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Abstract. Minimisation and methods that make use of optimum design theory have been suggested to balance treatment
groups across prognostic factors. Although the problem of analysing a trial when one of these methods has been used has been
looked at in the fixed-sample case, it has so far not been considered in the group sequential setting. In this paper, simulation
is used to explore the consequences of adapting for prognostic factors in a group sequential trial. Both Pocock’s test and the
O’Brien and Fleming test are considered and three methods of adjusting for covariates are studied. When the variance of the
response variables is unknown, the critical values are obtained using those in the known variance case and the significance
level approach. The resulting tests have approximately the required type I error probability. To maintain the desired power,
sample size re-estimation is incorporated. Simulation shows that the tests satisfy the power requirement for moderate sample
sizes, with complete randomisation being less powerful than the adaptive methods. Repeated confidence intervals for the mean
treatment effects are also calculated.
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1 Introduction

In clinical trials, it is sometimes felt necessary, for ethical or economical reasons, to have several interim
analyses rather than just one at the end. This means that, if one treatment is obviously performing bet-
ter than the others, the trial can be stopped early, avoiding further patients from being treated with the
inferior treatments. When planning a group sequential trial like this, one has to decide how to preserve
the type I error probability until the end of the trial, by not spending the whole of it at the first analysis.
Pocock’s test and the O’Brien and Fleming test provide two methods of achieving this. Their tests pro-
vide a way of adjusting the critical values so that the type I error probability is maintained at the nominal
level and they also indicate how to calculate the sample size in order to attain a desired power.

If the variance is unknown, the sample size has to be re-calculated at each interim analysis, using
the current estimate of the variance (Morgan, 2003). In order to do this, one must first guess an estimate
of the variance and use it to calculate the size of a pilot study. When all the patients needed for the
first analysis have been recruited, the variance of their responses is calculated and this is used as the
new estimate of the population variance. The sample size is then re-calculated with this new estimate
and more patients are recruited, if necessary, before performing the first analysis. If more patients than
necessary have already been enrolled, it might be appropriate to leave out the first analysis and go straight
to what would have been the second or third one. After any analysis, if the trial needs to continue, the
number of patients required is re-calculated using the latest estimate of the variance.

Another issue to consider when designing a trial is whether apart from the treatment, other factors,
such as age or gender, are likely to affect a patient’s response. If this is the case then it would be desirable
to balance the treatment groups across the prognostic factors and minimisation (Taves, 1974; Pocock
and Simon, 1975) is a method often used to achieve this. It works by looking at the characteristics of
the current patient, checking how many patients there are so far with the same levels of the factors in
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each treatment group and then giving the patient the treatment that will most reduce the imbalance. To
avoid predictability, a biased coin can be used. Atkinson (1982) suggested an alternative to minimisation
which makes use of optimum design theory. Every time a new patient comes along, the variance of the
parameter estimates is calculated and the patient is assigned to the treatment that produces the smallest
variance by some criterion.

2 Group sequential tests
2.1 The model
Suppose that we wish to compare two treatments. Let Yi denote the response for the ith patient and
let µj denote the mean effect for the jth treatment for i = 1, 2, . . . , n and j = 1, 2. Furthermore, let
xi = (x1i, . . . , xfi)T denote the vector of f covariates for the ith patient and let b = (b1, . . . , bf )T

denote the vector of regression coefficients of the response on the covariates. Then the linear model
considered is

Yi =
2∑

j=1

δijµj + bT xi + εi,

where δij = 1 if the ith patient is assigned to treatment j and δij = 0 otherwise, εi ∼ N(0, σ2) is the
error term and the εi are independent. Obviously,

∑2
j=1 δij = 1 for all i.

Clearly, we can write the above model in the form of the general linear model given by

Y n = Znθ + εn,

where Y n = (Y1, . . . , Yn)T , θ = (µ1, µ2, b
T )T and εn = (ε1, . . . , εn)T , and

Zn =

 δT
1 xT

1
...

...
δT
n xT

n


is the design matrix. Note that δi = (δi1, δi2)T for i = 1, 2, . . . , n. Since the errors are normal, the
maximum likelihood estimator of θ is

θ̂n = (ZT
n Zn)−1ZT

n Y n.

