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Abstract. Experimentation is fundamental to the advancement of science, whether one is interested in studying the neuronal
basis of a sensory process in cognitive neuroscience or assessing the efficacy of a new drug in clinical trials. Adaptive
methodologies in experimentation, in which the information learned from each experiment is used to inform subsequent
experiments, are particularly attractive because they can have the potential to reduce the time required for data collection while
simultaneously increasing the informativeness of the knowledge learned in the experiment. More concretely, the problem to
be solved in adaptive sequential design optimization for model discrimination is to identify an experimental design under
which one can infer the underlying model, among a set of candidate models of interest, in the fewest possible steps. This
problem is challenging because of the many, sometimes arbitrary, choices that must be made when designing an experiment.
Nevertheless, it is generally possible to find a design that is optimal in a defined sense. In this paper, addressing the design
optimization problem in discrimination of formal models in psychology, we apply a simulated-based Bayesian approach that
was recently introduced in statistics (Müller et al, 2004) and present simulation results from its application.
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1 Introduction

Optimal experimental design has been considered at length in statistics (e.g., Chernoff, 1959; Kiefer,
1959; Box & Hill, 1967; Chaloner & Verdinelli, 1995; Atkinson & Donev, 1992) as well as in other
science and engineering disciplines (e.g., El-Gamal & Palfrey, 1996; Bardsley, Wood & Melikhova,
1996; Allen, Yu & Schmitz, 2003). Among a variety of questions about design optimization that can be
addressed, the one that has received most of the attention is that of identifying a design that makes the
variances of parameter estimates of a given model as small as possible, thereby allowing the model to
make the most accurate predictions. This goal is achieved by what is known as the D-optimum criterion,
under which the design that maximizes the determinant of the variance-covariance matrix is to be chosen,
formally speaking. In the case of multiple models being entertained, what is the so called T-optimum
criterion (Ponce de Leon & Atkinson, 1991; Ucinski & Bogacka, 2005) is sought.

Design optimization can also be formulated from a sequential (i.e., adaptive) decision perspective. To
give a relevant example, in sequential design optimization, the optimal design is obtained after repeating
the experiment several times. Specifically, using the response outcome from each experimental stage,
one then seeks the design for the next stage that is maximally informative, appropriately defined. The
adaptive design process is repeated over a series of stages until a stopping criterion is met. This is
illustrated in Figure 1.

Fig. 1. Schematic illustration of adaptive design optimization.

Recently, a promising new approach has been proposed in statistics to solve the design optimization
problem (Müller, Sanso & De Iorio, 2004; Amzal, Bois, Parent & Robert, 2006). It is a simulation-based
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Bayesian approach based on Markov chain Monte Carlo (Gilks, Richardson & Spiegelhalter, 1996).
What makes this approach an important break-through is that it is a fully general, albeit approximate,
solution to optimizing any experimental design, including those that are most challenging, such as those
involving nonlinear models with non-normal errors.

In this paper, extending recent work of Myung and Pitt (2008) and Cavagnaro, Myung, Pitt and
Kujala (2009), we apply the simulation Bayesian approach and demonstrate its effectiveness in design-
ing optimal designs for the purpose of discriminate quantitative models in psychology. We begin by
discussing a formal framework of adaptive design optimization.

2 Adaptive Design Optimization for Model Discrimination

The problem of adaptive design optimization for model discrimination is identifying an experimental
design under which one can infer the underlying model, among a set of models under consideration, as
well as the model’s parameter values, in the fewest possible steps. Bayesian decision theory offers a prin-
cipled approach to this optimization problem. Each potential design is treated as a gamble whose payoff
is determined by the outcome of an experiment carried out with that design. The idea is to estimate the
utilities of hypothetical experiments carried out with a given design, so that an “expected utility” of that
design can be computed. This is done by considering every possible observation that could be obtained
from an experiment with a given design and then evaluating the relative likelihoods and statistical values
of these observations. The design with the highest expected value is then chosen as the optimal design.

2.1 A Simulation-based Bayesian Approach

Formally, the problem of adaptive design optimization for model discrimination is to identify an optimal
design d∗ that maximizes the expected utility over all possible designs (e.g., Amzal et al, 2006)

d∗ = argmax
d

{U(d)}. (1)

In the above equation, U(d) is referred to as the global utility function and is defined as

U(d) =
K∑

m=1

p(m)
∫ ∫

u(d, θm, y) p(y|θm, d) p(θm) dy dθm, (2)

where m = {1, 2, . . . , K} is one of a set of K formal models being considered, d is a design, y is
the outcome of an experiment with design d under model m, and θm is a parameterization of model
m. We refer to the function u(d, θm, y) as the local utility of the design d. It measures the utility of a
hypothetical experiment carried out with design d when the outcome y is observed from model m with
its parameter value θm. Consequently, U(d) represents the expected local utility over all models under
consideration, the full parameter space of each model, and all possible observations given a particular
model-parameter pair, with respect to the model prior probability p(m), the parameter prior distribution
p(θm), and the sampling distribution p(y|θm, d), respectively.

