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Abstract. A novel quickest detection setting is proposed, generalizing the Bayesian change-point detection model. Suppose
that {(Xi, Yi)}i≥1 is a sequence of pairs of random variables, and that S is a stopping time with respect to {Xi}i≥1. The
problem is to find a stopping time T with respect to {Yi}i≥1 that optimally tracks S, in the sense that T minimizes the
expected reaction delay E(T − S)+, while keeping the false-alarm probability P(T < S) below a given threshold α ∈ [0, 1].
This problem formulation applies in several areas, such as in communication, detection, forecasting, and quality control.

Our results apply to the situation where the Xi’s and Yi’s take values in finite alphabets and where S is bounded by some
positive integer κ. By using elementary methods based on the analysis of the tree structure of stopping times, we exhibit an
algorithm that computes the optimal average reaction delays for all α ∈ [0, 1], and constructs the associated optimal stopping
times T . Under certain conditions on {(Xi, Yi)}i≥1 and S, the algorithm running time is shown to be polynomial in κ.

1 Problem Statement

The tracking stopping time (TST) problem is defined as follows. Let {(Xi, Yi)}i≥1 be a sequence of pairs
of random variables. Alice observes X1,X2, . . . and chooses a stopping time (s.t.) S with respect to that
sequence. Knowing the distribution of {(Xi, Yi)}i≥1 and the stopping rule S, but having access only to
the Yi’s, Bob wishes to find a s.t. that gets as close as possible to Alice’s. Specifically, Bob aims to find a
s.t. T with respect to {Yi}i≥1 minimizing the expected reaction delay E(T − S)+ � E max{0, T − S},
while keeping the false-alarm probability P(T < S) below a certain threshold α ∈ [0, 1].

Example 1. Forecasting
A large manufacturing machine breaks down as soon as its cumulative fatigue hits a certain threshold.

Knowing that a machine replacement takes, say, ten days, the objective is to order a new machine so that
it is operational at the time the old machine breaks down. This prevents losses due to an interrupted
manufacturing process as well as storage costs caused by an unused backup machine.

The problem of determining the operating start date of the new machine can be formulated as fol-
lows. Let Xn be the cumulative fatigue of the current machine up to day n, and let S denote the first day
n that Xn crosses the critical fatigue threshold. Since the replacement period is ten days, the first day T
a new machine is operational can be scheduled only on the basis of a (possibly randomized) function of
{Xi}T−10

i=1 . By defining Yi to be equal to Xi−10 if i > 10 and else equal to zero, the day T is now a s.t.
with respect to {Yi}i≥1, and we can formulate the requirement on T as aiming to minimize E(T − S)+

while keeping P(T < S) below a certain threshold.

The TST setting generalizes the Bayesian version of the change-point detection problem, a long
studied problem dating back to the 1940’s with applications to industrial quality control (Anscombe
et al., 1947; Shiryaev, 1963; Yakir, 1994; Lai, 1998; Moustakides, 2008; Tartakovsky and Veeravalli,
2005). The Bayesian change-point problem is formulated as follows. Let θ be a random variable taking
values in the positive integers. Let {Yi}i≥1 be a sequence of random variables such that, given the
value of θ, the conditional probability of Yn given Y n−1 � {Yi}n−1

i=1 is P0(·|Y n−1) for n < θ and is
P1(·|Y n−1) for n ≥ θ. We are interested in a s.t. T with respect to the Yi’s minimizing the change-point
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reaction delay E(T −θ)+, while keeping the false-alarm probability P(T < θ) below a certain threshold
α ∈ [0, 1].

To see that the Bayesian change-point problem can be formulated as a TST problem, it suffices to
define the sequence of binary random variables {Xi}i≥1 such that Xi = 0 if i < θ and Xi = 1 if
i ≥ θ, and to let S � inf{i : Xi = 1} (i.e., S = θ). The change-point problem defined by θ and
{Yi}i≥1 becomes the TST problem defined by S and {(Xi, Yi)}i≥1. However, it can be shown that the
TST problem cannot, in general, be formulated as a Bayesian change-point problem.

