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Abstract. When a sequential clinical trial is carried out to compare two treatments in which primary response variables are
monitored, there are often secondary response variables which are correlated with the primary ones. So far, most studies on
secondary parameters have focused on a single primary parameter. However, sometimes more then one primary response
variable is monitored. In the present work, the bias and variance of the maximum likelihood estimator of a single unknown
secondary parameter are studied when there is more than one primary parameter, and approximations given. An approximate
corrected confidence interval for the secondary parameter is also derived by constructing an approximately pivotal quantity.
Simulations are carried out using Matlab in order to assess the accuracy of the approximations. We compare the approximate
bias and variance with their simulated values. The corrected confidence intervals for the secondary parameter are investigated
in terms of their coverage probabilities.
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1 Introduction

Suppose that we wish to use a sequential test to compare two treatments in a clinical trial. When the
test is carried out in which primary response variables are monitored, there are often secondary response
variables which are correlated with the primary ones. It follows that the usual estimators of the secondary
parameters will be biased.

The method of maximum likelihood is often used to estimate unknown parameters following se-
quential tests. It is common that several primary parameters are to be estimated. One may also need to
estimate some secondary parameters after the trial. So far, most studies on secondary parameters have
focused on a single primary parameter. The following two cases have been well studied: (i) the estima-
tion of a single primary parameter; (ii) the estimation of a secondary parameter when there is a single
primary parameter. Whitehead (1986a) studied the bias of the maximum likelihood estimator of the
primary parameter and Whitehead (1986b) showed how the bias of the estimator of the secondary pa-
rameter is related to that of the primary parameter for large samples. A method based on approximately
normally distributed pivots was introduced for setting confidence intervals for the primary parameter by
Woodroofe (1992). More recently, Whitehead et al. (2000) gave an approximate confidence region for
a single primary parameter and a single secondary parameter for a bivariate normal process when the
covariance matrix of the primary and secondary response variables is known.

However, in practical situations, there are often cases when several response variables are monitored
during sequential experiments. Consequently, there might be more than one primary response variable.
Our aim is to study this problem. More precisely, we consider the case of multivariate normal random
variables. Woodroofe’s (1992) results have been generalised to the multivariate normal case. The results
of Whitehead (1986b) and Whitehead et al. (2000) are also extended to the case of more than one primary
parameter and one secondary parameter.
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2 Estimation of secondary parameters

Suppose that Xi = (X1i, . . . , Xdi)T for i = 1, 2, . . . , n are multivariate normal random vectors with
unknown mean vector θ = (θ1, θ2, . . . , θd)T = (θ(1), θd)T and known covariance matrix Σ, where

Σ = (ρijσiσj) =
(

Σ11 Σ12

Σ21 Σ22

)
,

the ρij for i, j = 1, 2, . . . , d are the correlation coefficients, the σi for i = 1, 2, . . . , d are the standard
deviations and Σ11 is (d− 1)× (d− 1). If Σ is nonsingular, the maximum likelihood estimators of θ(1)

and θd are θ̂
(1)

= S
(1)
n /n and θ̂d = Sdn/n, where S

(1)
n = (S1n, . . . , Sd−1,n)T and Skn =

∑n
i=1 Xki for

k = 1, 2, . . . , d. Clearly, the conditional mean and variance of Sdn given S
(1)
n are

E{Sdn|S(1)
n } = nθd + Σ21Σ

−1
11 {S

(1)
n − nθ(1)}

and

var{Sdn|S(1)
n } = nσ2

d − nΣ21Σ
−1
11 Σ12,

since Sn = (S1n, . . . , Sdn)T is multivariate normal with mean vector nθ and covariance matrix nΣ.

Let N be the stopping time for the sequential test based on θ̂
(1)

. Then the bias and variance of the
maximum likelihood estimator of the secondary parameter θd are

bias(θ̂d) = Σ21Σ
−1
11

[
E{θ̂(1)} − θ(1)

]
and

var(θ̂d) =
(
σ2

d −Σ21Σ
−1
11 Σ12

)
E

(
N−1

)
+ Σ21Σ

−1
11 var{θ̂(1)}Σ−1

11 Σ12.

Similarly,

cov{θ̂(1)
, θ̂d} = Σ21Σ

−1
11 var{θ̂(1)}

is the covariance of the maximum likelihood estimators of θ(1) and θd.
We have also constructed an approximate pivot for θd. Let ν and ω2 denote the respective mean and

variance of the random variable S′
dN (θd) = (SdN −Nθd)/(σd

√
N), which is a first approximation to a

pivot. Then these are determined by the primary data and need to be estimated. Define the renormalised
pivot

S]
dN (θd) =

S′
dN (θd)− ν

ω
=

SdN − νσd

√
N −Nθd

ωσd

√
N

.

