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Abstract. Flutter is a critical aircraft instability phenomenon. One important issue to be handled online during flight testing
is flutter monitoring, here addressed as a detection problem. Subspace detection algorithms have been designed for vibration-
based monitoring. Several online flutter monitoring algorithms have been designed, based on a recursive version of the subspace
residual and on the CUSUM test for detecting changes in a specific instability indicator w.r.t. a fixed reference modal parameter
(identified on a safe structure), but are too conservative. Two solutions have been elaborated for overcoming that issue. The
first one performs flutter detection w.r.t. a reference modal state predicted close to instability using the a priori knowledge of
an aeroelastic model and/or experimental flight test data. The second solution is an adaptive flutter monitoring algorithm which
is based on a moving reference version of the above and updates the reference modal parameter during the online test. The
advantages and drawbacks of the different solutions are discussed based on experimental results obtained on simulation data.
Keywords. Aircraft instability, flutter monitoring, adaptive algorithms, CUSUM tests.

1 Introduction

An aircraft is a complex structure subject to vibration and aeroservoelastic forces. A critical aircraft
instability phenomenon is known under the name of flutter. Flutter results from an unfavorable interaction
of aerodynamic, elastic and inertial forces, and may cause major failures (Gero, 1999; Kehoe, 1995).
Air worthiness regulations require high security standards for each new aircraft to prevent a destructive
aeroelastic instability phenomenon known as flutter. Consequently, one important issue to be addressed
on-line during the flight testing process is the flight flutter monitoring problem.

Modeling the aircraft with a linear state-space model, the aircraft dynamics can be summarized by the
set of eigenvalues and eigenvectors of the state transition matrix, the so-called modes and mode-shapes.
Based on data recorded from e.g. accelerometers under natural (turbulent) and non-measured excitation
conditions, these parameters can be estimated using subspace identification (Mevel et al., 2006; Pickrel
and White, 2003). Online in-flight flutter monitoring aims at the early detection of a deviation in the
modal parameters before it develops into flutter. Change detection is a natural approach in this context.
For a scalar instability criterion � and a critical value �c, the idea is to test online between two hypotheses
H� andH� about �, typically � � �c and � � �c, for a stable and unstable aircraft, respectively.

Because of the unknown excitation, a likelihood ratio approach cannot be used. A residual built on
the estimating function associated with subspace identification can be handled instead (Basseville et al.,
2000). Thanks to the local approach, the residual is assumed to be Gaussian, and manifest the change
from H� to H� as a change in its mean. A CUSUM test can be run as an approximation to the optimal
test. Several algorithms of that type have been designed and investigated, based on different stability
criteria �: decreasing damping coefficient (Mevel et al., 2005) or flutter margin (Zhou et al., 2007;
Zouari et al., 2006), pairs of time-varying frequencies or damping coefficients (Basseville et al., 2006),
mode shapes correlations (Zouari et al., 2007). From such a flutter detection, the flutter airspeed may be
estimated. All these algorithms perform the online monitoring of deviations in a flutter indicator with
respect to a fixed reference modal parameter (identified on a safe structure). The drawback of such an
approach is that the resulting flutter detection then corresponds to a light trend of the indicator towards
instability and thus the resulting estimated flutter airspeed is conservative.

Two techniques have been designed for overcoming that issue. The first one performs flutter detection
with respect to a reference modal state predicted close to instability using the a priori knowledge of
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an aeroelastic model and/or experimental flight test data (Zouari et al., 2008a). The second one is an
adaptive flutter monitoring algorithm based on a moving reference version of the above which updates
the reference modal parameter during the online test (Zouari et al., 2008b). The purpose of this paper is to
discuss the advantages and drawbacks of these algorithms based on results obtained on simulation data.
In section 2, the subspace statistics and the CUSUM test for flutter monitoring are introduced. Different
variations on the CUSUM test based on a fixed, a predicted or a moving reference are introduced in
section 3. The experimental results are presented in section 4. Some conclusions are drawn in section 5.