2 Main results

As is argued in the last section, the TST problem is a generalization of the Bayesian change-point
problem, which itself is analytically tractable only in special cases. This makes an analytical treatment
of the general TST problem difficult. Instead, we present an algorithmic solution to this problem. Let
{(Xi, Yi)}i≥1 be a discrete-time process where the Xi’s and Yi’s take value in some finite alphabets X
and Y , respectively. Let S be a s.t. with respect to {Xi}i≥1 such that S ≤ κ almost surely for some
constant κ ≥ 1. We aim to find for any α ∈ [0, 1]

d(α) � min
T :P(T<S)≤α

T≤κ

E(T − S)+

where the minimization is over all (possibly randomized) s.t.’s T with respect to {Yi}i≥1. The restriction
T ≤ κ induces no loss of generality.

It can be shown that the function d(α) is convex and piecewise linear, with break-points
{αm, dm}M

m=1 achieved by non-randomized s.t.’s. Its typical shape is depicted in Figure 1. Defining

α

d
(α

)

Fig. 1. Typical shape of the expected delay d(α) as a function of false-alarm probability α. The break-points are achieved by
non-randomized stopping times.

for λ ≥ 0 the Lagrangian
Jλ(T ) � E(T − S)+ + λP(T < S),

we have by duality
d(α) = sup

λ≥0
min
T≤κ

(Jλ(T ) − λα) , (1)

where the minimization here can be restricted to non-randomized s.t.’s.
Now, to any non-randomized s.t. T , we associate a unique |Y|-ary tree T (i.e., all the nodes of T have

either zero or exactly |Y| children) having each node specified by some yn. Similarly, to each such tree
T , we can associate a unique non-randomized s.t. T (T ). To solve the TST problem, we propose a tree
pruning algorithm similar to the CART algorithm for the construction of classification and regression
trees (see Breiman et al., 1984). More precisely, for a given s.t. S, the algorithm constructs a sequence
of s.t.’s {T (T m)}M

m=0 and Lagrange multipliers {λm}M
m=0 such that the s.t’s {T (T m)}M

m=1 achieve the
break points of d(α), and the {λm}M

m=0 are the slopes at the corresponding points.
We show that the worst case running time of the proposed algorithm is exp(O(κ)). This is to be

compared, for instance, with exhaustive search that has a Ω(exp exp(κ)) running time. Moreover, we
show that for a certain class of s.t. (essentially exchangeable s.t.’s) and i.i.d. processes, the running time
of the algorithm is only polynomial in κ, and hence the optimal s.t. T can be found efficiently.
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Example 2. Let {(Xi, Yi)}i≥1 be i.i.d. with the Xi’s taking values in {0, 1}. Consider the s.t. S � inf{i :
Xi = 1}. This example satisfies the aforementioned conditions, and hence the proposed algorithm has
only polynomial running time in κ.

The problem considered in the last example is actually a Bayesian change-point problem. Here the
change-point Θ � S has distribution P(Θ = n) = p(1 − p)n−1, where p � P(X = 1). The conditional
distribution of Yi given Θ is

P(Yi = yi|Θ = n) =




P(Yi = yi|Xi = 0) if i < n,

P(Yi = yi|Xi = 1) if i = n,

P(Yi = yi) if i > n.

Note that, unlike the case considered by Shiryaev, the distribution of the process at the change-point
differs from the ones before and after it. We now give an example that cannot be formulated as a change-
point problem.

Example 3. Let {(Xi, Yi)}i≥1 be i.i.d. where the Xi’s and Yi’s take values in {0, 1}, and let S � inf{i ≥
1 :

∑i
j=1 Xj = 2}. In this case, it can again be shown that the proposed algorithm has only polynomial

running time in κ.

3 An algorithm for computing d(α)

We first establish a few preliminary results later used to evaluate minT Jλ(T ). Emphasis is put on the
finite tree representation of bounded s.t.’s with respect to finite alphabet processes. We then provide
an algorithm that computes the entire curve d(α). Due to space constraints, we present results without
proofs. These can be found in the full version of the paper (Niesen and Tchamkerten, 2009).

