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Abstract. Optimal design under a cost constraint is considered, with a scalar coefficient setting the compromise between
information (i.e., precision of the estimation of the model parameters) and cost. For suitable cost functions, by increasing the
value of the coefficient one can force the support points of an optimal design measure to concentrate around points of minimum
cost. When the experiment is constructed sequentially, the choice of eachnew design point being based on the current estimated
value of the model parameters (response-adaptive design), the strong consistency and asymptotic normality of the estimator
of the model parameters is obtained under the assumption that the design variables belong to a finite set. An example of
adaptive design in a dose-finding problem with a bivariate binary model ispresented, showing the effectiveness of the approach.
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1 PenalizedD-optimal design: introduction and motivation

This work is motivated by the recent papers (Dragalin and Fedorov, 2006; Dragalin et al., 2008) where
the authors use constrained optimal design to make a compromise between individual and collective
ethics in dose-finding studies. Their idea is to use a cost function that accounts for poor efficacy and
for toxicity, and to maximize information-per-cost-unit, which can be put in the form of a standard (un-
constrained) optimal design problem. Using a parametric model for the dose/efficacy-toxicity responses
(Gumbel or Cox model as in (Dragalin and Fedorov, 2006) or a bivariateprobit model as in (Dragalin
et al., 2008)), the Fisher information matrix can be calculated and locally optimaldesigns can be con-
structed.

In the present paper we introduce some flexibility in setting the balance between the information
gained (in terms of precision of parameter estimation) and the cost of the experiment (in terms of poor
success for the patients enroled in the trial) by maximizing information-per-observation under a con-
straint on the cost or, equivalently, by optimizing a penalized design criterion where the penalty is related
to the cost of the experiment.

Let X , a compact subset ofRd, denote the admissible domain for the experimental variables
x (design points) andθ ∈ R

p denote the (p-dimensional) vector of parameter of interest in a
parametric model generating the log-likelihoodl(Y, x; θ) for the observationY at the design point
x. We suppose thatθ ∈ Θ, a compact subset ofRp. For N independent observationsY =
(Y1, . . . , YN ) at non random design pointsX = (x1, . . . , xN ) the log-likelihood atθ is l(Y,X; θ) =
∑N

i=1 l(Yi, xi; θ). Let M(X, θ) denote the corresponding Fisher information matrix,M(X, θ) =

−IEθ

{

∂2l(Y,X; θ)/(∂θ∂θ⊤)
}

=
∑N

i=1 µ(xi, θ). WhenN(xi) denotes the number of observations
made atx = xi, we get the following normalized information matrix per observationM(ξ, θ) =
(1/N)M(X, θ) =

∑K
i=1[N(xi)/N ] µ(xi, θ), whereK is the number of distinct design points andξ

is the design measure (a probability measure onX ) that puts massN(xi)/N at xi. Following the usual
approximate design approach, we shall relax the constraints on design measures and considerξ as any
element ofΞ, the set of probability measures onX , so thatM(ξ, θ) =

∫

X
µ(x, θ) ξ(dx).

In a regression model with independent and homoscedastic observationssatisfyingIEθ(Y |x, θ) =
η(x, θ), with η(x, θ) differentiable with respect toθ for anyx, we have

µ(x, θ) = I
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ⊤
(1)
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with I =
∫

[ϕ′(t)/ϕ(t)]2 ϕ(t) dt the Fisher information for location, whereϕ(·) is the probability
density function of the observation errors andϕ′(·) its derivative.

In a dose-response problem with single responseY ∈ {0, 1} (efficacy or toxicity response at the dose
x for instance) andPr{Y = 1|x, θ} = π(x, θ) we havel(Y, x; θ) = Y log[π(x, θ)] + (1 − Y ) log[1 −
π(x, θ)] so that, assumingπ(x, θ) differentiable with respect toθ for anyx,

µ(x, θ) =
∂π(x, θ)

∂θ

∂π(x, θ)

∂θ⊤
1

π(x, θ)[1 − π(x, θ)]
.

Bivariate extensions, where both efficacy and toxicity responses are observed at a dosex, are considered
in (Dragalin and Fedorov, 2006) (Gumbel and Cox models) and (Dragalinet al., 2008) (bivariate probit
model). See also the example in Sect. 2. Besides a few additional technical difficulties, the main differ-
ence with the single response case is the fact thatµ(x, θ) may have rank larger than one, so that less than
p support points inξ may suffice to estimateθ consistently. The same situation occurs for regression
models whendim(η) > 1 so that (1) may have rank larger than one. We assume thatµ(x, θ) is bounded
onX .

