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Abstract. We register a random sequence constructed based on Markov processes by switching between them. At two random
moments θ1, θ2, where 0 ≤ θ1 ≤ θ2, the source of observations is changed. In effect the number of homogeneous segments
is random. The transition probabilities of each process are known and a priori distribution of the disorder moments is given.
Two cases are presented in details. In the first one the objective is to stop on between the disorder moments and in the second
one our objective is to find the strategy which immediately detects the distribution changes. Both problems are reformulated
to optimal stopping of the observed sequences. The detailed analysis of the problem is presented to show the form of optimal
decision function.
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1 Introduction

Suppose that process X = {Xn, n ∈ N}, N = {0, 1, 2, . . .}, is observed sequentially. The process is
obtained from three independent Markov processes by switching between them at two random moments
of time, θ1 and θ2, independent of the switched processes. Our objective is to detect immediately these
moments based on observation of X .

Shiryaev (1978) has considered the disorder problem for independent random variables with one
disorder where the mean distance between disorder time and the moment of its detection was minimized.
The probability maximizing approach to the problem was used by Bojdecki (1979) and the stopping time
which is in a given neighborhood of the moment of disorder with maximal probability was found. The
problem with two disorders was considered by Yoshida (1983) (detection of each disorders separately),
Szajowski (1992) (sampling of the observation between disorders), Szajowski (1996) (detection of
both disorders). Sarnowski and Szajowski (2008) have extended the results concerning sampling of the
observations between disorders to the case with unknown distribution between disordered (see Bojdecki
and Hosza (1984)). The methods of solution is based on reformulation of the question to the double
optimal stopping problem (see Haggstrom (1967), Nikolaev (1979)) for markovian function of some
statistics. The considerations has been inspired by the problem regarding how can we protect ourselves
against a second fault in a technological system after the occurrence of an initial fault or by the problem
of detection at the beginning and the end of an epidemic.

This paper is devoted to a generalization of the double disorder problem considered both in Sza-
jowski (1992) and Szajowski (1996) in which immediate switch from the first preliminary distribution
to the third one is possible with a positive probability. It is also possible that we observe the homoge-
neous data without disorders when both disorder moments are equal to 0. The extension leads to serious
difficulties in the construction of equivalent double optimal stopping models.

2 Formulation of detection problems

Let (Xn, n ∈ N) be an observable sequence of random variables defined on the space (Ω,F ,P) with
values in (E,B), where E is a subset of R. On (E,B) there are σ-additive measures {µx}x∈E. Space
(Ω,F ,P) supports variables θ1, θ2. They are F-measurable variables with values in N with distribu-
tions:

P(θ1 = j) = I{j=0}(j)π + I{j>0}(j)(1− π)pj−1
1 q1,

P(θ2 = k | θ1 = j) = I{k=j}(k)ρ+ I{k>j}(k)(1− ρ)p
k−j−1
2 q2
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where j = 0, 1, 2, ..., k = j, j + 1, j + 2, .... Additionally we consider Markov processes (Xi
n,Gin, µix)

on (Ω,F ,P), i = 0, 1, 2, where σ-fields Gin are the smallest σ-fields for which (Xi), i = 0, 1, 2, are
adapted, respectively. Let us define process (Xn, n ∈ N) in the following way:

Xn = X0
n · I{θ1>n} +X1

n · I{θ1≤n<θ2} +X2
n · I{θ2≤n}.

We make inference based on the observable sequence (Xn, n ∈ N) only. It should be emphasized that the
sequence (Xn, n ∈ N) is not markovian. However, the sequence satisfies the Markov property given θ1
and θ2 (see Szajowski (1996) and Moustakides (1998)). Let Fn = σ(X0, X1, ..., Xn), n ∈ N. Measures
µ•x satisfy the relations: µix(dy) = f ix(y)µx(dy), i = 0, 1, 2, where the functions f ix(.) are different and
f ix(y)/f

(i+1)mod3
x (y) < ∞ for i = 0, 1, 2 and all x, y ∈ E. We assume that the measures µix, x ∈ E

are known in advance and we have that P(Xi
1 ∈ A | Xi

0 = x) =
∫
A f

i
x(y)µx(dy) = µix(A) for every

A ∈ B and i ∈ {0, 1, 2}.
Let S denote the set of all stopping times with respect to the filtration (Fn), n = 0, 1, . . . and

T = {(τ, σ) : τ ≤ σ, τ, σ ∈ S}. Two problems with three distributional segments are recalled to
investigate them under weaker assumption that there are at most three homogeneous segments.