2 Modal monitoring and CUSUM tests

Subspace-based residual. It is well known (Ewins, 2000) that vibration-based structural monitoring boils
down to monitoring the eigenstructure of the state transition matrix F of a linear dynamic system:�

Xk�� � F Xk � Vk��
Yk � H Xk

(1)

namely the roots ������ of det�F � �I� � �� �F � �I� �� � �. Let ��
�
� H��, and �

�
�

�
�

vec�

�
,

where � is the vector containing the �’s (called modes), � the matrix whose columns are the ��’s (called
mode shapes), and vec the column stacking operator. A reference parameter �� is assumed available,
identified on data from the system in a reference state, using output-only covariance-driven subspace

identification algorithm. It is based on the factorization of the covariances: Ri
�
� E�YkY

T
k�i� � HF iG

with G
�
� E�XkY

T
k �, and consists in computing the SVD of the empirical Hankel matrix bH�

p���q filled

with bRi’s. Based on the subspace interpretation of the SVD, the parameter �� can be characterized by:

U����
T bH�

p���q � � (2)

where orthonormal matrix U is subject to:

U����
T Op������ � � (3)

and Op����� is the observability matrix in modal basis. Although not unique, matrix U can be treated as
a function of �. For detecting a change in � w.r.t. ��, the solution in (Basseville et al., 2000) handles a
statistics (residual) built on the parameter estimating function in (2):

	n����
�
�
p
n vec�U����

T bHp���q� (4)

where bHp���q the empirical Hankel matrix for new data from the (possibly changed) system. Testing
if � � �� holds true – or equivalently deciding that 	n���� is zero – requires the generally unknown
distribution of 	n����. A solution is to use the statistical local approach (Basseville and Nikiforov, 1993;
Benveniste et al., 2006) and assume close hypotheses:

eH� � � � �� and eH� � � � �� � 
�
p
n (5)

where vector 
 is unknown, but fixed. Let E� be the expectation when the actual system parameter is �,
and define the mean deviation (Jacobian) and the covariance:

Jn���� �� �
� ��

p
n ����� E� 	n����

���
�����

� n���� ��
�
� E�

�
	n���� 	n����

T
�

(6)

Then, provided that n���� �� is positive definite, and for all 
 , the residual 	n in (4) is asymptotically
Gaussian distributed under both hypotheses in (5):

when n��� n���� ��
���� �	n����� Jn���� �� 
 � �� N ��� I� (7)
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Thus a deviation 
 �� � in the system parameter � is reflected into a change in the mean of 	n. Consistent
estimates of Jn���� �� and n���� ��, based on data samples recorded on the reference system, are given
in (Basseville et al., 2000) and (Zhang and Basseville, 2003), respectively. Assume now that Jn���� �� is
full column rank (f.c.r.). It may be preferable to handle the following normalized residual:

	n����
�
� Kn���� �� 	n���� � Kn���� ��

�
� n���� ��

���� Jn���� ��T n���� ��
�� (8)

where n���� ��
�
� Jn���� ��T n���� ��

�� Jn���� ��. From (7), 	n���� is asymptotically Gaussian:

when n��� �	n�����n���� ��
��� 
 � �� N ��� I� (9)

For an on-line detection algorithm, a data-driven computation for 	n���� in (8) is preferable to the
covariance-driven computation in (4). Assuming n � p� q and introducing

Y�T
k�p��

�
� �Y T

k � � � Y T
k�p � and Y�T

k�q
�
� �Y T

k � � � Y T
k�q�� �, the statistics (8) writes as the sum:

	n���� �

n�pX
k�q

Zk�����
p
n � where Zk����

�
� Kn���� �� vec

�
U����

T Y�k�p�� Y�Tk�q

�
(10)

From (9) and (10),
Pn�p

k�q Zk�����
p
n is asymptotically Gaussian distributed, with mean zero under eH�

and ���� ��
��� 
 under eH�. The arguments in (Benveniste et al., 1990)[5.4.1] lead to another approxi-

mation: for n large enough, and k � �� � � � � n, one can regard Zk���� itself as if it was i.i.d. and Gaussian,
with mean � if no change in � occurred before time k, and with a non-zero mean after a change occurred.

Those properties hold true whatever Jn in (8) and (10) is. For monitoring any function ����, one
should replace Jn���� �� in (8) with Jn���� �� J �

�� , where J �
�� � �����j���� .

CUSUM test for monitoring a scalar instability indicator. That a scalar � crosses a critical threshold �c
is reflected into a change of the same sign in the mean � of the independent Gaussian variables Zk����.
The CUSUM test may be used for testingH����� against H�����. A relevant procedure when neither
the current actual hypothesis nor the sign and magnitude of the change in � are known consists in:
i) Setting a minimum change magnitude �m��, and testing between H�����m�	 andH������m�	:

Sn����
�
�

n�pX
k�q

�Zk���� � �m� � Tn����
�
� max

k�q�			�n�p
Sk���� � gn����

�
� Tn����� Sn����

H���
H�

� (11)

ii) Running two tests in parallel, for a decreasing and an increasing �, respectively;
iii) Making a decision from the first test which fires;
iv) Resetting all sums and extrema to zero and switching to the other one afterwards.
The choices of �m and � are generally well decoupled (Basseville and Nikiforov, 1993)[Chap.10,11].

