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Abstract. Randomization procedures have been extensively used in clinical trials and other experiments. In clinical trials,
randomization tends to produce study groups comparable with respect to known and unknown covariates. It also removes in-
vestigators’ bias in the allocation of patients. To implement adaptive randomization procedures in practice, we need to calculate
their corresponding sample sizes. In the literature, sample sizes are calculated by ignoring the randomness of allocation. How-
ever, given a fixed sample size of a randomized design, the number of patients assigned to each treatment is a random variable
and so is the power of the randomized design. Hence, under the sample sizes calculated by ignoring the randomness of the
allocation, there is great possibility that we may not achieve the predetermined power we want. The central point of this paper
is that the randomness of allocation in randomized designs should not be ignored, as doing so will significantly underestimate
the sample sizes. In this paper, we focus on the sample sizes of two-arm (drug versus control) randomized clinical trials. First,
we state the random power function for any given sample size and the properties of this power function. Based on the power
function, we can calculate theoretical sample sizes for randomized designs. We then develop a simulation method to calculate
sample sizes for randomized designs. The two methods are compared by some simulation studies.
Keywords. Randomization; Randomized designs; Restricted Randomization; Response-Adaptive Randomizations; Biased
coin designs; Sample Size; Power; Sample Size Estimation.

1 INTRODUCTION

Randomization is the crux of valid experimental designs. By randomly allocating patients to either the
treatment or the control group, the experimenter can negate or ”average out” differences in individual
patient characteristics that may affect the results and effectively prevent potential bias of both the in-
vestigators and the patients from the allocation process. And so by constructing comparable groups and
eliminating bias, any differences between the treatment and the control groups at the end of the experi-
ment can be confidently attributed to the treatment alone, ensuring the validity of the statistical tests and
results. Rosenberger and Lachin (2002) and Hu and Rosenberger (2006) give a comprehensive review
and study of randomization in clinical trials.

Given an experimental design, the investigator must determine an adequate sample size that meets
the minimum predetermined power. Power is the probability of detecting a statistically significant dif-
ference between the treatment and the control groups if there is a difference indeed and power is directly
proportional to sample size. This means that given all other things are constant, increasing the sample
size will increase the power. In the interest of saving time and resources, the investigator normally cal-
culates the minimum sample size required to achieve the desired power. Until recently in the literature,
sample sizes for randomized designs have been calculated by simply assuming a fixed or predetermined
allocation in each group. Although doing so will produce reasonable approximations, the sample sizes
will almost always be underestimated. This is because the random factor in allocation contributes addi-
tional variability that should not be overlooked (Hu and Rosenberger, 2003). Therefore, a valid and more
accurate calculation of the sample size for a randomized design should take into account the random fac-
tor of the patient allocation, which is the central point of this paper. A more detailed explanation will
follow, and the application and evidence of this will be illustrated in the context of various randomized
designs.

This paper focuses on three of five categories of randomized designs classified by Hu and Rosen-
berger (2006): the complete randomization (CR) design, the restricted randomization designs (Wei’s
Urn Design (UD) and the Generalized Biased Coin Design (GBC) are discussed here), and the response-
adaptive randomization procedures. Within the last category is the Doubly Adaptive Biased Coin Design
(DBCD), initially proposed by Eisele and Woodroofe (1995) and further explored by Hu and Zhang
(2004). Calculations of sample size and power will be demonstrated for each of these designs using
formulae described in Hu and Rosenberger (2006).
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2 DEFINING POWER AND SAMPLE SIZE OF RANDOMIZED DESIGNS

2.1 Defining parameters and power
Here, we first define the parameters and briefly review the power of comparing two treatment groups
(experimental and control) to provide a framework for discussing sample size. We use the same notation
as in Hu (2006). Let nE and nC be the number of patients allocated to experimental and control groups,
respectively (where nE + nC = n is the total sample size). We then define X1, ..., XnE as the responses
of patients in the experimental group and Y1, ..., YnC as the responses of patients in the control group,
where

X1 ∼ N(µE , σ
2
E) and Y1 ∼ N(µC , σ

2
C),

Here, (µE , µC , σ2
E ,σ2

C) are unknown parameters.
Power, as stated before, is the ability to correctly identify a significant difference between the ex-

perimental and the control groups. In statistical terms, power is the probability of rejecting the null
hypothesis (H0) given that the alternative hypothesis (H1) is true. For the purposes of this paper, we use
a one-sided hypothesis testing as the following:

H0 : µE = µC , v.s. H1 : µE > µC .