We introduce a few notational conventions. The set Y∗ represents all finite sequences over Y . An
element in Y∗ is denoted either by yn or by y, depending on whether or not we want to emphasize its
length. To any non-randomized s.t. T , we associate a unique |Y|-ary tree T having each node specified
by some y ∈ Y∗, where ρy represents the vertex path from the root ρ to the node y. A node yn ∈ T is
a leaf if P(T = n|Y n = yn) = 1. We denote by L(T ) the leaves of T and by I(T ) the intermediate (or
non-terminal) nodes of T . The notation T (T ) is used to denote the (non-randomized) s.t. T induced by
the tree T . Given a node y in T , let Ty be the subtree of T rooted in y. Finally, let D(Ty) denote the
descendants of y in T . The next example illustrates these notational conventions.

Example 4. Let Y = {0, 1} and κ = 2. The tree T depicted in Figure 2 corresponds to the non-
randomized s.t. T taking value one if Y1 = 1 and value 2 if Y1 = 0. The sets L(T ) and I(T ) are
given by {00, 01, 1} and {ρ, 0}, respectively. The subtree T0 of T consists of the nodes {0, 00, 01}, and
its descendants D(T0) are {00, 01}. The subtree Tρ is the same as T , and its descendants D(Tρ) are
{0, 1, 00, 01}.

00 01

0 1

ρ

Fig. 2. Tree corresponding to the s.t. T defined by T = 1 if Y1 = 1, and T = 2 else.
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Below, we describe an algorithm that, for a given s.t. S, constructs a sequence of s.t.’s {T (Tm)}M
m=0

and Lagrange multipliers {λm}M
m=0 with the following two properties. First, the Tm’s and λm’s are

ordered in the sense that TM ⊂ T M−1 ⊂ . . . ⊂ T 0 and 0 = λM ≤ λM−1 ≤ . . . ≤ λ1 ≤ λ0 = ∞.
(Here the symbol ⊂ denotes inclusion, not necessarily strict.) Second, for any m ∈ {0, . . . ,M} and
λ ∈ (λm, λm−1] the tree T m−1 minimizes Jλ(T ) � Jλ(T (T )) among all non-randomized s.t.’s.

Before we state the algorithm, we need to introduce a few quantities. Given a non-randomized s.t. T
represented by its |Y|-ary tree T , we write the Lagrangian Jλ(T ) as

Jλ(T ) = E(T − S)+ + λP(T < S)

=
∑

y∈L(T )

P(Y = y)
(
E

(
(l(y) − S)+|Y = y

)

+ λP
(
S > l(y)|Y = y

))
=

∑
y∈L(T )

b(y) + λa(y)

=
∑

y∈L(T )

Jλ(y),

where

a(y) � P(Y = y)P(S > l(y)|Y = y),

b(y) � P(Y = y)E
(
(l(y) − S)+|Y = y

)
,

Jλ(y) � b(y) + λa(y) .

We extend the definition of Jλ(·) to subtrees of T by setting

Jλ(Ty) �
∑

γ∈L(Ty)

Jλ(γ).

With this definition

Jλ(Ty) =

{
Jλ(y) if y ∈ L(T ),∑

γ∈Y Jλ(Tyγ) if y ∈ I(T ).

Similarly, we define

a(Ty) �
∑

γ∈L(Ty)

a(γ),

b(Ty) �
∑

γ∈L(Ty)

b(γ).

For a given λ ≥ 0 and T , define T (λ) ⊂ T to be the subtree of T having the same root, and such
that Jλ(T (λ)) ≤ Jλ(T ′) for all subtrees (with same root) T ′ ⊂ T , and T (λ) ⊂ T ′ for all subtrees
(with same root) T ′ ⊂ T satisfying Jλ(T (λ)) = Jλ(T ′). In words, among all subtrees of T yielding a
minimal cost for a given λ, the tree T (λ) is the smallest. It can be shown that such a smallest subtree
always exists, and hence T (λ) is well defined.

