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Abstract. The peak dose is the maximal dose beyond which additional benefit is unlikely. We propose an adaptive design to 

efficiently estimate the peak dose in a dose-finding trial when the dose-response curve can be assumed to be non-decreasing. 

At each step the peak dose is estimate by fitting a linear model adjusted for a set of known covariates with model coeffi-

cients subject to order restriction.  Simulations show that the new adaptive strategy is by far superior to equal allocation. 
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1 Introduction 

High precision of estimation of doses of interest in dose ranging studies is essential for the future de-

velopment of the drug. Among the doses of interest is the peak dose, a maximal dose beyond which 

additional benefit would be unlikely to occur (ICH E4 guideline). The peak dose is the lowest dose on 

the plateau of a dose-response curve. There is a long history of adaptive dose-finding methods for es-

timating a dose with a certain mean response when outcome is binary (Wetherill, 1963; O'Quigley, 

Pepe and Fisher, 1990; Babb, Rogatko and Zacks, 1998) and for continuous outcomes (Eichhorn and 

Zacks, 1973; Ivanova and Kim, 2009). Most of these methods have been developed for oncology tri-

als. A number of adaptive strategies for dose-response studies in non-oncology setting have been re-

cently proposed (Berry et al., 2001; Miller, Guilbaud, Dette, 2007; Ivanova, Bolognese, Per-

evozskaya, 2008; Ivanova et al., 2009). Yet, we are not aware of any publications addressing adaptive 

estimation of the peak dose.   

Often there is a set of known covariates that are believed to be associated with response to treatment. 

In a recent proof of concept study conducted by a large pharmaceutical company, it was believed that 

in- an out-patient status was associated with therapeutic response to treatment. If the goal is to esti-

mate the dose with a certain mean response the target doses will be possibly different for each level of 

the covariate, as in Innocenti et al. (2004) example, and can also be different from the target dose de-

fined based on the population mean response. The goal can be to find all of these doses or, for exam-

ple, only the one based on the population mean response. Often the target dose is defined as the dose 

with the mean response equal to the mean response of some other dose (placebo or the highest dose) 

plus or minus a constant. In this case, if the mean response is modeled with identity link function and 

a linear model with covariates, the target doses coincide. 

In most dose-finding trials one can assume monotonicity of the dose-response curve. In a dose-finding 

trial where mean responses are believed to follow an isotonic model (for example, non-decreasing or 

umbrella shape) using isotonic assumption usually leads to increased efficiency in the estimation of 

the target dose compared to a trial where this assumption is not utilized, especially if the dose-

response curve has a long plateau.  Isotonic estimates were successfully used in the past (Conaway, 

Dunbar, Peddada, 2004; Yuan and Chappell, 2004). The presence of covariates presents a challenge in 

estimation of the adjusted mean response under isotonic assumptions. Restricted maximum likelihood 

estimates may perform unsatisfactory in terms of mean squared error (Lee, 1988) especially in the 

context of model (1) when the dose-response curve is flat or when the curve has long plateau (Betcher 

and Peddada, 2009). Betcher and Peddada (2009) proposed isotonic estimator that performs well in 

the presence of covariates. We adapt their estimator to use in the proposed adaptive dose-finding de-

sign. 



  

2 Computing isotonic estimates of mean responses 

Let 1{ ,..., }KD d d=  be the set of ordered dose levels selected for a trial with Kd  denoting the high-

est dose. The highest dose can be the maximum tolerated dose established in earlier trials. Let ni be 

the number of subjects assigned to 
id , and let ijY denote the response of the jth subject, j = 1, 2,..., ni, 

assigned to id , i = 1, 2,..., K. Let ijx  be a K×1 vector of covariates associated with the jth
 
subject as-

signed to the ith dose. Consider a linear model 

, 1,2,..., , 1,2,...,ij i ij ij iY x i K j nµ β ε′= + + = = .     (1) 

Here 
iµ  is the mean response at 

id , b is the regression parameter associated with covariate vector ijx  

and ),0(~ 2σε Nij .  

We define the peak dose statistically, as the lowest dose with the mean response no less than γKµ − , 

where g, g > 0, is close to 0. For example, in a 7-dose trial with sigmoid dose-response curve that 

yields mean responses at 7 discrete doses of (0.3,0.3,0.4,0.5,0.6,0.6,0.6), the peak dose is dose 5d  for 

any g < 0.05; if mean responses are (0.3,0.3,0.3,0.3,0.3,0.3,0.3), the peak dose is dose 1d . 

Let 1
ˆ ˆ,...,U U

Kµ µ  be the estimates of the mean response from fitting a linear model (1), where U stands 

for an unrestricted estimator. We assume that 1 ... Kµ µ≤ ≤ . Below we describe how to compute re-

stricted estimates 1
ˆ ˆ,..., Kµ µ , 1

ˆ ˆ... Kµ µ≤ ≤ , following the algorithm of Betcher and Peddada (2009). 