Given these definitions, we reject the H0 at significance level α if

µ̂E − µ̂C√
σ̂2

E/nE + σ̂2
C/nC

> z(α), (1)

where µ̂E , µ̂C , σ̂
2
E , and σ̂2

C are all estimators of the true parameters, z(α) is such that P (Z > z(α)) = α,
and Z is a standard normal random variable, meaning Z ∼ N(0, 1). Also let Ψ and ψ be the cumulative
distribution function and density function of the standard normal distribution respectively. Therefore,
the approximated power (β0) can be expressed as

β0 = P

(
µ̂E − µ̂C√

σ̂2
E/nE + σ̂2

C/nC

> z(α)|H1

)
,

which can be shown to be approximately equivalent to

β0 = P

(
z <

µ̂E − µ̂C√
σ̂2

E/nE + σ̂2
C/nC

− z(α)

)
∼ Ψ

(
µ̂E − µ̂C√

σ̂2
E/nE + σ̂2

C/nC

− z(α)

)
, (2)

For the purposes of calculating power in this paper, σ̂2
E , σ̂

2
C , and µE − µC are assumed to be given, so

the estimated parameters are not necessary. With a basic understanding of power, we can now move on
to a discussion of sample size.

2.2 Determining sample size
Since power is directly proportional to sample size, as easily verified by the power function (2), this
function can be used to derive sample sizes for randomized designs. Ignoring the randomness of alloca-
tion in randomized designs and assuming that nE and nC are fixed, the sample size (n0) formula can be
derived from the power function (2) as

n0 = (
σ2

E

ν
+

σ2
C

1− ν
)
(z(α) + z(1−β))2

(µE − µC)2
, (3)

where 0 < ν < 1 is the allocation proportion of nE/n ∼ ν for a given randomized design and n0 is
rounded up to the next integer.



Sample Size of Randomized Clinical Trials: A Simulation Study 3

In reality, however, nE and nC are random variables given a fixed n in randomized designs. Conse-
quently, power is also a random variable. Taking this randomness into account, the approximated power
function becomes

β1 = Ψ

(
µE − µC√

σ2
E/(νn+ τ

√
nZ) + σ2

C/((1− ν)n− τ
√
nZ)

− z(α)

)
, (4)

where τ is defined as the asymptotic result of
√
n(nE/n− ν) → N(0, τ2) with τ2 > 0,

for a given randomized design. Note that the power function (4) is derived from (3) by replacing nE and
nC with νn+ τ

√
nZ and (1− ν)n− τ

√
nZ, respectively. Because the power function (4) is a random

variable, it is more appropriate to use the approximated average power (β2) given by

E(β1) = β2 =
∫ ∞

−∞
Ψ

(
µE − µC√

σ2
E/(νn+ τ

√
nx) + σ2

C/((1− ν)n− τ
√
nx)

− z(α)

)
ψ(x)dx. (5)

In practice, however, β2 is estimated by running a simulation of the power function given in (4). For each
replication, Z is assigned with a randomly generated number from the standard normal distribution.
Calculation of β1 is replicated many times, and then the average is taken to estimate β2. In this way,
sample size (n1) is found by finding the minimum n which produces an estimated β2 that is greater than
or equal to the predetermined power (β).

As explained, the nature of estimating β2 assumes that the clinical trial or experiment is replicated
many times. Practically speaking, however, the clinical trial is conducted only once. Thus, obtaining a
specific power on average is hardly satisfactory. Instead, we want to be sure that β will be achieved with
a certain high probability of 1− ρ. It can be shown that the smallest integer n that satisfies both

σ2
E

νn− z(ρ/2)τ
√
n

+
σ2

C

(1− ν)n+ z(ρ/2)τ
√
n
< [

µE − µC

z(α) + z(1−β)
]2 (6)

and
σ2

E

νn+ z(ρ/2)τ
√
n

+
σ2

C

(1− ν)n− z(ρ/2)τ
√
n
< [

µE − µC

z(α) + z(1−β)
]2, (7)

is the minimum sample size (n2) required to achieve β with a probability of 1− ρ.
To recap, n0 is the sample size given in (3), n1 is the sample size minimizing the power function

given in (5), and n2 is the sample size minimizing equations (6) and (7). Application and comparison of
these sample size formulae are illustrated for various randomized designs in the next section.

3 CALCULATING SAMPLE SIZE FOR VARIOUS RANDOMIZED DESIGNS
We start our discussion with complete randomization (CR), where each patient is randomly allocated to
either the experiment or control group with a probability of 0.5. Now we show how to calculate the three
different sample sizes: n0, n1, and n2. For all calculations in this paper, we will use a significance level
α of .05, set the requisite power β at .80, let µE − µC = 1 and σE = 1, and treat σC as an independent
variable that is given. For a complete randomization procedure, µ = 1/2 and τ = 1/2.

