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1 Introduction

The best choice problem or secretary problem is an important class of the theory of optimal stopping
rules. The problem has been studied by many authors: Chow et al. (1971), Shiryaev (1978), Ferguson
(1989). In this paper, we consider a generalization of the best choice problem — a multiple best choice
problem.

We have a known number N of objects numbered 1, 2, . . . , N , so that, say, an object numbered 1
is classified as ”the best”, . . . , and an object numbered N is classified as ”the worst”. It is assumed
that the objects arrive one by one in random order, i.e all N ! permutations are equiprobable. It is clear
from comparing any two of these objects which one is better, although their actual number still remain
unknown. After having known each sequential object, we either accept this object (and then a choice of
one object is made), or reject it and continue observation (it is impossible to return to the rejected object).
We assume that it is possible to make k choices. The aim is to find stopping rules which maximize some
gain.

We can use this model to analyze some behavioral ecology problems such as sequential mate choice
or optimal choice of the place of foraging. Indeed, in some species, active individuals (generally, fe-
males) sequentially mate with different passive individuals (usually males) within a single mating period
(see, e.g., Gabor and Halliday (1997), Pitcher et al. (2003)). Note also that an individual can sequentially
choose more than one place to forage. An active individual can either accept the item (in this case one
sample has been selected), or reject it and continue the observation (it is impossible to return to the
rejected item). Note also that an individual can sequentially choose more than one place to forage. The
aim is to find a procedure which maximize the gain.

2 Some results of the theory of optimal multiple stopping rules

Let y1, y2, . . . be a sequence of random variables with known joint distribution. We are allowed to
observe the yn sequentially, stopping anywhere we please. If we stop at time m1 after observations
(y1, . . . , ym1), then we begin to observe another sequence ym1,m1+1, ym1,m1+2, . . . (depending on
(y1, . . . , ym1)), and we must solve the problem of an optimal stopping of the new sequence. If we
make i stops at times m1,m2, . . . , mi (1 6 i 6 k − 1), then we observe a sequence of random
variables ym1,...,mi,mi+1, ym1,...,mi,mi+2, . . . whose distribution depends on (y1, . . . , ym1 , ym1,m1+1,
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. . . , ym1,m2 , . . . , ym1,...,mi). Our decision to stop at times mi (i = 1, 2, . . . , k) depends solely on the
values of the basic random sequence already observed and not on any future values. After k (k > 2)
stops we receive the gain

Zm1,...,mk
= gm1,...,mk

(y1, . . . , ym1,m1+1, . . . , ym1,...,mk
),

where gm1,...,mk
is a known function. We are interested in finding stopping rules which maximize our

expected gain.
More formally, assume that we are given:
(a) a probability space (Ω,F ,P);
(b) a nondecreasing sequence of σ-subalgebras {Fm1,...,mi−1,mi ,mi > mi−1} of σ-algebra F such

that
Fm1,...,mi−1 ⊆ Fm1,...,mi ⊆ Fm1,...,mi−1,mi+1

for all i = 1, 2, . . . , k, with 0 ≡ m0 < m1 < · · · < mi−1;
(c) a random process

{Zm1,...,mk−1,mk
,Fm1,...,mk−1,mk

,mk > mk−1}

for any fixed integer m1, . . . ,mk−1, 1 6 m1 < m2 < · · · < mk−1.
In terms of the informal background of the first paragraph in this section, we can express the σ-

algebra as follows:

Fm1,...,mi = σ(y1, . . . , ym1 , ym1,m1+1, . . . , ym1,m2 , . . . , ym1,m2,...,mi).

Following Nikolaev (1977, 1999), we now give the required definitions and theorems.

Definition 1. A collection of integer-valued random variables (τ1, . . . , τi) is called an i-multiple stop-
ping rule (1 6 i 6 k) if the following conditions hold:

a) 1 6 τ1 < τ2 · · · < τi < ∞ (P-a.s.),
bj) {ω : τ1 = m1, . . . , τj = mj} ∈ Fm1,...,mj for all mj > mj−1 > . . . > m1 > 1; j = 1, 2, . . . , i.

Definition 2. A k-multiple stopping rule with k > 1 is called a multiple stopping rule.

We use the following notation, where ξ represents as arbitrary random variable:

(m)i = (m1,m2, . . . , mi), (m)1 = m1, E(m)i
ξ = E(ξ | F(m)i

),

A(m)i
ξ = E(m)i

(
sup
mi+1

E(m)i+1

(
. . .

(
sup
mk−1

E(m)k−1
ξ

)
. . .

))
.

The following condition is needed for the existence of all considered expectations.

(A+) : E
(

sup
m1

A(m)1

(
sup
(m)k

Z(m)k

))
< +∞.