At each stage s = 1, 2, . . . of experimentation, an optimal design is sought by maximizing the
global utility function U(d) in Eq. (2) given the model and parameter priors. Once a specific outcome
zs is observed at stage s of an actual experiment carried out with the optimal design ds, the outcome is
then used to update the model and parameter priors for the next stage s + 1 using Bayes rule and Bayes
factor calculation (e.g., Gelman et al, 2004) as follows

ps+1(m) =
ps(m)∑K

k=1 ps(k)BF(k,m)(zs)
(3)

ps+1(θm) =
p(zs|θm, ds) ps(θm)∫

p(zs|θm, ds) ps(θm) dθm
,

where BF(k,m)(zs) denotes the Bayes factor defined as the ratio of the marginal likelihood of model k
to that of model m given the realized outcome zs. The above updating scheme is applied successively
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on each stage of experimentation, after an initialization with equal model priors p(s=0)(m) = 1/K and
a suitable parameter prior p(s=0)(θm).

2.2 Computation by Density Simulation

To find the optimal design d∗ in a general setting is a highly nontrivial problem. The computation requires
simultaneous optimization and high-dimensional integration, which can be analytically intractable for
the complex, nonlinear models as often used in many real-world problems. A new approach to this
problem has been proposed in statistics (Müller et al, 2004). It is a simulation-based approach that
includes a computational trick that allows one to find the optimal design without having to directly
evaluate the integration in Eq. (2).

According to the computational trick, the design d is treated as a random variable and an auxiliary
distribution h(d, ·) is defined, which admits U(d) as its marginal density. Specifically, suppressing the
subscript s for simplicity, we define

h(d, y1, θ1, . . . , yK , θK) = α

[
K∑

m=1

p(m)u(d, θm, ym)

]
p(y1, θ1, . . . , yK , θK |d), (4)

where α(> 0) is the normalizing constant of the auxiliary distribution and p(y1, θ1, . . . , yK , θK |d) =∏K
m=1 p(ym|θm, d)p(θm). Note that the subscript m in the above equations refers to model m, not the

stage of experimentation. For instance, ym denotes an experimental outcome generated from model m
with design d and parameter θm. Marginalizing h(d, ·) over (y1, θ1, . . . , yK , θMK) yields

h(d) =
∫

. . .

∫
h(d, y1, θ1, . . . yK , θK)dy1 dθ1 . . . dyK dθK (5)

= α U(d).

Consequently, the design with the highest utility can be found by taking the mode of a sufficiently
large sample from the marginal distribution h(d). To improve computational efficiency, we augment
the auxiliary distribution with independent samples of y’s and θ’s given design d as follows, assuming
h(d, y1,j , θ1,j , . . . , yK,j , θK,j) is non-negative and bounded,

hJ(d, ·) = αJ

J∏
j=1

h(d, y1,j , θ1,j , . . . , yK,j , θK,j), (6)

for a positive integer J and αJ(> 0). The marginal distribution of hJ(d) obtained after integrating
out model parameters and outcome variables will then be equal to αJ U(d)J . Hence, as J increases,
the distribution hJ(d) will become more highly peaked around its (global) mode corresponding to the
optimal design d∗, thereby making it easier to identify the mode.

The distribution hJ(d, ·) in Eq. (6) is simulated using a sequential Monte Carlo particle filter algo-
rithm (Amzal et al, 2006; Doucet, de Freitas & Gordon, 2001), initially for say J = 10 and then by
gradually increasing J on subsequent stages of experimentation on an appropriate simulated annealing
schedule (e.g., increase J by one every five stages). From the sample of draws, we then empirically
estimate the desired marginal distribution Û(d), up to a constant proportionality, by collecting all d’s but
disregarding y’s and θ’s.

3 Experiments

This section presents an application of the Bayesian adaptive design optimization approach described
in the previous section in simulated experiments. The goal of the simulation is to assess whether the
Bayesian approach is sufficiently robust to solve optimization problems that arise in psychology. Specif-
ically, we are interested in knowing how efficiently and effectively an optimal design can help identify
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the data-generating model, among a set of competing models under consideration, and also its true pa-
rameter values.

A theoretical issue in psychology we chose to demonstrate the design optimization approach is that
of children’s numerical estimation. Developmental psychologists have been interested in the question of
how children perceive and represent numerical magnitudes such as amount of money, distance, number
of discrete objects, and location of integers on number lines, as well as the question of how their mental
representations change as they get older (Opfer & Siegler, 2007). It is well established that 5- to 10-
year olds’ numerical estimation is highly inaccurate and distorted. For example, children often judge the
difference between $1 and $100 as being larger than the difference between $901 and $1000 (Siegler &
Booth, 2004), thus suggesting a logarithmic scale representation. On the other hand, they estimate the
difference between $1 and $6 as being equal to the difference between $11 and $16, thereby correctly
relying upon a linear representation as it should be. Opfer and Siegler (2007) summarize these findings
by saying, “Children between 5 and 10 years of age are believed to rely on linear representations with
small numbers but to only gradually extend the linear representations to larger numbers...” (p. 171).