(I). Calculation of n0 (Take an example with σC = 2):

• Plug all the given parameters into equation (3), and here we get 61.85 as a result.
• Round up the result we get in the previous step to the nearest integer. Here, we get n0 = 62.

(II). Calculation of n1 (Take an example with σC = 2):

• We run simulations on the approximated power function (4) using statistical software. In this paper,
we always use 10,000 replications for a simulation.
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• Choose a guess for the sample size n by starting at n0, in this case n0 = 62, and plug all the given
values into (4). Then repeatedly generate a random value for Z from the standard normal distribution
for 10,000 times and calculate the approximated power (i.e. β1) each time.

• Computing the mean of these 10,000 different values of β1 will give an estimate for β2. In our
example, we get an estimate of .7962 for β2.

• If the estimate is greater than or equal to 80%, we already get the n1 we want. Otherwise, we need to
increase n by one each time and repeat the above procedure until we get an estimate greater than or
equal to 80%. In our example, since .7962 is less than 0.8, we run another simulation by increasing
n by one to 63, and this time we get an estimate of .8016 for β2, which exceeds 80%, so we stop.
Therefore, n1 = 63 in our example.

(III). Calculation of n2 (Take an example with 1− ρ = .90(ρ = .10)):

• Choose a guess for the sample size n by starting at n1, in this case n1 = 63. We substitute in the
previous given values and check whether the size n we choose will satisfy both equations (6) and
(7). If it does, we already get the n2 we want; otherwise, we have to increase n by one each time
until it satisfies both equations (6) and (7). The last n we get in this procedure will be our n2. In our
example, we find that the minimum required n = 72, which is our n2.

Now we consider restricted randomization, which includes Wei’s Urn Design (UD)(Wei, 1977), and
the Generalized Biased Coin Designs (GBC) (Smith, 1984). To compute n0, n1, and n2 in restricted
randomization, we use τ2 = 1/12 for UD and τ2 = 1/44 for GBC, and then follow the same processes
as we have done in CR. For details about the two designs and the derivations about the parameters,
please refer to Rosenberger and Hu (2004).

Finally, we consider the response-adaptive randomization designs. This paper focuses on a design
called the Doubly-adaptive Biased Coin Design (DBCD), proposed by Eisele and Woodroofe (1995)
and further developed by Hu and Zhang (2004). We also discuss a special case of DBCD called the
Sequential Maximum Likelihood procedure (SMLE), introduced by Melfi and Page (2000). The details
of ν and τ2 can be found in Hu and Rosenberger (2006). We use the allocation function q (γ > 0)defined
by Hu and Zhang (2004):

q(γ)(x, y) =
y(y/x)γ

y(y/x)γ + (1− y)[(1− y)/(1− x)]γ
, γ ≥ 0. (8)

4 SAMPLE SIZE RESULTS
4.1 Theoretical Results
All calculations were done using the statistical software R. For all procedures, sample sizes n0, n1, and
n2 have been calculated with all the given parameters and σC= 1, 2, and 4:

Table 1. Sample sizes of different randomize procedures (α = .05, β = .8, 1− ρ = .9 and µE − µC = 1).

(σE , σC ) (1, 1) (1, 2) (1, 4) (σE , σC ) (1, 1) (1, 2) (1, 4)
n0 25 62 211 n0(DBCD) 25 56 155

n1 (CR) 26 63 212 n1 (SMLE) 27 58 157
n2 (CR) 28 72 233 n2 (SMLE) 31 63 163
n1 (UD) 26 63 211 n1 (DBCD, γ = 1) 26 57 156
n2 (UD) 26 68 223 n2 (DBCD, γ = 1) 28 59 158
n1 (GBC) 25 62 211 n1 (DBCD, γ = 4) 26 57 156
n2 (GBC) 25 65 217 n2 (DBCD, γ = 4) 27 58 157

We could observe that although the difference between n0 and n1 may be negligible, the difference
between n0 and n2 is not. When randomness of allocation is considered, a significantly greater sample
size (n2) is required to confidently achieve a given power than when randomness is ignored (n0). We
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observe that both of the two response adaptive randomization procedures reduce the requisite sample
size greatly from the required size given by CR and the Restricted Randomization.

4.2 Simulation Results
For the purpose of validating the theoretical calculations of n1 and n2, simulations of all the randomized
designs described above have been performed using R and the procedures are described as following.

(I) Simulation of n1:

• Choose a sample size n to start our simulation, usually n0.
• Simulate the allocation of patients to the two treatment groups using the appropriate allocation pro-

cedure. For patients in the experimental group, generate values fromN(1, 1) as treatment responses;
for patients in the control group, generate values from N(0, σC). After all the patients are being
assigned, we know that there are nE and nC patients in the experimental and the control groups,
respectively.