We assume that condition (A+) is satisfied for the Z(m)k
.

Let Sm be a class of multiple stopping rules τ = (τ1, . . . τk) such that τ1 > m (P-a.s.).

Definition 3. The function
vm = sup

τ∈Sm

EZτ

is called the m-value of the game. In particular, if m = 1 then v = v1 is called the value of the game.

Definition 4. A multiple stopping rule τ∗ ∈ Sm is called an optimal multiple stopping rule in Sm if
EZτ∗ exists and EZτ∗ = vm.
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The aforementioned condition (A+) ensures the finiteness of vm and the existence of EZτ for all
τ ∈ Sm. The problem consists of finding an optimal multiple stopping rule and an m-value of the game
vm.

The sequences {V(m)i
} and {X(m)i

}, i = 1, 2, . . . , k are needed for constructing the multiple stop-
ping rules τ∗. Let T(m)i

be a class of i-multiple stopping rules (τ)i = (τ1, . . . , τi) (i = 1, 2, . . . , k) with
τ1 = m1, . . . , τi−1 = mi−1, τi > mi (P-a.s.). Let T(m)1 ≡ Tm1 denote the class of all stopping times τ1

such that τ1 > m1 (P-a.s.). We set X(m)k
= Z(m)k

and define by backward induction on i from i = k:

V(m)i
= ess sup

(τ)i∈T(m)i

E(m)i
X(τ)i

,

X(m)i−1
= E(m)i−1

V(m)i−1,mi−1+1, i = k, k − 1, . . . , 1,

where X0 ≡ 0.
We emphasize that most of the statements in this section are valid almost surely. We shall make no

mention of this in what follows.
Let us now establish some properties of the sequences {V(m)i

} and {X(m)i
}. It follows from results

of the general theory of optimal stopping (see, e.g., Chow et al. (1971), Haggstrom (1966)) that V(m)i

satisfies the recursion equation

V(m)i
= max{X(m)i

,E(m)i
V(m)i−1,mi+1}.

The following theorem gives the existence conditions and the structure of an optimal multiple stop-
ping rule in Sm.

Theorem 1. Let condition (A+) be satisfied. We put

τ∗i = inf{mi > mi−1 : V(m)i
= X(m)i

}

for i = 1, 2, . . . , k on the set Di−1 = {ω : τ∗1 = m1, . . . , τ
∗
i−1 = mi−1}, where it is assumed that

τ∗i (ω) = +∞ on {ω : τ∗i−1(ω) = +∞}, m0 = m− 1, and D0 = Ω. In that case, if the random vector
τ∗ = (τ∗1 , . . . , τ∗k ) is finite with probability one, then τ∗ ∈ Sm is an optimal multiple stopping rule.

The following theorem gives the characterization of the m-value vm by means of the sequence {Vm}.

Theorem 2. If condition (A+) holds, then vm = EVm.

We now consider a finite case. Let

{Z(m)k
, 1 6 m1 6 N1,m1 < m2 < N2(m1), . . . ,

mk−1 < mk 6 Nk(m1, . . . , mk−1)}

be a family of random variables, where N1, Ni(·) (i = 2, . . . , k) are natural numbers. As in the general
theory of optimal stopping (see Chow et al. (1971)), we define the sequence V(m)i

by backward induction
from the recursion equations

V(m)i−1,Ni(m1,...,mi−1) = X(m)i−1,Ni(m1,...,mi−1), (1)

V(m)i
= max{X(m)i

,E(m)i
V(m)i−1,mi+1} (2)

for 1 6 m1 6 N1, . . . , mi−1 < mi 6 Ni(m1, . . . , mi−1). As before, X(m)k
= Z(m)k

.
Using Theorem 1, we define the optimal multiple stopping rule τ∗. From Theorem 2, (1), and (2),

we obtain the value vm.
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3 The Multiple Best Choice Problem

Suppose the gain is the probability of choosing k best objects. Denote by (a1, a2, . . . , aN ) any permu-
tation of numbers (1, 2, . . . , N), 1 corresponds to the best object, N corresponds to the worst one. If ai

is the m-th object in order on quality among (a1, a2, . . . , ai), we write yi = m for all i = 1, 2, . . . , N ,
ai is called the absolute rank, and yi is called the relative rank.