Local D-optimal design consists in determining a measureξ∗D that maximizeslog det[M(ξ, θ)],
with M(ξ, θ) the Fisher information matrix at a given value ofθ. In many circumstances, besides the
optimality criterionlog det[M(ξ, θ)], it is desirable to introduce a constraint of the formΦ(ξ, θ) ≤ C for
the design measure. In dose-finding problems, the introduction of such a constraint allows one to take
individual ethical concerns into account. For instance, when both the efficacy and toxicity responses are
observed, one can relateΦ(ξ, θ) to the probability of success (efficacy and no toxicity) for a given dose,
as done in (Dragalin and Fedorov, 2006; Dragalin et al., 2008). See also Sect. 2. We suppose that the
cost (or penalty) functionΦ(ξ, θ) is linear inξ, that is

Φ(ξ, θ) =

∫

X

φ(x, θ) ξ(dx) ,

and thatφ(x, θ), the cost induced by taking one observation atx, is bounded onX (see, e.g., (Cook and
Fedorov, 1995) and Fedorov and Hackl (1997, Chap. 4) for extensions to nonlinear constraints). Also,
we restrict our attention to the case where a single (scalar) constraint is present.

The fact that a single cost function is present permits to consider the problem of maximizing in-
formation per cost-unit, which can be formulated as a design problem withoutconstraint, see (Dragalin
and Fedorov, 2006; Dragalin et al., 2008). However, in dose-findingproblems this formulation has the
important consequence that the prohibition of excessively low (with poor efficacy) or high (with high
toxicity) doses can only be obtained by an ad-hoc modification of the cost functionφ(x, θ). Indeed, this
is the only way to modify the optimal design and hopefully to change its support. This can be contrasted
with the solution of the constrained design problem that we consider in the present paper.

A direct formulation of the optimal design problem under constraint is as follows:

Maximizelog det[M(ξ, θ)] with respect toξ ∈ Ξ under the constraintΦ(ξ, θ) ≤ C . (2)

We say that a design measureξ ∈ Ξ is θ-admissible ifΦ(ξ, θ) ≤ C and we suppose that a strictly
θ-admissible measure exists inΞ (Φ(ξ, θ) < C for someξ ∈ Ξ). The following condition is then
necessary and sufficient for the optimality for (2) of aθ-admissibleξ∗ ∈ Ξ:

∃λ∗ ≥ 0 such that







λ∗ [C − Φ(ξ∗, θ)] = 0
and
∀x ∈ X , trace[µ(x, θ)M−1(ξ∗, θ)] ≤ p + λ∗ [φ(x, θ) − Φ(ξ∗, θ)] .

(3)

In practice,ξ∗ can be determined by maximizing

Hθ(ξ, λ) = log det[M(ξ, θ)] − λ Φ(ξ, θ) (4)

for an increasing sequence(λi) of Lagrange coefficientsλ, starting atλ0 = 0 and stopping at the first
λi such that the associated optimal designξ∗ satisfiesΦ(ξ∗, θ) ≤ C, see, e.g., Mikulecḱa (1983) (for
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C large enough, the unconstrainedD-optimal designξ∗D is optimal for the constrained problem). The
parameterλ can thus be used to set the tradeoff between the maximization oflog det[M(ξ, θ)] (gaining
information) and minimization ofΦ(ξ, θ) (reducing cost); it can be considered as a penalty coefficient
used to penalize optimal designs according to their cost. Notice that maximizingHθ(ξ, λ) for λ ≥ 0 is
equivalent to maximizing(1 − γ) log det[M(ξ, θ)] + γ [−Φ(ξ, θ)] with γ = λ/(1 + λ) ∈ [0, 1) (one
may refer to Cook and Wong (1994) for the equivalence between constrained and compound optimal
designs). Similarly to the case ofD-optimal design, the optimal matrixM(ξ∗, θ) is unique (but the
optimal design measureξ∗ is not necessarily unique).

Let ξ∗(λ) denote an optimal design forHθ(ξ, λ) given by (4). One can easily check that both
log det{M[ξ∗(λ), θ]} andΦ[ξ∗(λ), θ] are non-increasing functions ofλ, see Cook and Wong (1994)
for examples. We suppose thatµ(x, θ) andφ(x, θ) are continuous inx ∈ X , with X a compact subset
of R

d, and define
φ∗

θ = min
x∈X

φ(x, θ) , x∗ = x∗(θ) = arg min
x∈X

φ(x, θ) . (5)

One can then show that, for suitable penalty functions, the support of an optimal design for (2) depends
onC or, equivalently, the support of an optimal design for (4) depends onλ. Whenx∗ is unique, one may
then obtain that the supporting points ofξ∗ converge tox∗ asλ → ∞. For dose-response problems, this
property has the important consequence that excessively high or low doses can be prohibited by choosing
C small enough or, equivalently,λ large enough. Its effectiveness very much depends on the choice of
the penalty function, and in particular on its local behavior aroundx∗ (contrary to what intuition might
suggest, it requires the cost functionφ(·, θ) to be sufficiently flat aroundx∗: indeed, in that case a design
ξ supported in the neighborhood ofx∗ can at the same time have a small costΦ(ξ, θ) and be dispersed
enough to carry significant information throughlog detM(ξ, θ)).

