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Abstract. Singular-spectrum analysis (SSA) is a powerful technique of time series analysis. SSA is based on a singular value
decomposition of a ‘trajectory matrix’ obtained from the original time series with subsequent reconstruction of the series.
A methodology of change-point detection in time series based on sequential application of the singular-spectrum analysis
is proposed and studied. The underlying idea is that if at a certain time τ the mechanism generating the time series xt has
changed, then an increase in the distance between the l-dimensional hyperplane spanned by the eigenvectors of the so-called
lag-covariance matrix, and the M -lagged vectors (xτ+1, . . . , xτ+M ) is to be expected. Under certain conditions, the proposed
algorithm can be considered as a proper statistical procedure with the moving sum of weighted squares of random variables
being the detection statistic. The correlation structure of the moving sums is studied. Several asymptotic expressions for the
significance level of the algorithm are compared.
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1 Introduction

Let us briefly describe the main idea of the method. Let x1, x2, . . . be a time series, M and N be
two integers (M ≤ N/2), and set K = N − M + 1. Define the vectors Xj = (xj , . . . , xj+M−1)T

(j = 1, 2, . . .) and the matrix

X = (xi+j−1)
M,K
i,j=1 = (X1, . . . , XK),

which is called the trajectory matrix.
We consider X as multivariate data with M characteristics and K observations. The columns Xj of

X, considered as vectors, lie in the M -dimensional space RM . The singular value decomposition (SVD)
of the so-called lag-covariance matrix R = XXT (and of the trajectory matrix X itself) provides us with
a collection of M eigenvalues and eigenvectors. A particular combination of a certain number l < M of
these eigenvectors determines an l-dimensional hyperplane in RM . According to the SSA algorithm, the
M -dimensional data is projected onto this l-dimensional subspace and the subsequent averaging over
the diagonals gives us an approximation to the original series.

One of the features of the SSA algorithm is that the distance between the vectors Xj (j = 1, . . . ,K)
and the l-dimensional hyperplane is controlled by the choice of l and can be reduced to a rather small
value. If the time series {xt}N

t=1 is continued for t > N and there is no change in the mechanism which
generates the values xt, then this distance should stay reasonably small for Xj , j ≥ K (for testing, we
take Q such vectors). However, if at a certain time N + τ the mechanism generating xt (t ≥ N + τ) has
changed, then an increase in the distance between the l-dimensional hyperplane and the vectors Xj for
j ≥ K + τ is to be expected.

SSA expansion tends to pick up the main structure of the time series, if there is one. (This happens
when the l-dimensional subspace approximates well the M -dimensional vectors X1, . . . , XK .) If this
structure is being found and there are no structural changes, then the SSA continuation of the time series
should agree with the continued series. (That is, the Q vectors Xj for j ≥ K should stay close to the
l-dimensional subspace.) A change in structure of the time series should force the corresponding vectors
Xj out of the subspace. This is the central idea of the method we propose.

SSA performs the analysis of the time series structure in a nonsequential (off-line) manner. However,
change-point detection is typically a sequential (on-line) problem, and we aim to develop an algorithm
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that can be used in the on-line regime. This can be achieved by sequentially applying the SVD to the lag-
covariance matrices computed in a sequence of time intervals, either [n + 1, n + N ] or [1, n + N ]. Here
n = 0, 1, . . . is the iteration number and N is the length of the time interval where the trajectory matrix
is computed. The latter version produces a CUSUM-type algorithm. We, however, prefer the former
version, with the sequence of time intervals [n + 1, n + N ]: this version is better accommodated to the
presence of slow changes in the time series structure, to outliers and to the case of multiple changes.
(The price for that is a smaller size of the sample used to construct the trajectory matrices, and therefore
some loss in efficiency in the ideal situation.)

SSA and the proposed change-point detection algorithm are model–free tools and generally are
not intended for precise statistical inferences; they are essentially model-building procedures. However,
under certain conditions, the proposed algorithm can be considered as a proper statistical procedure.
Studying properties of this procedure is the main purpose of the talk, see also Chapter 3 in Golyandina
et al (2001), Moskvina and Zhigljavsky (2003).

2 Algorithm
Let x1, x2, . . . , xT be a time series with T ≤ ∞. Let us choose two integers: the window width N
(N ≤ T), and the lag parameter M (M ≤ N/2). Also, set K = N −M + 1.

For each suitable n ≥ 0 we consider the time interval [n + 1, n + N ] and construct the trajectory
matrix (which will be called base matrix)

X(n) = (xn+i+j−1)
M,K
i,j=1 =




xn+1 xn+2 . . . xn+K

xn+2 xn+3 . . . xn+K+1
...

...
...

. . .
xn+M xn+M+1 . . . xn+N


 . (1)

The columns of X(n) are the vectors X
(n)
j (j = 1, . . . ,K), where

X
(n)
j = (xn+j , . . . , xn+M+j−1)T , j ≥ −n+1 .

For each n = 0, 1, . . . we define the lag-covariance matrix Rn = X(n)
(
X(n)

)
T. The SVD of Rn

gives us a collection of M eigenvectors, and a particular group I of l < M of them determines an
l-dimensional subspace Ln,I of the M -dimensional space RM of vectors X

(n)
j .