If σ2 is unknown, its usual estimator is

σ̂2
n =

(Y n − Znθ̂n)T (Y n − Znθ̂n)
n− f − 2

for n > f + 2.
Although the forms of the above estimators are not affected by an adaptive design, their sampling

distributions are. However, when patients have been completely randomised to treatments, we know that,
conditional on the Nj =

∑n
i=1 δij ,

θ̂n ∼ Nf+2

{
θ, (ZT

n Zn)−1σ2
}

and (n − f − 2)σ̂2
n/σ2 ∼ χ2

n−f−2. We wish to test whether the treatments have the same mean effect,
and so the null hypothesis is H0 : µ1 = µ2. Clearly, we can rewrite this as H0 : cT θ = 0, where
c = (1,−1, 0, . . . , 0)T . It follows that

T =
cT θ̂n

σ̂n/
√

cT (ZT
n Zn)−1c

∼ tn−f−2

under H0.



Group-Sequential Covariate-Adaptive Designs 3

2.2 Form of group sequential test
Suppose that we wish to compare the two treatments using a group sequential test with a maximum

of K interim analyses. Let θ̂
(k)

and s2
k denote the above estimators of θ and σ2 based on the data up

to the kth interim analysis, and let Z(k) denote the design matrix based on the same information for
k = 1, 2 . . . , K. Then the test statistic at analysis k is

Tk =
cT θ̂

(k)

sk/

√
cT {Z(k)T Z(k)}−1c

∼ tnk−f−2

under H0, where nk denotes the total number of patients in the first k groups.
The group sequential test rejects H0 at the kth interim analysis if |Tk| ≥ ck,α for k = 1, 2, . . . ,K,

where the ck,α are chosen to give an overall significance level of 100α%. Thus, if αk is the nominal
significance level at analysis k, the ck,α satisfy the equation

P (|Tk| ≥ ck,α|H0) = αk

for k = 1, 2, . . . ,K. The general theory of this test has been developed by Jennison and Turnbull (1997).
Two tests are considered in this paper, those of Pocock and O’Brien and Fleming.

2.3 Critical values and group sizes
Suppose that we wish to test H0 : µ1 − µ2 = 0 with two-sided type I error probability α and power
1 − β when µ1 − µ2 = ±δ. When σ2 is known, the fixed-sample test requires Fisher information for
µ1 − µ2 given by

If,2 =
{Φ−1(1− α/2) + Φ−1(1− β)}2

δ2
,

where Φ denotes the standard normal distribution function. From Jennison and Turnbull (2000), the
group sequential test must have a maximum information level for µ1 − µ2 of R(K, α, β)If,2, where the
value of R(K, α, β) depends on the test being used. Dividing this information equally between the K
analyses gives the required information levels

Ik =
k

K
R(K, α, β)If,2

for k = 1, 2, . . . ,K. So if nk patients, divided equally between the two treatments, are observed by
analysis k, we have

var(µ̂k1 − µ̂k2) '
4σ2

nk
,

where µ̂kj denotes the maximum likelihood estimator of µj based on the data up to the kth analysis,
which means that nk = 4σ2Ik. It follows that

n1 =
4σ2

K
R(K, α, β)If,2

patients per group will be needed. When σ2 is unknown, we can re-calculate the sample size as the trial
proceeds using the current estimate of the variance.

Pocock’s test rejects H0 at stage k if

|Tk| ≥ tnk−f−2,1−Φ{CP (K,α)},

where tν,γ denotes the upper 100γ% point of the t distribution with ν degrees of freedom and the
constants CP (K, α) correspond to the critical values in the known variance case. Note that, although
this test satisfies the type I error probability requirement only approximately, this approximation has
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been found to be remarkably accurate (Jennison and Turnbull, 2000). The O’Brien and Fleming test
rejects H0 at stage k if

|Tk| ≥ t
nk−f−2,1−Φ{CB(K,α)

√
K/k},

where the constants CB(K, α) again correspond to the critical values in the known variance case. As
above, this test is only approximate.