2 Example: Cox model for efficacy-toxicity response

The example is taken from (Dragalin and Fedorov, 2006) and concernsa problem with bivariate binary
responses. ForY (respectivelyZ) the binary indicator of efficiency (resp. of toxicity) at dosex for a
model with parametersθ, we writePr{Y = y, Z = z|x, θ} = πyz(x, θ), Y, y, Z, z ∈ {0, 1}, with

π11(x, θ) =
ea11+b11 x

1 + ea01+b01 x + ea10+b10 x + ea11+b11 x

π10(x, θ) =
ea10+b10 x

1 + ea01+b01 x + ea10+b10 x + ea11+b11 x

π01(x, θ) =
ea01+b01 x

1 + ea01+b01 x + ea10+b10 x + ea11+b11 x

π00(x, θ) =
(

1 + ea01+b01 x + ea10+b10 x + ea11+b11 x
)−1

andθ = (a11, b11, a10, b10, a01, b01)
⊤. The log-likelihood function of a single observation(Y, Z) at dose

x is thenl(Y, Z, x; θ) = Y Z log π11(x, θ) + Y (1 − Z) log π10(x, θ) + (1 − Y )Z log π01(x, θ) + (1 −
Y )(1−Z) log π00(x, θ) and elementary calculations show that the contribution to the Fisher information
matrix is

µ(x, θ) =
∂p⊤(x, θ)

∂θ

(

P−1(x, θ) + [1 − π11(x, θ) − π10(x, θ) − π01(x, θ)]−111⊤
) ∂p(x, θ)

∂θ⊤

wherep(x, θ) = [π11(x, θ), π10(x, θ), π01(x, θ)]⊤, P(x, θ) = diag{p(x, θ)} and1 = (1, 1, 1)⊤. Note
thatµ(x, θ) is generally of rank 3. As in (Dragalin and Fedorov, 2006), we takeθ = (3, 3, 4, 2, 0, 1)⊤ and
X the finite set{x(1), . . . , x(11)} where the dosesx(i) are equally spaced in the interval[−3, 3]. TheD-
optimal design is supported onx(1), x(4), x(5) andx(10), with associated weights0.3318, 0.3721, 0.1259
and0.1701.

We first choose a cost function related to the probabilityπ10(x, θ) of efficacy and no toxicity and
takeφ(x, θ) = π−1

10 (x, θ). The Optimal Safe Dose (OSD), minimizingφ(x, θ), is x(5) = −0.6. Figure 1
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presents the optimal designsξ∗(λ) for λ varying between 0 and 100 along the horizontal axis. The
weight associated with eachx(i) on the vertical axis is proportional to the thickness of the plot.
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Fig. 1. Optimal designsξ∗(λ) as function ofλ ∈ [0, 100] for the cost functionπ−1

10
(x, θ): each horizontal dotted line corre-

sponds to a point inX , the thickness of the plot indicates the associated weight.

Consider now the cost function

φ(x, θ) = {π−1
10 (x, θ) − [max

x
π10(x, θ)]−1}2 (6)

which is more flat thanπ−1
10 (x, θ) around its minimum (at the OSDx(5)). One can show that the optimal

designs then concentrate on three doses around the OSD whenλ is large enough. Figure 2 indicates
that forλ & 75 the optimum designs are supported onx(4) andx(6) only, with weights approximately
1/2 each, that is, all patients in a trial defined byξ∗(λ) receive a dose close to the optimal one,x(5).
Note, however, that none receives the OSD (compare with Figure 2). The situation changes for larger
values ofλ, and numerical calculations show that the optimal design is supported on{x(4), x(5), x(6)}
for λ & 160, with the weight of the optimal dosex(5) increasing withλ.
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Fig. 2.Same as Figure 1, but for the cost-function (6).

3 Adaptive designs

In a nonlinear situation, like in the example in the section above,M(ξ, θ) andΦ(ξ, θ) usually depend
on θ. A common approach to overcome the issue of dependence of the optimum design in θ consists in
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designing the experiment sequentially. In adaptiveD-optimal design for instance, the design point after
N observations is taken as

xN+1 = arg max
x∈X

trace[µ(x, θ̂N )M−1(ξN , θ̂N )] , (7)