Remark 1. Note that Ty(λ) is different from (T (λ))y. Indeed, Ty(λ) refers to the optimal subtree of Ty

with respect to λ, whereas (T (λ))y refers to subtree rooted in y of the optimal tree T (λ).

Example 5. Consider again the tree T in Figure 2. Assume Jλ(ρ) = 4, Jλ(0) = 2, Jλ(1) = Jλ(00) =
Jλ(01) = 1. Then

Jλ(T ) = Jλ(1) + Jλ(00) + Jλ(01) = 3,
Jλ(T0) = Jλ(00) + Jλ(01) = 2.
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The smallest optimal subtree of T having the same root is T (λ) = {ρ, 0, 1} and

Jλ(T (λ)) = Jλ(0) + Jλ(1) = 3.

The smallest optimal subtree of T0 having the same root is T0(λ) = {0} and

Jλ(T0(λ)) = Jλ(0) = 2.

For a tree T such that I(T ) �= ∅, define for any y ∈ I(T )

g(y,T ) � b(Ty) − b(y)
a(y) − a(Ty)

,

where we set 0/0 � 0. The quantity g(y,T ) captures the tradeoff between the reduction in delay
b(Ty) − b(y) and the increase in probability of false-alarm a(y) − a(Ty) if we stop at the intermediate
node y instead of stopping at the leaves L(Ty) of T .

Let T 0 denote the complete tree of depth κ. Starting with λ0 = ∞, for m = {1, . . . ,M} recursively
define

λm � inf{λ ≤ λm−1 : T m−1(λ) = T m−1 },
T m � T m−1(λm),

where M is the smallest integer such that λM+1 = 0, and with λ1 � ∞ if the set over which the
infimum is taken is empty. It can be shown that for two consecutive transition points λm and λm+1, we
have T 0(λ) = T 0(λm) for all λ ∈ (λm+1, λm] as shown in Figure 3.

· · · T 2 T 1 T 0

λ

λ1λ2λ3

Fig. 3. For all m ∈ {0, 1, . . . , M − 1} the tree T m is the smallest tree minimizing the cost Jλ(·) for any λ ∈ (λm+1, λm].

We are now ready to state the algorithm that fully characterizes d(α) by computing its set of break-
points {(αm, dm)}M

m=1.

Algorithm: Compute the break-points {(αm, dm)}M
m=1 of d(α)

m ⇐ 0
λ0 ⇐ ∞
T 0 ⇐ complete tree of depth κ
repeat

m ⇐ m + 1
λm ⇐ maxy∈I(T m−1) g

(
y,T m−1

)
T m ⇐ T m−1 \ ⋃

y∈I(T m−1):
g(y,T m−1)=λm

D(T m−1
y )

αm ⇐ P(T (T m) < S)
dm ⇐ E(T (T m) − S)+

until λm = 0
M ⇐ m − 1
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As a |Y|-ary tree has less than |Y|κ non-terminal nodes, the algorithm terminates after at most
that many iterations. Further, one may check that each iteration has a running time that is exp(O(κ)).
Therefore, the worst case running time of the algorithm is exp(O(κ)). This is to be compared, for
instance, with exhaustive search that has a Ω(exp exp(κ)) running time (because all break-points of
d(α) are achieved by non-randomized s.t.’s and there are already 2|Y|κ−1 |Y|-ary trees having leaves at
either depth κ or κ − 1). Moreover, it can be shown that under certain conditions on {(Xi, Yi)}i≥1 and
S, the running time of the algorithm is only polynomial in κ (see Niesen and Tchamkerten, 2009, for the
details).

4 Conclusions

We introduced the tracking stopping time problem, a novel quickest detection problem that generalizes
the Bayesian change-point setting. By exploiting the finite tree structure of bounded stopping times de-
fined over finite alphabet processes, we derived an algorithm solving the tracking stopping time problem.
This algorithm computes the minimum reaction delays for tracking a stopping time through noisy obser-
vations for any fixed probability of false-alarm, and finds the corresponding optimal tracking stopping
time. The running time of this algorithm is exponential in the bound of the stopping time we want to
track and, in certain cases, even polynomial. In comparison, an exhaustive search has a running time that
is doubly exponential.
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