2.4 Repeated confidence intervals

For notational convenience, let Mk = Z(k)T Z(k) and write

M−1
k =

(
M11

k M12
k

M21
k M22

k

)
,

where M11
k is a 2 × 2 matrix. Then, when patients have been completely randomised to treatments,

conditional on the Nkj =
∑nk

i=1 δij , we know that

µ̂k1 − µ̂k2 ∼ N(µ1 − µ2, c
T M11

k cσ2).

It follows that repeated 100(1− α)% confidence intervals for µ1 − µ2 are given by

Ik = µ̂k1 − µ̂k2 ± ck,αsk

√
cT M11

k c

for k = 1, 2, . . . ,K.

3 Covariate-adaptive designs

3.1 Minimisation
Minimisation was introduced by Taves (1974) and Pocock and Simon (1975). It works by calculating the
treatment imbalance every time a new patient enters the trial, and then giving that patient the treatment
that would most reduce this imbalance. The method that Taves (1974) introduced is described below.

At an arbitrary point in the trial, let mruj be the number of patients with level u of factor r who
have been given treatment j for r = 1, 2, ..., f , u = 1, 2, ..., fr and j = 1, 2, . . . , t, where fr denotes the
number of levels of factor r. Now suppose that the next patient that enters the trial has levels l1, l2, ..., lf
of the prognostic factors. Then, to determine which treatment should be given to this patient, one calcu-
lates the effect that each treatment assignment would have on the overall imbalance. For each treatment
j, one considers the new {mruk}, denoted {mj

ruk}, that would arise if that treatment was assigned to the
patient. This means that

mj
ruk =

{
mruk if u 6= lr or k 6= j,

mruk + 1 if u = lr and k = j.

One then calculates the range of {mj
r,lr,k, k = 1, 2, . . . , t} for patients with level lr of factor r to de-

termine the treatment imbalance that would result at this level if treatment j was given next. This range
is then added to those for the other levels of the patient to obtain the overall treatment imbalance. The
treatment that produces the least overall imbalance would be the one given to the patient. A biased coin
can be used to avoid predictability. If this is done, then the treatment that most reduces the imbalance is
assigned with probability p, 0.5 < p < 1, and the other t − 1 treatments are assigned with probability
(1− p)/(t− 1).

Minimisation was not designed for a group sequential trial, but it can be applied in this setting. In
this paper, minimisation was employed in the usual way by assigning each patient to a treatment when
they joined the trial, rather than when the whole group of patients has been enrolled. After each interim
analysis, if the trial needs to continue, the next patient is assigned taking into account the treatment
imbalance produced by those already in the trial.
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3.2 Atkinson’s method

Atkinson (1982) introduced a procedure of the biased coin type, which made use of optimum design
theory, and could be used to balance over prognostic factors with any number of treatments. This method
is based on the model

E(Y ) = zT β = zT
1 β

1
+ zT

2 β
2
,

where Y is the treatment response, z1 is the vector of indicator variables for the treatments, β
1

is the
vector of treatment mean effects, z2 is the vector of f prognostic factors and β

2
is the vector of regression

coefficients.
Interest is in the contrasts between treatment effects, which can be written as s linear combinations

which are the components of Aβ
1
, where A is a s × t contrast matrix of rank s < t. The nuisance

parameters β
2

are not of interest, and so we concentrate on the linear combination Cβ, where C =
(A : 0) and 0 is a s × f matrix of zeroes. The covariance matrix of the least squares estimator Cβ̂ is
proportional to CM−1

n CT , where Mn = n−1(ZT
n Zn) and ZT

n Zn is the (t + f) × (t + f) information
matrix which results from the n observations. This symmetric matrix can be partitioned according to the
above model as

M−1
n =

(
M11

n M12
n

M21
n M22

n

)
.