Let (i1, . . . , ik) be any permutation of numbers 1, 2, . . . , k. A rule τ∗ = (τ∗1 , . . . , τ∗k ), 1 ≤ τ∗1 <
τ∗2 < · · · < τ∗k ≤ N is an optimal rule if

P
{ ⋃

(i1,...,ik)

{aτ∗1 = i1, . . . , aτ∗k = ik}
}

= sup
τ

P
{ ⋃

(i1,...,ik)

{aτ1 = i1, . . . , aτk
= ik}

}
= P∗

N , (3)

where τ = (τ1, . . . , τk). We are interested in finding the optimal rule τ∗ = (τ∗1 , . . . , τ∗k ).
By Z

(i)k

(m)k
= Zi1,...,ik

m1,...,mk denote a conditional probability of event {am1 = i1, . . . , amk
= ik} with

respect to σ-algebra F(m)k
, generated by observations (y1, . . . , ymk

), and put

Z(m)k
=

∑

(i1,...,ik)

Z
(i)k

(m)k
.

Using (3), we get the value of the game v

P∗
N = EZτ∗ = sup

τ
EZτ = v.

Thus we reduce the best choice problem of k objects to the problem of multiple stopping of the random
sequence Z(m)k

(for further details see Nikolaev M.L. (1998)).
As was shown in Nikolaev (1977, 1998), the solution of this problem is the following optimal strat-

egy: there exists a set π∗ = (π∗1, . . . , π
∗
k), 1 ≤ π∗1 < · · · < π∗k ≤ N such that

• it is necessary to skip first π∗1−1 objects, and then we stop on the first object, which is better than all
precursors, or on the (N−k+1)-th object, if the best one does not appear by the moment N−k+1;

• at second time we stop on the first object, which is better than all precursors, or worse than one
object (if we already have observed π∗2 − 1 objects), if any, or, otherwise, on (N − k + 2)-th object;

• the third choice should be made on the first object, which is better than all precursors, or worse than
one object (if we already have observed π∗2 − 1 objects) or worse than two objects (if we already
have observed π∗3 − 1 objects), if any, or on (N − k + 3)-th object etc.

More formally,

τ∗1 = min{m1 ≥ π∗1 : ym1 = 1},
τ∗i = min

[
min{mi > mi−1 : ymi = 1},

min{mi > mi−1 : mi ≥ π∗2, ymi = 2},
. . . ,min{mi > mi−1 : mi ≥ π∗i , ymi = i}]

on the set Fi−1 = {ω : τ∗1 = m1, . . . , τ
∗
i−1 = mi−1}, i = 2, . . . , k, F0 = Ω.

Example 1. If N = 5, k = 2, then v = 0.3333, π∗1 = 2, π∗2 = 4. Consider the following random
permutation a1, . . . , a5: 3, 2, 4, 5, 1. Then we observe the sequence of y1, . . . , y5: 1,1,3,4,1. According
to the optimal rule we stop on the second object (m1 = 2, y2 = 1) and on the fifth one (m2 = 5, y5 = 1).
Thus we choose the best and the second best objects.
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4 Generalizations of the multiple best choice problem

We can generalize the best multiple choice problem to the case when the gain is the probability of
choosing k objects with given ranks r1, r1, . . . , rk, 1 ≤ r1 < . . . < rk ≤ N (Nikolaev et al. (2007)).

Let (l)k = (l1, . . . , lk) denote a permutation of the integer numbers r1, r2, . . . , rk. A rule τ∗ =
(τ∗1 , . . . , τ∗k ), 1 ≤ τ∗1 < τ∗2 < · · · < τ∗k ≤ N is an optimal rule if

P
{⋃

(l)k

{aτ∗1 = l1, . . . , aτ∗k = lk}
}

= sup
τ

P
{⋃

(l)k

{aτ1 = l1, . . . , aτk
= lk}

}
= P∗

N , (4)

τ = (τ1, . . . , τk). We are interested in finding the optimal rule τ∗ = (τ∗1 , . . . , τ∗k ). In the same way, we
define the sequence Z(m)k

and the value of the game v.
Put

B0 =
n0⋂

s=1

{ω : yt0,s = j0,s, yt0,s+1 > s, . . . , yt0,s+1−1 > s},

1 ≤ t0,1 < · · · < t0,n0 < t0,n0+1 = m1,

Bi = {ω : ymi = ji, ymi+1 > n0 + · · ·+ ni−1 + i− 1, . . . ,

ymi+ti,1−1 > n0 + · · ·+ ni−1 + i− 1}
ni⋂

s=1

{ω : ymi+ti,s = ji,s, ymi+ti,s+1 > n0 + · · ·+ ni−1 + i + s− 1, . . . ,

ymi+ti,s+1−1 > n0 + · · ·+ ni−1 + i + s− 1},
1 ≤ ti,1 < · · · < ti,ni < ti,ni+1 = mi+1 −mi, i = 1, . . . , k − 1,

where (j1, . . . , jk), 1 ≤ ji ≤ rk − k + i, is a set of the relative ranks from R = {r1, . . . , rk},
(ji,1, . . . , ji,ni), i = 0, 1, . . . , k − 1 is a set of the relative ranks from R′ = {1, 2, . . . , rk} \R.

