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Abstract. Optimal design under a cost constraint is considered, with a scaldicoertf setting the compromise between
information (i.e., precision of the estimation of the model parametesast. For suitable cost functions, by increasing the
value of the coefficient one can force the support points of an optiesdjd measure to concentrate around points of minimum
cost. When the experiment is constructed sequentially, the choice oheauatesign point being based on the current estimated
value of the model parameters (response-adaptive design), thg stwasistency and asymptotic normality of the estimator
of the model parameters is obtained under the assumption that the desiginles belong to a finite set. An example of
adaptive design in a dose-finding problem with a bivariate binary mogetgented, showing the effectiveness of the approach.
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1 PenalizedD-optimal design: introduction and motivation

This work is motivated by the recent papers (Dragalin and Fedorog; Id@galin et al., 2008) where
the authors use constrained optimal design to make a compromise betweédumdand collective

ethics in dose-finding studies. Their idea is to use a cost function thatistsctor poor efficacy and
for toxicity, and to maximize information-per-cost-unit, which can be put in tmenfof a standard (un-
constrained) optimal design problem. Using a parametric model for the ffasa\g-toxicity responses
(Gumbel or Cox model as in (Dragalin and Fedorov, 2006) or a bivapiatieit model as in (Dragalin
et al., 2008)), the Fisher information matrix can be calculated and locally opties#ins can be con-
structed.

In the present paper we introduce some flexibility in setting the balance betiveénformation
gained (in terms of precision of parameter estimation) and the cost of tharagpé (in terms of poor
success for the patients enroled in the trial) by maximizing information-perredison under a con-
straint on the cost or, equivalently, by optimizing a penalized design criteufi@re the penalty is related
to the cost of the experiment.

Let X, a compact subset dk¢, denote the admissible domain for the experimental variables
x (design points) and) € RP denote the ji-dimensional) vector of parameter of interest in a
parametric model generating the log-likelihob@’, x; §) for the observatiort” at the design point
x. We suppose that € ©, a compact subset dRP. For N independent observationy =
(Y1,...,Yy) at non random design poinks = (z1,...,zy) the log-likelihood a® is I(Y,X;0) =
SN U(Yi,zi;0). Let M(X,6) denote the corresponding Fisher information mathi(X,6) =
~1E {0%1(Y,X;0)/(80007)} = S| u(x;,6). When N (z;) denotes the number of observations
made atr = z;, we get the following normalized information matrix per observatMdii¢, ) =
(1/N)M(X,0) = S5 [N(z;)/N] u(x;, 0), where K is the number of distinct design points afd
is the design measure (a probability measuret9nhat puts mas#'(z;)/N atz;. Following the usual
approximate design approach, we shall relax the constraints on desigonegand considéras any
element of=, the set of probability measures ah so thatM (&, 0) = [, u(x,0) £(dx).

In a regression model with independent and homoscedastic obsensatisfginglEy (Y |z, ) =
n(z,0), with n(z, 0) differentiable with respect té for anyz, we have

on(x,0) on(z,0)
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with Z = [ [/ (t)/o(t)]* o(t) dt the Fisher information for location, where(-) is the probability
density function of the observation errors apld-) its derivative.

In a dose-response problem with single respanse {0, 1} (efficacy or toxicity response at the dose
x for instance) an®r{Y = 1|z,0} = w(x,0) we havel(Y, z;0) = Y log[r(z,0)] + (1 — Y)log[l —
m(z,0)] so that, assuming(z, 0) differentiable with respect té for any x,

or(x,0) On(x,0) 1
o0 20T w(z,0)[1 —7(z,0)]"

Bivariate extensions, where both efficacy and toxicity responsedas\aed at a dose are considered

in (Dragalin and Fedorov, 2006) (Gumbel and Cox models) and (Draggdih, 2008) (bivariate probit
model). See also the example in Sect. 2. Besides a few additional techniicailtikfs, the main differ-
ence with the single response case is the factthatd) may have rank larger than one, so that less than
p support points it may suffice to estimaté consistently. The same situation occurs for regression
models whenlim(n) > 1 so that (1) may have rank larger than one. We assume:that) is bounded
onX.