With the goal of identifying the function underlying numerical estimation, Opfer and Siegler (2007)
employed a number-line experimental task in which children were presented with an integer between 1
and 999 and asked, without feedback, to indicate how large the number is. They responded by marking
a vertical hatch mark on a horizontal 25-cm number line. with its left end labelled 0 and its right end
labelled 1000. In particular, Opfer and Siegler were interested in evaluating the following two models:

LIN : y = ax + b + e (7)

LOG : y = a log(x) + b + e,

where x is the stimulus value between 1 and 999, y is the response, and e is a normal error with mean 0
and standard deviation c, and finally, a, b and c are parameters, i.e., θ = (a, b, c).
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Fig. 2. Posterior model probability of model LIN as a function of the stage of experimentation. The solid curve represents
the result of optimal designs and the dotted curve represents the result of random (non-optimized) designs. LIN is the data
generating model.

We conducted a computer simulation to illustrate the adaptive design optimization procedure for
discriminating between the two models in Eq. (7), in which optimal designs consisting of x values were
sought over a series of stages of experimentation. On each stage, we used the particle filter algorithm
(Amzal, 2006, p. 776) to find an optimal stimulus value x = d∗ (0 < x < 1)1, that maximizes U(d) in
Eq. (2). We then generated a simulated response z from model LIN according to the following model

1 In our simulations, for mathematical convenience, both the stimulus value x and response y were re-scaled to lie between 0
and 1, instead of 0 and 1000 in the original experiment of Ofper and Siegler (2007).
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equation: z = (0.9)d∗ + 0.1 + e, where e ∼ N(0, 0.12). This was followed by updating the model and
parameter priors according to Eq. (3). This procedure was repeated for 10 stages of experimentation.
For comparison, we also conducted simulated experiments in which no optimal designs were sought.
Instead, on each stage, a design value d was randomly generated between 0 and 1, independent of the
model and parameter priors as well as simulated responses. Regarding the local utility function u(·) in
Eq. (2), we chose to use a Bayes factor based function of the form: u(d, θm, ym) = BF(m,m′)(ym),
where the subscript m′ refers to the other competing model (e.g., m = LIN, m′ = LOG).2 Uniform
priors defined over the following parameter ranges were used: 0 < a < 5,−1 < b < 1, 0 < c < 1 for
model LIN and 0 < a < 1, 0 < b < 2, 0 < c < 1 for model LOG. All results below are based on 20
particles, each with 50 iterations.
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Fig. 3. Posterior parameter distributions for the three parameters of the data-generating model LIN, shown for three selected
stages of experimentation. The distributions are approximated with kernel smoothing densities using the normal kernel func-
tion. The vertical dotted lines in the bottom row indicate the true parameter values of the data-generating model.

Figure 2 shows the posterior model probability of LIN plotted against the stage of experimentation.
As can be seen in this figure, with optimal designs, the true data generating model (LIN) was rapidly
identified after just two or three stages of experimentation. In contrast, with non-optimal, random de-
signs, it took almost five times more observations before the true model could be confidently identified.

The posterior parameter distributions of the three parameters (a, b, c) for model LIN are shown in
Figure 3 for three selected stages of experimentation. Uniform distributions were used for all three pa-
rameters as initial priors at stage 0 as shown in the top row. Examination of the posterior distributions in
the figure indicate that as the stage of experimentation accumulates with more observations, the posterior
distributions gradually move toward the correct parameter values (i.e., a = 0.9, b = 0.1, c = 0.1), at the
same time becoming more peaked around the mode.

To summarize, these simulation results clearly demonstrate the efficiency of the adaptive design op-
timization procedure for model discrimination. With the optimal design, the correct model was identified
with over 0.95 probability based on just a fraction of the observations that would be required to achieve
the same level of confidence with the non-optimal, random design.

4 Conclusion

In the all-too-common situation where experimentation is costly and resources are limited, researchers
must endeavor to get the most out of each and every observation. To that end, adaptive design opti-
2 Obviously, other sensible choices of the local utility function are also possible. They include the sum of squared errors be-

tween observed and predicted data, model selection criteria, and information theoretic measures such as mutual information
between model and data (see, e.g., Cavagnaro et al, 2009).
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mization is a useful tool for obtaining maximially informative results from the fewest possible trials and
participants. The computationally challenging problem of finding optimal designs, which was once pro-
hibitively difficult, can now be solved practically with modern stochastic optimization techniques. We
are currently appliying the method in experimentation and expanding its application to more complex
experimental designs.
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