• Then, calculate the sample means and variances of the generated observations for both groups ( µ̂E ,
µ̂C , σ̂2

E , σ̂2
C). Plug these values into equation (1) to determine whether or not H0 is rejected.

• Replicate this whole process 10,000 times, and finally the power is calculated by dividing the number
of times H0 was rejected by 10,000.

• This simulation is run with different integer values of n until the minimum integer that produces a
power of at least 80% is found. This value of n is then n1.

(II) Simulation of n2:

• The goal is to simulate the probability of having a power of at least 80% for a given randomized
design and sample size.

• Simulation follows from what we have done for n1, except that the number of successful rejections
of H0 is recorded for each possible value of nE , which can range anywhere from 0 to n.

• For each individual case of nE , divide the number of times H0 was rejected in this case by the total
number of times that this value of nE occurred, and the result is the power.

• Finally, for all the cases of nE that have a power of at least 80%, take the sum of all the times that
these values of nE occurred and divide it by 10,000. This value is the probability of having a power
of at least 80%.

• We repeat this simulation with different values of n until we find a minimum integer that produces a
confidence probability of at least 90%. This value of n is the n2 we want.

For the sake of simplicity and comparison, a shortcut version of the n2 simulation is also discussed,
which we will call the theoretical simulation.

(III) Theoretical Simulation of n2:

• Simulate the allocation of patients to the two treatment groups using the appropriate allocation pro-
cedure. After all the patients are being assigned, we get that there are nE and nC patients in the
experimental and the control groups, respectively.

• Plug the simulated nE , nC , and the given parameters into the power formula (2) to calculate the
theoretical power.

• Count the number of times for these calculated powers to be greater than or equal to 80% and divide
it by 10,000. This is the probability of having a power of at least 80% for this sample size n.

• The simulation is repeated with different values of n until we find a minimum integer that generates
at least a 90% confidence probability. This is the value of n2, according to the theoretical simulation.

Comparing the results in Table 2 and Table 3 with the results in Table 1, we see that the simulation
results decently resemble the theoretical results. Most of the simulation sample sizes are different from
their respective theoretical sample sizes only by one or two, with the greatest discrepancies being four.
Also, the theoretical simulation results (in parentheses) for n2 are generally similar to the real simulation
results, with the exceptions of CR, σC = 4 and GBC, σC = 4 with discrepancies of six and five,
respectively.
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Table 2. Simulated sample sizes of CR, UD, and GBC (10,000 replications, α = .05, β = .8, 1− ρ = .9 and µE − µC = 1).

(σE , σC ) (1, 1) (1, 2) (1, 4)
n1 (CR) 27 63 212
n2 (CR) 29(28)∗ 72(70) 235(229)
n1 (UD) 26 64 212
n2 (UD) 26(27) 67(66) 222(222)
n1 (GBC) 26 62 210
n2 (GBC) 26(26) 65(65) 220(215)

* Numbers in () are produced using theoretical simulation

Table 3. Simulated sample sizes of SMLE and DBCD (10,000 replications, α = .05, β = .8, 1− ρ = .9 and µE − µC = 1).

(σE , σC ) (1, 1) (1, 2) (1, 4)
n1 (SMLE) 25 57 156
n2 (SMLE) 27(29) 61(61) 162(160)

n1 (DBCD, γ = 1) 25 56 155
n2 (DBCD, γ = 1) 26(29) 60(60) 161(158)
n1 (DBCD, γ = 4) 25 56 154
n2 (DBCD, γ = 4) 26(29) 59(59) 161(158)

* Numbers in () are produced using theoretical simulation

5 DISCUSSION

The calculation of sample sizes for randomized designs has been demonstrated in the context of five
specific randomized designs, including the Completely Randomized design (CR), Wei’s (1977) Urn
Design (UD), Generalized Biased Coin Designs (GBC) proposed by Smith (1984), Doubly-adaptive
Biased Coin Design (DBCD) proposed by Eisele and Woodroofe (1995) and Hu and Zhang (2004), and
lastly Sequential Maximum Likelihood Procedure (SMLE) proposed by Melfi and Page (2000). The
sample sizes n0, n1, and n2 were calculated using formulae developed and presented by Hu (2006),
where n0 is the sample size calculated by ignoring the randomness of allocation, n1 is the sample size
that produces a certain power on average when accounting for randomness, and n2 is the sample size
that produces a certain power with a certain probability when accounting for randomness. By comparing
the theoretical results in Table 1 with our simulation results in Table 2 and Table 3, we could conclude
that: although the simulation results are slightly different from their corresponding theoretical values
in general, theoretical tables can still provide very good guidelines in predicting reality. Moreover, in
practice, we could use the data in theoretical tables as initial values to do simulation, which will greatly
reduce workload while preserving significant accuracy.
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