3 Variations on the CUSUM test

For detecting instability precursors with the CUSUM test (10)-(11), it is necessary to select:
a) An instability criterion � and a critical value �c;
b) A reference state for the system, for identifying (or computing) �� and/or computing U���� in (3);
c) Estimators of the Jn���� �� and n���� �� matrices in (6);
d) A minimum change magnitude �m and a threshold �.

Three different solutions for b)-c) are reported and compared here:

1. ��
�
� �� identified on reference data for the stable system, and Jn� n estimated once for all on those

data, namely: Jn���� �� �
� J ���� and n���� ��

�
� ����;

2. ��
�
� �c, a critical parameter computed using both the reference �� and an aeroelastic model, and

Jn� n estimated recursively with the test data using an algorithm as in (Kailath and Sayed, 1999);
3. An adaptive U���� computed with the test data, and Jn� n estimated recursively as in 2.
Solution 1 was studied with different � (Basseville et al., 2006; Mevel et al., 2005; Zhou et al., 2007;
Zouari et al., 2006; Zouari et al., 2007). Solutions 1 and 2 run with the flutter margin have been compared
in (Basseville et al., 2007). The three solutions run with a damping coefficient are compared in section 4.
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Solution 2. The critical �c is computed using flutter prediction based on extrapolating the coefficients of
the characteristic polynomial associated with the quasi-steady aeroelastic model M 
q � �D � V B� �q �
�K�V �C�q � �, where q is the generalized coordinates vector, V the airspeed, M�D�K are the inertial,
damping and stiffness matrices, B�C the aerodynamic damping and stiffness matrices (De Troyer et al.,
2008). Assuming the system with order 	m, the identification of those coefficients should be done in at
least (2m+1) flight points for predicting the eigenvalues at instability. Solution 2 consists of:
i) Estimating the critical eigenvalues �c at flight point t using identified modal signature ���� � � � � �t�;
ii) Building the critical modal signature �c from �c and the mode-shapes �� identified at flight point t;
iii) Using �c to compute the recursive residual Zk��c� in (10);
iv) Running the CUSUM test in (11) for flutter detection between flight points t and t� �;
v) Repeating these steps for flight point t � �: modal identification �t�� to update the prediction of �c
and running the CUSUM test between t� � and t� 	.

Solution 3. The left kernel U is estimated from a Hankel matrix built with L samples using (2):bUT
n

Pn�p�

k�n�q�L�
 Y�k�p��Y�Tk�q � �. The recursive residual in (10) is computed after a lag of � sam-

ples and writes: Zn���
�
� Jn���T��n vec�bUT

n Y�n�p��Y�Tn�q �. The recursive estimates bJn� bn of Jn� n

are given in (Zouari et al., 2008b). Solution 3 consists in the following steps:
i) For an initial airspeed, modal identification is performed to estimate a fixed reference �� and compute
the fixed terms in bJn. The data sample size L, lag � , sample block size K , minimum magnitude of
change �m, and threshold � are chosen. b��L�
 and bJL�
 are computed with the first L� � samples. The

estimate bUL�
 is computed with �Y�� ���� YL� and used with b��L�
 and bJL�
 to compute SL�
 in (11);

ii) Recursive loop: running the CUSUM test in (11). For each sample n � L� � , bUn is computed with
�Yn�
�L� ���� Yn�
 � and used with b��n and bJn to compute Sn and gn until gn � �. During this process,b��n and bJn are updated every K samples.

4 Example

The Hancock wing model. Data are simulated using the aeroelastic model of a rigid rectangular wing
with constant chord allowing two degrees-of-freedom in bending and torsion (Hancock et al., 1985).
Matrix F in (1) is expressed as a function of the airspeed V and the corresponding modal frequencies
and damping coefficients are plotted in Figure 1. The typical bending-torsion coupling behavior of the
flutter can be observed when frequencies get closer to each other and the damping coefficients move
apart. The flutter onset can be estimated when the torsional damping coefficient reaches zero at the
airspeed V � ��� m�s. An aircraft acceleration is simulated with sampling frequency Fs �� Hz and
transition phase from V �	� to ��m�s (close to flutter). In this speed range, ���� samples (20 seconds)
are simulated every �m�s step to obtain two-dimensional time series with sample size N � �����.