Local D-optimal design consists in determining a measgjethat maximizedog det[M(¢, 6)],
with M(¢&, 6) the Fisher information matrix at a given value bfln many circumstances, besides the
optimality criterionlog det[M (&, 6)], it is desirable to introduce a constraint of the fabrg, 6) < C for
the design measure. In dose-finding problems, the introduction of suchst&raint allows one to take
individual ethical concerns into account. For instance, when both fica@f and toxicity responses are
observed, one can relatg¢, 0) to the probability of success (efficacy and no toxicity) for a given dose,
as done in (Dragalin and Fedorov, 2006; Dragalin et al., 2008). SeeSalst. 2. We suppose that the
cost (or penalty) functio@ (¢, 0) is linear ing, that is

w(z,0) =

B(¢.0) = /X o(.0) £(dx)

and thatp(z, ), the cost induced by taking one observation gt bounded ot (see, e.g., (Cook and
Fedorov, 1995) and Fedorov and Hackl (1997, Chap. 4) for eidaa to nonlinear constraints). Also,
we restrict our attention to the case where a single (scalar) constraiesesr

The fact that a single cost function is present permits to consider théepraff maximizing in-
formation per cost-unit, which can be formulated as a design problem witloostraint, see (Dragalin
and Fedorov, 2006; Dragalin et al., 2008). However, in dose-findinglems this formulation has the
important consequence that the prohibition of excessively low (with pificaey) or high (with high
toxicity) doses can only be obtained by an ad-hoc modification of the costién ¢(z, §). Indeed, this
is the only way to modify the optimal design and hopefully to change its suppug.can be contrasted
with the solution of the constrained design problem that we consider in tsergrpaper.

A direct formulation of the optimal design problem under constraint is as/istio

Maximizelog det[M(¢&, )] with respect t¢ € = under the constraing(¢,6) < C'. (2)

We say that a design measwec = is #-admissible if®(£,0) < C and we suppose that a strictly
f-admissible measure exists i (¢(¢,0) < C for some{ € Z). The following condition is then
necessary and sufficient for the optimality for (2) af-admissible* € =
A [C—d(E%,0)] =0
3X* >0 suchthat { and 3
Vo € X, tracdu(x, 0)M~}(€",0)] < p+ \* [¢(x,0) — D(£*,0)].
In practice £* can be determined by maximizing

for an increasing sequen¢g;) of Lagrange coefficients, starting at\o = 0 and stopping at the first
A; such that the associated optimal desfgrsatisfies?({*,0) < C, see, e.g., Mikuleck (1983) (for
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C large enough, the unconstraingdoptimal desigrty, is optimal for the constrained problem). The
parameten can thus be used to set the tradeoff between the maximizatiog aét[M (¢, )] (gaining
information) and minimization of(&, ) (reducing cost); it can be considered as a penalty coefficient
used to penalize optimal designs according to their cost. Notice that maxinkizifgg \) for A > 0 is
equivalent to maximizing1l — v) logdet[M(&, 0)] + v [—@(£,0)] withy = A/(1 + X) € [0,1) (one
may refer to Cook and Wong (1994) for the equivalence between aimestk and compound optimal
designs). Similarly to the case @#-optimal design, the optimal matri¥I(£*, 0) is unique (but the
optimal design measutg is not necessarily unique).

Let £*(\) denote an optimal design fadidy(£, A) given by (4). One can easily check that both
log det{M[{*(A), 0]} and @[£*(N), 0] are non-increasing functions of see Cook and Wong (1994)
for examples. We suppose thatz, ) and¢(z, 0) are continuous i € X', with X a compact subset
of R?, and define

¢p = min¢(z,0), «* =a™(f) = argmin ¢(z,6). (5)

One can then show that, for suitable penalty functions, the support qitamad design for (2) depends
onC or, equivalently, the support of an optimal design for (4) depends Bvhenx* is unique, one may
then obtain that the supporting pointséfconverge tar* as\ — oo. For dose-response problems, this
property has the important consequence that excessively high or &g dan be prohibited by choosing

C small enough or, equivalently, large enough. Its effectiveness very much depends on the choice of
the penalty function, and in particular on its local behavior aratin(tontrary to what intuition might
suggest, it requires the cost functiof, 0) to be sufficiently flat around*: indeed, in that case a design

¢ supported in the neighborhood ©f can at the same time have a small cb&{, ) and be dispersed
enough to carry significant information througglg det M (&, 0)).

2 Example: Cox model for efficacy-toxicity response

The example is taken from (Dragalin and Fedorov, 2006) and conagsrablem with bivariate binary
responses. For (respectivelyZ) the binary indicator of efficiency (resp. of toxicity) at dasdor a
model with parameter®, we writePr{Y =y, Z = z|z,0} = my.(x,0),Y,y, Z, z € {0,1}, with

ea11+biix
(z,0) =
1L, 1 + eoo1+borx 4 gaiotbiox | cari+bisx
e10Fbiox
(,0) =
10T, 1 + eao1+borx 4 gaiotbiox 4 eari+bisx
e@01+bo1
7r01(x, 9) =

1 4+ eao1+borx 4 gaiotbiox 4 eari+bisx

—1
moo(z, 9) — (1 + eoi+tbor @ + edtotbio 4+ ot +b11 96)

andf = (ay1, b11, a0, bio, ao1, bo1) " . The log-likelihood function of a single observatifri, Z) at dose
xzisthenl(Y, Z,z;0) = Y Zlogm1(x,0) + Y(1 — Z)logmo(z,0) + (1 — Y)Zlogmo1(x,0) + (1 —
Y)(1—Z)log mpo(x, #) and elementary calculations show that the contribution to the Fisher information
matrix is