Now, DA-optimality maximises det{(CM−1
n CT )−1} in order to minimise the generalised variance of

Cβ̂. According to the equivalence theorem for DA-optimality, this can be achieved by giving the (n+1)st
patient the treatment for which the standardised variance of the predicted response is at a maximum. For
the model given above, the standardised variance for treatment j is

dA(j, n) = zT
1 M11

n BnM11
n z1 + 2zT

1 M11
n BnM12

n z2 + zT
2 M21

n BnM12
n z2,

where z1 has one for its jth component and zeroes elsewhere, z2 contains the values of the prognostic
factors for the (n + 1)st patient and Bn = AT (AM11

n AT )−1A. Therefore, the deterministic design
would allocate the next patient to the treatment with the largest dA(j, n).

A biased coin can be introduced to reduce the predictability. Atkinson (1982) suggested choosing
treatment j with probability

pj =
dA(j, n)∑t

k=1 dA(k, n)

instead of choosing the treatment with the largest dA(j, n) straight away.
Ball et al. (1993) introduced a biased coin which takes into account the balance between the variance

that one is aiming to reduce and the entropy, a measure of predictability. Since this biased coin design was
derived within a decision-theoretic Bayesian framework, we call it a Bayesian biased coin design. The
probabilities of treatment selection are chosen to maximise a utility which combines both the variance
of the parameter estimates and randomness. In the DA-optimality case, the probabilities are

pj =
{1 + dA(j, n)}1/ξ∑t

k=1{1 + dA(k, n)}1/ξ
,

where the design parameter ξ ≥ 0 is a trade-off coefficient between efficient inference when ξ = 0 and
complete randomisation when ξ →∞. So the Bayesian biased coin design can be regarded as a variant
of Atkinson’s method.

Although these designs were not developed with a group sequential trial in mind, they can be easily
used in this case. After each interim analysis, if the trial needs to continue, the information matrix
generated by all of the patients already in the trial is used to calculate the treatment allocation for the
next patient.
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4 Simulation results
4.1 Choice of design parameters
Simulation was used to study the effect of using the above three covariate-adaptive designs in a group
sequential trial. For comparison purposes, results were also obtained for complete randomisation. For
Atkinson’s method, we used A = (1,−1), so that s = 1. Minimisation was used with p = 0.7 and
the Bayesian biased coin design had ξ = 0.01, since these values reduce the predictability considerably
without increasing too much the treatment imbalance (Barbáchano et al., 2008). We had a maximum of
four interim analyses, chose α = 0.05 and aimed for 90% power when µ1 − µ2 = ±δ. Assuming that
σ2 = 1, when δ = 0.9, 16 patients per group were needed for Pocock’s test and 14 for the O’Brien
and Fleming test. Similarly, when δ = 0.5, the respective numbers of patients per group were 50 and
43. The significance level and power for a range of mean treatment effect differences were estimated
after 10,000 simulations for each design. In each case, we took X ∼ Nf (0, If ), where If is the identity
matrix of order f , so that the prognostic factors are uncorrelated.

4.2 Significance level and power
When the preliminary estimate of the variance, s2

P , is equal to the true value and the sample size is not
re-estimated, the results show that, when there are two prognostic factors, all the allocation methods
achieve a valid significance level. However, the O’Brien and Fleming test seems to be more power-
ful than Pocock’s test and Atkinson’s method with either biased coin tends to be more powerful than
minimisation, and this method in turn has more power than complete randomisation. In the case of six
prognostic factors, the actual significance levels are slightly higher than the nominal value of 0.05, espe-
cially for Pocock’s test. The differences in power between the allocation rules are also more obvious in
this case, with differences as large as 0.06 in some instances. The expected sample size is often higher
for complete randomisation than for the covariate-adaptive methods, which reflects the variability of the
rules.

When the variance is unknown and sample size re-estimation is being used, the difference in treat-
ment effects that we are trying to detect will have an impact on the power. For example, if we aim to
detect a treatment effect difference of 0.9 with 90% power, only about 80% power is obtained when
s2
P /σ2 = 0.5. This is because the sample size needed to detect this difference is quite small, and there-

fore there is not enough time to correct the variance estimate before the trial ends. However, if we aim
to detect a difference in treatment effects of 0.5 with 90% power, we obtain more than 86% power
in all cases. The different allocation methods produce very similar results, though Atkinson’s method
tends to be slightly more powerful. It does not seem to make much difference to the power whether s2

P

underestimates or overestimates σ2.
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