We denote the l eigenvectors that form the basis of the subspace Ln,I by Ui1, ...,Uil and the sum of
squares of the (Euclidean) distances between the vectors X

(n)
j (j = p + 1, . . . , q) and this l-dimensional

subspace by Dn,I,p,q (the choice of p and q = p + Q is discussed in the talk). The matrix with columns
X

(n)
j (j = p + 1, . . . , q) is called test matrix; the location of the base and test matrices is depicted in

Figure 1.
Since the eigenvectors of Rn are orthonormal, the squared Euclidean distance between any vector

Z ∈ RM and the subspace Ln,I spanned by the l eigenvectors Ui1, . . . , Uil , is just

||Z||2 − ||UT Z||2 = ZT Z − ZT UUT Z ,

where || · || is the usual Euclidean norm and U is the (M×l)-matrix with columns Ui1 , . . . , Uil . It is also
the difference between the squared norms of the vector Z and the projection of Z to the space Ln,I . The
squared distanceDn,I,p,q is the sum of these differences for the vectors X

(n)
j constituting the test matrix.

That is,

Dn,I,p,q =
q∑

j=p+1

(
(X(n)

j )T X
(n)
j − (X(n)

j )T UUT X
(n)
j

)
. (2)

If a change in the mechanism generating xt occurs at a certain point τ , then we expect that the vectors
Xj = X

(n)
j−n with j > τ lie further away from the l-dimensional subspace Ln,I than the vectors Xj with
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Fig. 1. Construction of the base and test matrices.

j ≤ τ . This means that we expect that as n changes, the sequence Dn,I,p,q starts growing somewhere
around n̂ such that n̂+q+M−1=τ . (This value n̂ = τ−q−M +1 is the first value of n such that the
test sample xn+p+1, . . . , xn+q+M−1 contains a point with a change.) This growth continues for some
time; the expected time of the growth depends on the duration of change and the relations between p, q
and N . In a particular case when p = N and Q = q − p ≤ M and for an abrupt single change, the
sequence Dn,I,p,q stops growing after Q iterations, around the point n = τ − p −M . Then during the
following M − Q iterations one would expect reasonably high values of this sequence, which must be
followed by its decrease to, perhaps, a new level. (This relates to the fact that the SSA decomposition
should incorporate the new signal at the intervals [n + 1, n + N ] with n ≥ τ −M .)

The detection statistics are:

• Dn,I,p,q, the sum of squared Euclidean distances between the vectors X
(n)
j (j =p+1, . . . , q) and the

l−dimensional subspace Ln,I of RM ;
• the normalized sum of squared distances (the normalization is made with respect to the number of

elements in the test matrix);

D̃n,I,p,q =
1

M(q − p)
Dn,I,p,q ;

• Sn = D̃n,I,p,q/υn.

Here υj is an estimate of the normalized sum of squared distances D̃j,I,p,q at the time intervals [j+1, j+
N ] where the hypothesis of no change can be accepted. We suggest to use υn = D̃n̄,I,0,K , where n̄ is the
largest value of j < n such that the null hypothesis of no change in the interval [j + 1, j + N ] has been
accepted. Sn is the squared distance normalized to the number of elements in the test and base matrices
and to the variance of the residuals (which are associated with noise); this statistic is shown in graphs. A
natural decision rule in the algorithm is to announce a change if for some n we have Sn ≥ H, where H
is a fixed threshold.

3 The detection statistic as a moving quadratic form
Under the null hypothesis that there is no change in the signal and the signal is fully recovered by the
SSA, in the change-point detection algorithm we have at iteration n

Dn,I,p,q =
∑

t

wM,n+p,n+q(t)e2
t , (3)

where

wM,p,q(t) =





t− p for p < t ≤ p+Q,
Q for p+Q < t ≤ p+M,
p+M+Q−t for p+M < t < p+M+Q,
0 otherwise.

(4)

The form of the weight function wM,p,q(t) is related to the structure of the trajectory matrix (1), where
xn+1 appears once, xn+2 – twice, and so on.
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Obviously, (3) is a quadratic form eT Be, where e = (e1, e2, . . . , eN )T and B is a diagonal matrix
with diagonal elements Btt = wM,n+p,n+q(t). The first two moments of this quadratic form can easily
be calculated:

EDn,I,p,q = σ2MQ, var(Dn,I,p,q) =
1
3
Q(µ4 − σ4)(3MQ−Q2 + 1) , (5)

where σ2 = Ee2
i and µ4 = Ee4

i , the second and the forth moments of the error distribution. In the case
when the errors ei are normal N(0, σ2) we have µ4 = 3σ4. In this case the distribution of the quadratic
form Dn,I,p,q = eT Be can be thought of as a modification of the χ2-distribution for the weight function
(4); this distribution is studied in Moskvina (2000); it can also be considered as a particular case of the
distribution (3.3.1.3) in Richter (1992).

Using the Central Limit Theorem we obtain asymptotically, as M →∞,

ξn =
Dn,I,p,q − EDn,I,p,q√

var(Dn,I,p,q)
∼ N(0, 1) . (6)

We could have ignored the dependence structure of the sequence of squared distancesDn,I,p,q and use ei-
ther the asymptotic normality (6) alone or the limiting extreme value distribution to choose the threshold
H . We adopt another approach which is based on approximating the sequence Dn,I,p,q by a continuous
time random process. Numerical results (demonstrated in the talk) show that this approach leads to much
more precise approximations for the boundary crossing probabilities than the Durbin’s tangent approx-
imation, Cramer and Leadbetter approximations, see Durbin (1985), Cramer (1965) and Theorem 8.2.7
in Leadbetter, Lindgren and Rootzen (1983).
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