B op ' (x,0) op(z,0)
nw,0) = =55 — 207

wherep(z,0) = [r11(x, 0), m0(z,0), mo1(z,0)] ", P(z,0) = diag{p(x,0)} and1l = (1,1,1)7. Note
thatu(x, 0) is generally of rank 3. As in (Dragalin and Fedorov, 2006), we take(3, 3,4,2,0,1)" and
X the finite se{z(1 ... (1D} where the doses”) are equally spaced in the interyal3, 3]. The D-
optimal design is supported af!), 24, 25 andz(19), with associated weights3318,0.3721,0.1259
ando0.1701.

We first choose a cost function related to the probabitity(z, #) of efficacy and no toxicity and
take¢(z,0) = 714 (2, 6). The Optimal Safe Dose (OSD), minimizikgz, 0), is 2(>) = —0.6. Figure 1

(P’l(:yc, 6) 4+ [1 — w11 (. 0) — mio(x, 0) — 701 (=, 9)]*111T)
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presents the optimal desiggs(\) for A varying between 0 and 100 along the horizontal axis. The
weight associated with eaalt’) on the vertical axis is proportional to the thickness of the plot.

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

A

Fig. 1. Optimal designg*()\) as function ofA € [0, 100] for the cost functionr;, (z, 8): each horizontal dotted line corre-
sponds to a point itt’, the thickness of the plot indicates the associated weight.

Consider now the cost function
6(,0) = {73y (2,0) — [maxmio(w, )] 7'} (6)

which is more flat tham;' (z, ) around its minimum (at the OSE®)). One can show that the optimal
designs then concentrate on three doses around the OSD Wwiselarge enough. Figure 2 indicates
that for A\ > 75 the optimum designs are supported6f andz(® only, with weights approximately
1/2 each, that is, all patients in a trial defined45y\) receive a dose close to the optimal on€).
Note, however, that none receives the OSD (compare with Figure B)sifimation changes for larger
values of)\, and numerical calculations show that the optimal design is supportéd(®dhz(®), 2(6)}
for A > 160, with the weight of the optimal dose® increasing with\.

I I I I I I I I
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A

Fig. 2. Same as Figure 1, but for the cost-function (6).

3 Adaptive designs

In a nonlinear situation, like in the example in the section abdés, §) and®(¢, 9) usually depend
ond. A common approach to overcome the issue of dependence of the optimign ihe® consists in
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designing the experiment sequentially. In adapfx@ptimal design for instance, the design point after
N observations is taken as

TN+1 = argmax trace(z, oMM (¢, O], (7)
re

whered" is the current estimated value 6f By alternating between estimation based on previous
observations and determination of the next design point where to obsereeorces the empirical
design measure to progressively adapt to the correct (true) values ghtldel parameters. Adaptive
design is considered in (Dragalin and Fedorov, 2006; Dragalin et @8)20ut the convergence of
the procedure (strong consistency of the parameter estimator and gemwerof the empirical design
measure to the optimal non-sequential design for the true value of the madghgters) is left as
an open issue. The difficulty of proving the consistency of the estimatonwlesign variables are
sequentially determined is usually overcome by considering an initial expdrimem adaptive) that
grows in size when the total number of observations increases, se€lmgduri and Mykland (1993).
Although this number is often severely limited in practise, especially for clinicdbfrwe think that it
is reassuring to know thar a given initial experimentdaptive design guarantees suitable asymptotic
properties under reasonable conditions. Using simple arguments, orsb@arthat this is indeed the
case whenhe design space is finitevhich forms a rather natural assumption in the context of clinical
trials. The case of adaptivB-optimal design is considered in (Pronzato, 2009b) (notice that is also
covers the situation considered by Dragalin and Fedorov (2006);almaet al. (2008), which can be
formulated as a standafd-optimal design problem).

In the case of adaptive penalizédoptimal design, the design point aft8robservations is taken as

TN+1 = argmax {trace{u(:c, ONYM ™ (En, ™)) — Ay &(x, éN)} . (8)

Following an approach similar to that in (Pronzato, 2009b), one can shaiwvttenX is finite, Ay is

the optimal Lagrange coefficient for (2) with the estimated valiesubstituted fo®, and under rather
standard regularity assumptions, this procedure is asymptotically optimal iarnibe that the estimated
value of the parameters (by least-squares in a nonlinear regressiohanbgi¢he maximum-likelihood

in Bernoulli trials) converges a.s. to its true vafland the information matrix tends a.s. to the penalized
D-optimal matrix at) asN — oo, see (Pronzato, 2009a). Also, the estimator is asymptotically normal,
with variance-covariance matrix given by the inverse of the usual infaomanatrix, similarly to the
non-adaptive case.

