky factor. We just need to update the Cholesky using a numerically stable
udpate algorithm. Also, we explained how to derive some quantities of interest like the trace and the
determinant of the covariance matrix. This method can be also extended to the generalized likelihood
ratio.
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