2.1 Detection of change
Our aim is to stop the observed sequence between the two disorders. We are looking for the stopping
time τ∗ ∈ S such that

Px(τ <∞, θ1 ≤ τ∗ < θ2) = sup
τ∈T

Px(τ <∞, θ1 ≤ τ < θ2).

2.2 Disorders detection
Our aim is to indicate the moments of switching with given precision d1, d2 (Problem Dd1d2). We want
to determine a pair of stopping times (τ∗, σ∗) ∈ T such that for every x ∈ E

Px(|τ∗ − θ1| ≤ d1, |σ∗ − θ2| ≤ d2) = sup
(τ,σ)∈T

0≤τ≤σ<∞

Px(|τ − θ1| ≤ d1, |σ − θ2| ≤ d2). (1)

The problem has been considered in Szajowski (1996) under natural simplification that there are three
segments of data (i.e. there is 0 < θ1 < θ2). The solution of D00 problem will be presented in details.

3 On some a posteriori processes
The formulated problems will be translated to the optimal stopping problems for some Markov pro-
cesses. The important part of the reformulation process is choice of the statistics describing knowledge
of the decision maker. The a posteriori probabilities of some events play the crucial role. Let us define
following a posteriori processes (cf. Yoshida (1983), Szajowski (1992)).

Π i
n = Px(θi ≤ n|Fn), (2)

Π12
n = Px(θ1 = θ2 > n|Fn) = Px(θ1 = θ2 > n|Fmn), (3)

Πmn = Px(θ1 = m, θn > n|Fmn), (4)

for m,n = 1, 2, . . ., m < n, i = 1, 2. For recursive representation of (2)–(4) we need following
functions:

Π1(x, y, α, β, γ) = 1− [p1(1− α)f0
x(y)]H

−1(x, y, α, β, γ)
Π2(x, y, α, β, γ) = [(q2α+ p2β + q1γ)f2

x(y)]H
−1(x, y, α, β, γ)

Π12(x, y, α, β, γ) = p1γf
0
x(y)H

−1(x, y, α, β, γ)
Π(x, y, α, β, γ, δ) = p2δf

1
x(y)H

−1(x, y, α, β, γ)

where H(x, y, α, β, γ) = (1−α)p1f
0
x(y)+[p2(α−β)+q1(1−α−γ)]f1

x(y)+[q2α+p2β+q1γ]f2
x(y).

In the sequel we adopt the following denotations:−→α = (α, β, γ) and
−→
Πn = (Π1

n, Π
2
n, Π

12
n ). The basic

formulae used in the transformation of the disorder problems to the stopping problems are given in the
following
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Lemma 1. For each x ∈ E and each Borel function u : < → < the following formulae for m,n =
1, 2, . . ., m < n, i = 1, 2, hold:

Π i
n+1 = Π i(Xn, Xn+1, Π

1
n, Π

2
n, Π

12
n ) (5)

Π12
n+1 = Π12(Xn, Xn+1, Π

1
n, Π

2
n, Π

12
n ) (6)

Πmn+1 = Π(Xn, Xn+1, Π
1
n, Π

2
n, Π

12
n , Πmn) (7)

with boundary condition Π1
0 = π, Π2

0 (x) = πρ, Πmm = (1− ρ)
q1f1

Xm−1
(Xm)

p1f0
Xm−1

(Xm)
(1−Π1

m).

Lemma 2. For the model discribed in the section 2 the following formulae are valied.

1. Px(θ2 = θ1 > n+ 1|Fn) = p1Π
12
n ;

2. Px(θ2 > θ1 > n+ 1|Fn) = p1(1−Π1
n −Π12

n );
3. Px(θ1 ≤ n+ 1|Fn) = P(θ1 ≤ n+ 1 < θ2|Fn) + P(θ2 ≤ n+ 1|Fn);
4. P(θ1 ≤ n+ 1 < θ2|Fn) = q1(1−Π1

n −Π12
n ) + p2(Π1

n −Π2
n);

5. Px(θ≤n+ 1|Fn) = q2Π
1
n + p2Π

2
n + q1Π

12
n .