Numerical results. The parameters of the CUSUM test are �m � ��� and � � ���. For Solution 1, the
U�J �  matrices are computed once for the reference �� at V � 	�m�s on a large data set and remain
constant. The CUSUM test is applied for each mode to detect the decrease in the damping coefficient.
For Solution 1 in Figure 2, except for some noise induced perturbations, the test values for the bending
mode (Left) remain small while a flutter alarm is launched by the test for the torsional mode (Right).
This is coherent with the damping coefficient behavior in Figure 4(a). It can be also checked that the
alarm is raised approximately at the airspeed where the damping coefficient crosses its reference value at
V � 	� m�s from above. That confirms the precision of the proposed test in monitoring flutter criteria
w.r.t. a reference. However, the flutter airspeed estimate associated with that alarm is V � �m�s which
can be considered conservative as compared to the true flutter airspeed.

The results obtained with Solution 2 are displayed on Figures 4 and 5 and compared with Solution 1.
Figure 4(a) shows �c predicted after t flight points and the typical coupling as expected. The flutter onset
can be predicted when the second mode decreases to zero at V � ��m�s. The modal signature �c is then
estimated close to flutter at V � �m�s. In Figure 4(b), the test values for flight data from V � ��m�s
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Fig. 1. Frequencies (Left) and damping coefficients (Right) of the bending (Blue) and torsional (Red) modes.
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Fig. 2. Solution 1 with �� at V=20 m/s. Bending (Left) and torsional (Right) modes.
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Fig. 3. Solution 3. Bending (Left) and torsional (Right) modes.
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Fig. 4. (a) �c predicted after t flight points. (b) Solution 2 between flight points t and t� �.
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Fig. 5. (a) �c predicted at the current flight point. (b) Solution 1 (Blue), Solution 2 from current to next flight points (Red).

to the next flight point at V � � m�s remain small which confirms the stability of this flight region.
Test results at the critical flight point are plotted in Figure 5. The flutter onset is detected from the second
mode test at V � �m�s which confirms the predicted modal evolution.

Solution 3 is run with L � 	���� � � �����K � �. The test values for the torsional mode in
Figure 3 (Right) are also coherent with the modal behavior. The improvement concerns the detection
closer to the flutter zone and provides a flutter airspeed estimate at V � �� m�s. This is more realistic
than Solution 1 and that gives a larger flight envelope for the aircraft. Even though no abrupt torsional
damping drop is observed at that airspeed in Figure 4 (Right), the decreasing rate becomes important and
leads to flutter. It can also be noted in Figure 3 (Right) that the test values for light damping decrease
within the airspeed range preceding the alarm remains small thanks to the update of U .

5 Discussion and conclusion

In this paper, we have described three online detection solutions for flutter monitoring. Solution 1 is
based on a model-free subspace statistics, a local approach, and a CUSUM test. Solution 2 requires
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both an aeroelastic model for modal reference prediction and a recursive computation of the covariance
matrix. Moreover, solution 3 updates the reference modal parameter online without model knowledge.
The simulation results shown for a small structure suggest the improvement of Solutions 2 and 3 over
Solution 1. In particular Solution 2 improves the flutter airspeed estimation. Moreover, while prediction
methods are able to determine flutter airspeed, the CUSUM test turns out useful to validate and improve
flutter prediction results because: i/ Flutter prediction based on modal identification is generally biased
due to unmodeled dynamics (Lind, 2003); ii/ The modal behavior close to flutter is generally well char-
acterized, especially for modes related to flutter. The robustness of this approach w.r.t. errors in the modal
parameters is illustrated with these experiments because the test results are not affected when using the
mode-shapes �� identified at the last flight point t instead of the critical mode-shapes ��c . However a
limitation should be mentioned, which is the cost and availability of a flutter prediction model. As for
Solution 3, the experimental results show a significant improvement in the flutter airspeed estimation,
despite this method does not detect the flutter itself but a brutal drop in the monitored parameter. Future
investigations will consider more complex aircraft models. Another major issue is related to the actual
dimension of the parameter vector � to be monitored and the high number of correlated (scalar) instability
criteria to handle at a time.
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