Then S]
dN (θd) is an approximate pivot for θd, and so an approximate 100(1 − α)% confidence interval

for θd is given by

sdN

N
− νσd√

N
∓ ωσd√

N
Φ−1(1− 1

2
α),

where Φ denotes the standard normal distribution function. When Σ is unknown, σd is replaced by its
maximum likelihood estimate and the standard normal values are replaced by values from a t distribu-
tion.
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3 Mean and variance approximations

We now consider the primary parameter vector θ(1). Suppose that the stopping time for the sequential
test is of the form

N = inf
{

n ≥ m0 : nq(θ̂
(1)

) ≥ c
}
∧m,

where c > 0 is a design parameter, m0 is the minimum sample size and m is the maximum sample size.
Let ε0 = c/m0 and ε1 = c/m. Then c/N → g(θ(1)) = ε0 ∧ q(θ(1)) ∨ ε1 in probability as c → ∞.
Following Weng and Coad (2006), we take q(θ(1)) = ‖θ(1)‖p for p = 1, 2, so that the stopping time
becomes

N = inf
{

n ≥ m0 : ‖S(1)
n ‖ ≥ (cnp−1)1/p

}
∧m.

Using Woodroofe’s (1992) methods, approximations can be developed for the bias and variance of θ̂
(1)

,
ν and ω in terms of g(θ(1)).

Using a Taylor series expansion, we have

bias{θ̂(1)} ' 1
c
Σ11∇g(θ(1)).

Next, since N ' c/g(θ̂
(1)

) for large c, we obtain

E
(

1
N

)
' g(θ(1))

c
+

1
c2
∇g(θ(1))T Σ11∇g(θ(1)) +

g(θ(1))
2c2

tr
{

Σ11∇2g(θ(1))
}

and

var{θ̂(1)} ' 1
c
Σ11g(θ(1)) +

1
c2

g(θ(1))Σ11∇2g(θ(1))Σ11.

It then follows that approximations for the bias and variance of θ̂d are

bias(θ̂d) '
1
c
Σ21∇g(θ(1))

and

var(θ̂d) '
σ2

d

c
g(θ(1)) +

1
c2

g(θ(1))Σ21∇2g(θ(1))Σ12

+
1
c2

(
σ2

d −Σ21Σ
−1
11 Σ12

) [
∇g(θ(1))T Σ11∇g(θ(1)) +

1
2
g(θ(1))tr

{
Σ11∇2g(θ(1))

}]
,

by using the formulae in Section 2.
Similar calculations yield

ν ' 1√
c

Σ21

σd
∇g

1
2 (θ(1))

and

ω2 ' 1 +
1
c

Σ21∇g
1
2 (θ(1))∇g

1
2 (θ(1))T Σ12

σ2
d

.

For the case d = 2, see Weng and Coad (2006).
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4 Simulation results

A Matlab program has been developed for the simulations. This program works for unknown parameter
vectors θ of any dimension and any given number of replicates. We carried out the simulations for the
case d = 3. For given values of θ = (θ1, θ2, θ3)T and given covariance matrices, the simulations are
based on 10, 000 replicates. In each case, c = 10 and m = 100. For p = 1, the stopping time is given
by N = inf{n ≥ m0 : ‖S(1)

n ‖ ≥ c} ∧m and m0 = 3, whereas for p = 2, we have the stopping time
N = inf{n ≥ m0 : ‖S(1)

n ‖ ≥
√

cn} ∧m and m0 = 5. For convenience, we assume that σ2
i = 1 for

i = 1, 2, 3.
The simulated bias and variance are calculated by finding the bias and variance of the estimates over

the replications. Three different situations for the approximate confidence intervals are considered. They
are the cases of known covariance matrix, known variances and unknown correlation coefficients, and
unknown covariance matrix. When the correlation coefficients are unknown, they are estimated by the
sample correlation coefficients. When the covariance matrix is unknown, it is estimated by its maximum
likelihood estimate given by Σ̂ = (ρ̂ij σ̂iσ̂j), where the ρ̂ij for i, j = 1, 2, . . . , d and i 6= j are the
sample correlation coefficients and the σ̂i for i = 1, 2, . . . , d are the maximum likelihood estimates of
the standard deviations. So the corrected confidence intervals now take the form

sdN

N
− ν̂σ̂d√

N
∓ ω̂σ̂d√

N
td.f.,α/2,

where ν̂ and ω̂ are estimates of ν and ω, and the unadjusted confidence intervals are

sdN

N
∓ σ̂d√

N
td.f.,α/2,

where tr,γ denotes the upper 100γ% point of the t distribution with r degrees of freedom. The two values
for the degrees of freedom used in the simulations are the stopping time N for the sequential test and

c/g(θ̂
(1)

).
The simulation results show that the approximate bias and variance are quite close to the simulated

values when p = 1, but are less accurate when p = 2. The coverage probabilities for the corrected
confidence intervals are much closer to the nominal values than those of the unadjusted confidence
intervals when p = 2. For example, most of the coverage probabilities for the corrected confidence
intervals are within two standard errors of the nominal values. There are only slight improvements in the
coverage probabilities for the corrected confidence intervals when p = 1 and ‖ θ ‖ is small. The results

also show that most of the coverage probabilities are closer to the nominal values when d.f. = c/g(θ̂
(1)

)
than when d.f. = N .
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