Then

Z
(l)k

(m)k
=

∑
P

{
am1 = l1, . . . , amk

= lk | {ω : ymk
= jk}

k−1⋂

i=0

Bi

}
I(ymk

= jk)I
(k−1⋂

i=0

Bi

)
,

where we sum up all ordered arrangements of (rk − k − nk), nk = 0, 1, . . . , rk − k, elements from the
set R′ in k intervals: in front of object l1, between object l1 and object l2, . . . , between object lk−1 and
object lk. The rest of nk elements from the set R′ are situated after object lk, so they do not influence on
the event {ω : ymk

= jk}
⋂k−1

i=0 Bi. Since y1 = 1, y2 = 1 or 2, . . . , yi = 1, 2, . . . , i, then I(B0) = 1.
Hence, using independence of the relative ranks y1, . . . , yN , we obtain

Z
(l)k

(m)k
=

∑
Cnk

rk−kA
nk
N−mk

mk(mk − 1) . . . (mk − rk + nk + 1)
N(N − 1) . . . (N − rk + 1)

I(ymk
= jk)I

(k−1⋂

i=1

Bi

)
,

where Cnk
rk−k is the number of nk-combinations from a set with rk − k elements, Ank

N−mk
is the number

of nk-permutations from a set with N −mk elements.
Using Theorem 1, we obtain the optimal multiple stopping rule, which can be described as follows

τ∗1 = min{m1 : ym1 ∈ Γ1,m1}, Γ1 = (Γ1,1, . . . , Γ1,N−k+1),
Γ1,s ⊆ {1, . . . , s} ∩ {1, . . . , rk − k + 1}, s = 1, . . . , N − k,

Γ1,N−k+1 = {1, 2, . . . , N − k + 1},
τ∗i = min{mi > mi−1 : ymi ∈ Γi,mi(ym1 , ym1+1, . . . , ymi−1)},
Γi = (Γi,i, . . . , Γi,N−k+i), Γi,N−k+i = {1, 2, . . . , N − k + i},
Γi,s ⊆ {1, . . . , s} ∩ {1, . . . , rk − k + i}, s = i, . . . , N − k + i− 1.



6 Nikolaev et al.

The ”stopping” sets Γ1, . . . , Γk can be defined by backward induction. Since the structure of the sets
solely depends on the values r1, . . . , rk, finding of the optimal stopping rules and the value of the game
is a problem for each particular case.

We also consider a generalization of the Gusein-Zade problem (see Gusein-Zade (1966)), whose
gain is the probability of choosing one object from the l best objects. The optimal stopping rules are
obtained if the gain is the probability of choosing k objects from l best ones.

The solution of this problem is the following strategy: there exist sets π(1) =
(π(1)

1 , π
(1)
2 , . . . , π

(1)
l−k+1), π(2) = (π(2)

1 , π
(2)
2 , . . . , π

(2)
l−k+2), . . . , π(k) = (π(k)

1 , π
(k)
2 , . . . , π

(k)
l ) such

that

• it is necessary to skip first π
(1)
1 − 1 objects, and then we stop on the first object, which is better

than all precursors, or the second best object, if we already have observed π
(1)
2 − 1, and so on, or

on object, which is worse than l − k precursors, if we already have observed π
(1)
l−k+1 − 1, or on the

(N − k + 1)-th object;
• at second time we stop on the first object, which is better than all precursors, if we have passed

π
(2)
1 − 1 objects, or worse than one object (if we already have observed π∗2 − 1 objects), and so on,

or on object, which is worse than l − k + 1 precursors, if we already have observed π
(2)
l−k+2 − 1, or,

otherwise, on (N − k + 2)-th object;
• . . .
• the k-th choice should be made on the first object, which is better than all precursors, if we have

observed π
(k)
1 − 1 objects, or worse than one object (if we already have observed π

(k)
2 − 1 objects)

or worse than two objects (if we already have observed π
(k)
3 − 1 objects), and so on, or on object,

which is worse than l−1 precursors, if we already have observed π
(k)
l −1, if any, or on N -th object.

The problem of choosing two objects from three best ones is considered in detail by Polushina
(2007). Table 1 shows the values of the game v for different N both for this problem and for the problem
of choosing two best objects.

Table 1. The value of the game v.

N 3 4 5 6 7 8 9

Choice of 2 objects from 3 best ones 1.0000 0.7083 0.6333 0.5917 0.5530 0.5250 0.5059

Choice of 2 best objects 0.5000 0.3333 0.3333 0.3139 0.2956 0.2800 0.2739
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