Lemma 3. For each x ∈ E and each Borel function u : R −→ R the following equations are fulfilled

Ex
(
u(Xn+1)(1−Π1

n+1) | Fn
)

= (1−Π1
n −Π12

n )p1

∫
E
u(y)f0

Xn(y)µXn(dy), (8)

Ex
(
u(Xn+1)(Π

1
n+1 −Π2

n+1) | Fn
)

=
[
q1(1−Π1

n −Π12
n ) + p2(Π

1
n −Π2

n)
] ∫

E
u(x)f1

Xn(y)µXn(dy), (9)

Ex
(
u(Xn+1)Π

2
n+1) | Fn

)
=
[
q2Π

1
n + p2Π

2
n + q1Π

12
n

]∫
E
u(y)f2

Xn(y)µXn(dy), (10)

Ex
(
u(Xn+1)Π

12
n+1) | Fn

)
=
[
p1Π

12
n

]∫
E
u(y)f0

Xn(y)µXn(dy) (11)

Ex(u(Xn+1)|Fn) =

∫
E
u(y)H(Xn, y,

−→
Πn(x))µXn(dy) (12)

4 Detection of new homogeneous segment

For X0 = x let us define: Zn = Px(θ1 ≤ n < θ2 | Fn) for n = 0, 1, 2, . . .. We have

Zn = Px(θ1 ≤ n < θ2 | Fn) = Π1
n −Π2

n (13)

Yn = esssup{τ∈T , τ≥n}Px(θ1 ≤ τ < θ2 | Fn) for n = 0, 1, 2, . . . and

τ0 = inf{n : Zn = Yn} (14)

Lemma 4. The stopping time τ0 defined by formula (14) is the solution of problem (2.1).

The reduction of the disorder problem to optimal stopping of Markov sequence is the consequence
of the following lemma.

Lemma 5. System Xx = {Xx
n}, where Xx

n = (Xn−1, Xn, Π
1
n, Π

2
n, Π

12
n ) forms a family of random

Markov functions.

This fact implies that we can reduce initial problem (2.1) to the problem of optimal stopping five-
dimensional process (Xn−1, Xn, Π

1
n, Π

2
n, Π

12
n ) with reward

h(x1, x2,
−→α ) = α− β (15)

The reward function results from equation (13). Thanks to Lemma 5 we construct the solution using
standard tools of optimal stopping theory (cf Shiryaev (1978) ), as we do below.
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For any Borel function v : E2 × [0, 1]3 −→ [0, 1] and the set D = {ω : Xn−1 = y,Xn = z,Π1
n =

α,Π2
n = β,Π12

n = γ} let us define two operators:

Txv(y, z,−→α ) = Ex(v(Xn, Xn+1,
−→
Πn+1) | D)

Qxv(y, z,−→α ) = max{v(y, z,−→α ),Txv(y, z,−→α )}

From well known theorems of optimal stopping theory (Shiryaev (1978)), we infer that the solution of
the problem (2.1) is the Markov time τ0:

τ0 = inf{h(Xn, Xn+1,
−→
Πn+1) ≥ h∗(Xn, Xn+1,

−→
Πn+1)}

where h∗(y, z,−→α ) = limk→∞Qk
xh(y, z,

−→α ). Of course Qk
xv(y, z,

−→α ) = max{Qk−1
x v,TxQk−1

x v} =
max{v,TxQk−1

x v}. To obtain a clearer formula for τ0, we formulate

Theorem 1. (a) The solution of problem (2.1) is given by:

τ∗ = inf{n : (Xn, Xn+1,
−→
Πn+1) ∈ B∗} (16)

Set B∗ is of the form:

B∗ =
{
(y, z,−→α ) : (α− β) ≥ (1− α)

[
p1

∫
E
R∗(y, u,

−→
Π 1(y, u,−→α ))f0

y (u)µy(du)

+ q1

∫
E
S∗(y, u,

−→
Π 1(y, u,−→α ))f1

y (u)µy(du)
]

+(α− β)p2

∫
E
S∗(y, u,

−→
Π 1(y, u,−→α ))f1

y (u)µy(du)
}

Where R∗(y, z,−→α ) = limk→∞R
k(y, z,−→α ), S∗(y, z,−→α ) = limk→∞ S

k(y, z,−→α ). Functions Rk

and Sk are defined recursively.
(b) The optimal value for (2.1) is given by the formula V (τ∗) = p1

∫
ER
∗(x, u,

−→
Π 1(x, u, π, ρπ, ρ(1 −

π)))f0
x(u)µx(du) + q1

∫
E S
∗(x, u,

−→
Π 1(x, u, π, ρπ, ρ(1− π)))f1

x(u)µx(du).