where θ̂N is the current estimated value ofθ. By alternating between estimation based on previous
observations and determination of the next design point where to observe, one forces the empirical
design measure to progressively adapt to the correct (true) value of the model parameters. Adaptive
design is considered in (Dragalin and Fedorov, 2006; Dragalin et al., 2008), but the convergence of
the procedure (strong consistency of the parameter estimator and convergence of the empirical design
measure to the optimal non-sequential design for the true value of the model parameters) is left as
an open issue. The difficulty of proving the consistency of the estimator when design variables are
sequentially determined is usually overcome by considering an initial experiment (non adaptive) that
grows in size when the total number of observations increases, see, e.g.,Chauduri and Mykland (1993).
Although this number is often severely limited in practise, especially for clinical trials, we think that it
is reassuring to know that,for a given initial experiment, adaptive design guarantees suitable asymptotic
properties under reasonable conditions. Using simple arguments, one canshow that this is indeed the
case whenthe design space is finite, which forms a rather natural assumption in the context of clinical
trials. The case of adaptiveD-optimal design is considered in (Pronzato, 2009b) (notice that is also
covers the situation considered by Dragalin and Fedorov (2006); Dragalin et al. (2008), which can be
formulated as a standardD-optimal design problem).

In the case of adaptive penalizedD-optimal design, the design point afterN observations is taken as

xN+1 = arg max
x∈X

{

trace[µ(x, θ̂N )M−1(ξN , θ̂N )] − λN φ(x, θ̂N )
}

. (8)

Following an approach similar to that in (Pronzato, 2009b), one can show that whenX is finite,λN is
the optimal Lagrange coefficient for (2) with the estimated valueθ̂N substituted forθ, and under rather
standard regularity assumptions, this procedure is asymptotically optimal in the sense that the estimated
value of the parameters (by least-squares in a nonlinear regression model or by the maximum-likelihood
in Bernoulli trials) converges a.s. to its true valueθ̄ and the information matrix tends a.s. to the penalized
D-optimal matrix at̄θ asN → ∞, see (Pronzato, 2009a). Also, the estimator is asymptotically normal,
with variance-covariance matrix given by the inverse of the usual information matrix, similarly to the
non-adaptive case.

The strong consistency of̂θN is preserved whenλN is taken as a control parameter that tends to
infinity not too fast (more slowly thanN/(log log N)). LettingλN tend to infinity permit to focuss more
and more on cost minimization and to obtain design measures that converge weakly to the delta measure
at x∗ = arg minx∈X φ(x, θ̄) (and all design points tend to concentrate aroundx∗ for suitable penalty
functions). In dose-finding problems, it means that for suitable penalty functions, when the weight given
to the cost for bad treatment increases with the number of patients enroled, the doses allocated converge
to the OSD while the parameters are still estimated consistently.

Numerical simulations with the example of Section 2 (trials on 36 patients with the costfunction
φ(x, θ) = π−1

10 (x, θ)) indicate much better performance in terms of information gained (precision ofthe
estimation ofθ in the trial) for (8) withλN adapted tôθN than for the up-and-down rule of Ivanova
(2003), defined by

xN+1 =







max{x(iN−1), x(1)} if ZN = 1 ,

x(iN ) if YN = 1 andZN = 0 ,

min{x(iN+1), x(11)} if YN = 0 andZN = 0 .

(9)

Here, the indexiN ∈ {1, . . . , 11} is defined byx(iN ) = xN and (YN , ZN ) denotes the observation
for xN . This up and down rule is also considered by Dragalin and Fedorov (2006) (see also Kpamegan
and Flournoy (2000, p. 221)). Simulations also indicate that the number of times the OSD is estimated
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correctly after the trial is much larger for (8) withλN adapted tôθN than for (9). This performance
comes with a prize, and the costΦ(ξ, θ) is (slightly) higher for (8) than for (9). Considering longer trials
with λN increasing withN in (8) permits to outperform (9) both in terms of precision of the estimation
of θ (and location of the OSD) and cost: asλN increases, the design points generated by (8) tend to
concentrate around the OSD.

4 Conclusions

The approach used in (Dragalin and Fedorov, 2006; Dragalin et al., 2008) makes a clear compromise
between the efficient treatment of individuals in the trial (by preventing the use of doses with low efficacy
or high toxicity) and the precise estimation of the model parameters (accompanied with measures of
statistical accuracy), to be used for making efficient decisions for future treatments. As such, it has a
great potential in combining traditional phase I and phase II clinical trials intoa single one, thereby
accelerating the drug development process.

We have shown that a different formulation of the problem permits to introduce some flexibility in
setting the compromise between the information gained (in terms of precision of parameter estimation)
and the cost of the experiment (in terms of poor success for the patients enroled in the trial). We have
shown in particular that, for suitable penalty functions, by increasing the weight set on the penalty one
guarantees that all doses in the experiment have a small cost (and concentrate around the optimal dose
when this one is unique). This permits the avoidance of extreme doses generally suggested by optimal
design for parameter estimation. Further developments and numerical studiesare required to define
suitable rules for selecting appropriate cost functions and for choosingthe value (or the sequence of
values) of the penalty coefficientsλN .
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