The strong consistency o is preserved wheny is taken as a control parameter that tends to
infinity not too fast (more slowly thaiv/(loglog N)). Letting Ay tend to infinity permit to focuss more
and more on cost minimization and to obtain design measures that conveldg twghe delta measure
atz* = argmingcx ¢(,0) (and all design points tend to concentrate arowhdor suitable penalty
functions). In dose-finding problems, it means that for suitable penaittifuns, when the weight given
to the cost for bad treatment increases with the number of patients enr@dathgs allocated converge
to the OSD while the parameters are still estimated consistently.

Numerical simulations with the example of Section 2 (trials on 36 patients with thduugton
¢(x,0) = 71y (z,0)) indicate much better performance in terms of information gained (precisithre of
estimation of in the trial) for (8) with Ay adapted t@d" than for the up-and-down rule of lvanova
(2003), defined by

max{z(~=1 W} if Zy =1,
TN+1 = :L'(ZN) ‘ if Yy =1andZy = 0, (9)
min{z(~v+D (DY if Yy =0andZy = 0.

Here, the indexy € {1,...,11} is defined byz("N) = 2z and (Y, Zy) denotes the observation
for zy. This up and down rule is also considered by Dragalin and Fedorow)Z86e also Kpamegan
and Flournoy (2000, p. 221)). Simulations also indicate that the number of theeOSD is estimated
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correctly after the trial is much larger for (8) withy adapted td” than for (9). This performance
comes with a prize, and the cast¢, 6) is (slightly) higher for (8) than for (9). Considering longer trials
with A increasing withV in (8) permits to outperform (9) both in terms of precision of the estimation
of 6 (and location of the OSD) and cost: ag increases, the design points generated by (8) tend to
concentrate around the OSD.

4 Conclusions

The approach used in (Dragalin and Fedorov, 2006; Dragalin et &#I8)20akes a clear compromise
between the efficient treatment of individuals in the trial (by preventing sketidoses with low efficacy
or high toxicity) and the precise estimation of the model parameters (accordpaitiemeasures of
statistical accuracy), to be used for making efficient decisions fordute@atments. As such, it has a
great potential in combining traditional phase | and phase Il clinical trialsansingle one, thereby
accelerating the drug development process.

We have shown that a different formulation of the problem permits to intedome flexibility in
setting the compromise between the information gained (in terms of precisiomasheier estimation)
and the cost of the experiment (in terms of poor success for the patigntecin the trial). We have
shown in particular that, for suitable penalty functions, by increasing thghiveet on the penalty one
guarantees that all doses in the experiment have a small cost (anchirate@round the optimal dose
when this one is unique). This permits the avoidance of extreme dosealyesaggested by optimal
design for parameter estimation. Further developments and numerical sandiesquired to define
suitable rules for selecting appropriate cost functions and for chodlsengalue (or the sequence of
values) of the penalty coefficientsy.

References

Chaudhuri, P., Mykland, P., 1993. Nonlinear experiments: optimgijdeand inference based likelihoaburnal of the Amer-
ican Statistical Associatiqi88 (422), 538-546.

Cook, D., Fedorov, V., 1995. Constrained optimization of experimesign (invited discussion papeBtatistics 26, 129—
178.

Cook, D., Wong, W., 1994. On the equivalence between constramdanpound optimal designdurnal of the American
Statistical AssociatiorB9 (426), 687-692.

Dragalin, V., Fedorov, V., 2006. Adaptive designs for dose-figdiased on efficacy-toxicity respongeurnal of Statistical
Planning and Inferencel 36, 1800-1823.

Dragalin, V., Fedorov, V., Wu, Y., 2008. Adaptive designs for stigy drug combinations based on efficacy-toxicity response.
Journal of Statistical Planning and Inferenc38, 352—-373.

Fedorov, V., Hackl, P., 1997. Model-Oriented Design of Experimesypsinger, Berlin.

Ivanova, A., 2003. A new dose-finding design for bivariate outcafmmetrics 59, 1001-1007.

Kpamegan, E., Flournoy, N., 2001. An optimizing up-and-down desig Atkinson, A., Bogacka, B., Zhigljavsky, A. (Eds.),
Optimum Design 20Qluwer, Dordrecht, Ch. 19, pp. 211-224.

Mikulecka, J., 1983. On a hybrid experimental desigypbernetika19 (1), 1-14.

Pronzato, L., 2009a. Asymptotic properties of nonlinear least sgugstimates in stochastic regression models over a finite
design space. Application to self-tuning optimisation. Pnoc. 15th IFAC Symposium on System Identificat®aint-
Malo, France.

Pronzato, L., 2009b. One-step ahead adagliveptimal design on a finite design space is asymptotically optilelrika (to
appear).