It is notable that the solution of formulated problem depends only on two-dimensional vector of posterior
processes because Π12

n = ρ(1−Π1
n). The formulas obtained are very general and for this reason - quite

complicated. We simplify the model by assuming that P (θ1 > 0) = 1 and P (θ2 > θ1) = 1. However, it
seems that some further simplifications can be made in special cases. Further research should be carried
out in this direction. From a practical point of view, computer algorithms are necessary to construct B∗

– the set in which it is optimally to stop our observable sequence.

5 Immediate detection of the first and the second disorder
5.1 Equivalent double optimal stopping problem
Let us consider the problem formulated in (1). A compound stopping variable is a pair (τ, σ) of stopping
times such that τ ≤ σ a.e.. Denote Tm = {(τ, σ) ∈ T : τ ≥ m}, Tmn = {(τ, σ) ∈ T : τ = m,σ ≥ n}
and Sm = {τ ∈ S : τ ≥ m}. Let us denote Fmn = Fn, m,n ∈ N, m ≤ n. We define two-parameter
stochastic sequence ξ(x) = {ξmn, m, n ∈ N, m < n, x ∈ E}, where ξmn = Px(θ1 = m, θ2 =
n|Fmn).

We can consider for every x ∈ E, m,n ∈ N, m < n, the optimal stopping problem of ξ(x) on
T +
mn = {(τ, σ) ∈ Tmn : τ < σ}. A compound stopping variable (τ∗, σ∗) is said to be optimal in T +

m (or
T +
mn) if Exξτ∗σ∗ = sup(τ,σ)∈T +

m
Exξτσ (or Exξτ∗σ∗ = sup(τ,σ)∈T +

mn
Exξτσ). Let us define

ηmn = ess sup
(τ,σ)∈T +

mn

Ex(ξτσ|Fmn). (17)

If we put ξm∞ = 0, then ηmn = ess sup(τ,σ)∈T +
mn

Px(θ1 = τ, θ2 = σ|Fmn). From the theory of optimal
stopping for double indexed processes (cf. Haggstrom (1967),Nikolaev (1981)) the sequence ηmn satis-
fies ηmn = max{ξmn,E(ηmn+1|Fmn)}. Moreover, if σ∗m = inf{n > m : ηmn = ξmn}, then (m,σ∗n) is
optimal in T +

mn and ηmn = Ex(ξmσ∗n |Fmn) a.e.. Define η̂mn = max{ξmn,E(ηm n+1|Fmn)} for n ≥ m
if σ̂∗m = inf{n ≥ m : η̂mn = ξmn}, then (m, σ̂∗m) is optimal in Tmn and η̂mm = Ex(ξmσ∗m |Fmm) a.e..
For further consideration denote ηm = Ex(ηmm+1|Fm).
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Lemma 6. Stopping time σ∗m is optimal for every stopping problem (17).

What is left is to consider the optimal stopping problem for (ηmn)
∞,∞
m=0,n=m on (Tmn)∞,∞m=0,n=m. Let

us define
Vm = ess sup

τ∈Sm
Ex(ητ |Fm). (18)

Then Vm = max{ηm,Ex(Vm+1|Fm)} a.e. and we define τ∗n = inf{k ≥ n : Vk = ηk}.
Lemma 7. The strategy τ∗0 is the optimal strategy of the first stop.

Lemmas 6 and 7 describe the method of solving the disorder problem formulated in Section 2 (see
(1)).

5.2 Solution of the equivalent double stopping problem
For the sake of simplicity we shall confine ourselves to the case d1 = d2 = 0. It will be easily seen
how to generalize the solution of the problem to solve Dd1d2 for d1 > 0 or d2 > 0. First of all we
construct multidimensional Markov chains such that ξmn and ηm will be the functions of their states. By
consideration of the section 3 concerning a posteriori processes we get ξ00 = πρ and for m < n

ξxmn
L.2= Px(θ1 = m, θ2 = n|Fmn) =


q2
p2
Πmn(x)

f2
Xn−1

(Xn)

f1
Xn−1

(Xn)
for m < n

ρ q1p1
f2
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m) for n = m.
(19)

We can observe that (Xn, Xn+1,
−→
Πn, Πmn) for n = m + 1,m + 2, . . . is a function of

(Xn−1, Xn,
−→
Πn−1, Πmn−1) and Xn+1. Besides the conditional distribution of Xn+1 given Fn (cf.