Let S be the covariance matrix of 1
ˆ ˆ( ,..., )U U

Kµ µ=U
µ . First, we describe how to compute the re-

stricted estimator ( )( , ) ( , ),i j i j

i j
µ µ  with 

( , ) ( , )i j i j

i jµ µ≤  from an unrestricted estimator ( ),U U

i j
µ µ  with 

covariance matrix Sij: 

( )( , ) ( , )

ˆ ˆ( , ),
ˆ ˆif 

,     ˆ1
ˆ ˆif (1,1) ,

1 1

U U

i j U U
T j ji j i j T U

i j U Uij T

i jT

ij

µ µ
µ µ

µ µ µ
µ µ

−

−


≤

= Σ
> Σ

          (2) 

Here ij

−Σ  is a generalized inverse of ijΣ . Then, 1
ˆ ˆ,..., Kµ µ  are computed in the following way: 

Step 1. Consider one of the doses di, i = 1,…,K. For j = 1, 2, …, i - 1 compute  
( , )j i

iµ  from the pair 

( ),U U

j i
µ µ  with 

( , ) ( , )j i j i

j iµ µ≤  using (2); for j = i+1, …, K compute 
( , )i j

iµ  from the pair ( )( , ) ( , ),i j i j

i j
µ µ  

with 
( , ) ( , )i j i j

i jµ µ≤ . Then compute  

( , ) ( , )

1,..., 1 1,...,

1,..., 1, 1,...,

ˆ ˆj i i j

j i j i j i K j iAVE

i

j i i K j

α µ α µ
µ

α
= − = +

= − +

Σ + Σ
=

Σ
, 

where jα  is the jth diagonal element of  the covariance matrix S.  

Repeat the procedure described above for all i = 1,…, K to obtain 1( ,..., )AVE AVE

Kµ µ . Note that 

1( ,..., )AVE AVE

Kµ µ  is not necessarily isotonic.  

Step 2. Obtain an isotonic vector of estimates 1
ˆ ˆ( ,..., )Kµ µ  recursively as follows: 

1

ˆ

ˆ ˆmin( , )    1, 2,...,1

AVE

K K

AVE

i i i i K K

µ µ

µ µ µ +

=

= = − −
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3 Adaptive design to find the peak dose 

The peak dose is defined as the lowest dose with the mean response equal to γKµ − . Ivanova and 

Kim (2009) suggested a dose-finding design based on t-statistic to estimate the dose with a certain 

mean response. In case when the dose-response curve plateaus and there are several doses on the pla-

teau with the mean response equal to the target value, the t-statistic design will select one of these 

doses, and not necessarily the lowest one. The same is true of other similar methods such as groups 

designs (Wetherill, 1963) and the continual reassessment method (O’Quigley et al., 1990). We pro-

pose a design that is in the spirit of the t-statistic design. The new design selects the lowest dose with 

the target mean response and utilizes the estimator defined in Section 2. The new design is defined 

below.   

The total number of subjects in the trial is fixed and is equal to N.  Subjects can be assigned in groups 

or one at a time. Assume that the most recent assignment was to dose jd . Let jT  be the test statistic 

testing H0: ( )j Kµ µ γ− −  = 0 against the two-sided alternative computed using ˆ
jµ , ˆ

Kµ  defined in 

Section 2 and the estimated common variance from the linear model (1) . Then,  

(i) If jT ≤ −∆ , the next group of subjects is assigned to doses 1+jd ; 

(ii) If ∆≤≤∆− jT , the next group of subjects is assigned to dose jd  with probability j and 

1jd −  with probability 1 - j; 

(iii)  If ∆>jT , the next group of subjects is assigned to doses 1−jd ; 

Applying this rule when the current dose is 1d  to Kd  might cause the dose assignment to be outside 

D.  Thus for j = 1 or K, when the rule would cause a treatment to be outside of the dose levels, the 

current dose is repeated instead.  We call this strategy the modified t-statistic design. 

 Here j, 0 < j < 1, and 0∆ >  are the design parameters. We used j = 0.5. The choice of pa-

rameter ∆  was discussed in detail in Ivanova and Kim (2009). If the estimated dose is computed by 

interpolation 0∆ =  is recommended, otherwise 1.0∆ =  is recommended.  

 Covariate adjusted randomization within this design can be accomplished by using minimiza-

tion algorithm (Pocock and Simon 1975).  

4 Simulation study 

We performed a simulation study to investigate the performance of the modified t-statistic design with 

balancing randomization assigning p = 0.30 of the subjects to the highest dose. The total number of 

subjects in the trial was 160 with design parameters 1.0∆ =  and j = 0.5. We performed simulations 

for equal allocation with the same balanced randomization and p = 0.30 of the subjects assigned to the 

highest dose. In both adaptive trial and trial where equal allocation was used, the estimated peak dose 

at the end of the trial was the lowest dose among all doses (including the highest) with the smallest 

ˆ ˆ
j K

µ µ γ− − . Simulation study shows that adaptive design provides better precision in estimating the 

peak dose than equal allocation. It also yields an increased allocation to the peak dose, which is bene-

ficial if hypothesis testing is planned after the trial.  

5 Discussion 

We describe an adaptive dose-finding design to estimate the peak dose. The proposed adaptive strat-

egy can be also used to estimate the minimum effective dose, when it is defined as the dose with the 

mean response equal to placebo plus some constant. Logistics of the fully sequential adaptive design 

can be prohibitive. One can derive a two-stage adaptive strategy from the proposed fully sequential 
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strategy. Our simulations show that two stage strategy that assigned half of the sample in each stage is 

more efficient than a single stage design.   
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