(12)) depends on Xn, Π1
n(x) and Π2

n(x) only. These facts imply that {(Xn, Xn+1,
−→
Πn, Πmn)}∞n=m+1

form a homogeneous Markov process (see Chapter 2.15 of Shiryaev (1978)). This allows us to re-
duce the problem (17) for each m to the optimal stopping problem of the Markov process Zm(x) =
{(Xn−1, Xn,

−→
Πn, Πmn), m, n ∈ N, m < n, x ∈ E} with the reward function h(t, u,−→α , δ) =

q2
p2
δ
f2
t (u)

f1
t (u)

.

Lemma 8. A solution of the optimal stopping problem (17) for m = 1, 2, . . . has a form

σ∗m = inf{n > m :
f2
Xn−1

(Xn)

f1
Xn−1

(Xn)
≥ R∗(Xn)}

where R∗(t) = p2

∫
E r
∗(t, s)f1

t (s)µt(ds) and the function r∗(t, u) satisfies the equation r∗(t, u) =

max{f
2
t (u)

f1
t (u)

, p2

∫
E r
∗(u, s)f1

u(s)µu(ds)}. The value of the problem is equal

ηm = Ex(ηmm+1|Fm) =
q1
p1

f1
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m)R?ρ(Xm−1, Xm),

where R?ρ(t, u) = max{ρf
2
t (u)

f1
t (u)

, q2p2 (1− ρ)R?(t, u)}.

Based on the results of Lemma 8 and properties of the a posteriori process Πnm we have optimal
second moment

σ̂?0 =
{

0 if πρ ≥ q1(1− π)
∫

E f
1
x(u)R

?
ρ(x, u)µx(du),

σ?0 otherwise.

By lemmas 8 and 1 (formula (7)) the optimal stopping problem (18) has been transformed to the optimal
stopping problem for the homogeneous Markov process W = {(Xm−1, Xm,

−→
Πm, Π

12
m ), m ∈ N, x ∈

E} with the reward function

f(t, u,−→α ) =
q1
p1

f1
t (u)
f0
t (u)

(1− α)R?ρ(t, u).



Theorem 2. A solution of the optimal stopping problem (18) for n = 1, 2, . . . has a form

τ∗n = inf{k ≥ n : (Xk−1, Xk,
−→
Π k, ) ∈ B∗} (20)

where B∗ = {(t, u,−→α ) : f2
t (u)

f1
t (u)

R?ρ(t, u) ≥ p1

∫
E v
∗(u, s)f0

u(s)µu(ds)}. The function v∗(t, u) =
limn→∞ vn(t, u), where v0(t, u) = R?ρ(t, u),

vn+1(t, u) = max{f
2
t (u)
f1
t (u)

R?ρ(t, u), p1

∫
E
vn(u, s)f1

u(s)µu(ds)}. (21)

So v∗(t, u) satisfies the equation v∗(t, u) = max{f
2
t (u)

f1
t (u)

R?ρ(t, u), p1

∫
E v
∗(u, s)f1

u(s)µu(ds)}. The value
of the problem Vn = v∗(Xn−1, Xn).

Based on Lemmas 8 and 2 the solution of the problem D00 can be formulated as follows.

Theorem 3. A compound stopping time (τ∗, σ∗τ∗), where σ∗m is given by (8) and τ∗ = τ̂∗0 is given by
(20) is a solution of the problem D00. The value of the problem

Px(τ∗ < σ∗ <∞, θ1 = τ∗, θ2 = σ∗τ∗) = max{π, q1(1− π)
∫

E
v∗(u, s)f0

u(s)µu(ds)}.

Remark 1. The problem can be extended to optimal detection of more than two successive disorders.
The distribution of θ1, θ2 may be more general. The general a priori distributions of disorder moments
leads to more complicated formulae, since the corresponding Markov chains are not homogeneous.

6 Final remarks
The formulated problems are translated to the optimal stopping problems for some multidimen-
sional Markov processes. The important part of the reformulation process is choice of the statis-
tics describing knowledge of the decision maker. The a posteriori probabilities of some events
play the crucial role. The optimal stopping times have been constructed and the optimal value
of the problems has been calculated for both problems (see Szajowski (2009)). The extension
of the models when the knowledge about densities in each segment is limited to the informa-
tion about sets of possible conditional densities is included to Sarnowski and Szajowski (2009).
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