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Abstract. Recent advances in statistical methodology for clinical trials have led to the development of seamless 
adaptive designs.  These allow a number of experimental treatments to be compared with a control in the same 
trial, with less promising treatments dropped from the study early, whilst maintaining control of type I error 
rate.  From a statistical viewpoint, the treatment selection may be made in any way without compromising the 
type I error rate control.  From a practical aspect, however, the treatment selection rule must be chosen carefully; 
too stringent a rule increases the risk of erroneously dropping effective treatments, whereas too lax a rule leads 
to ineffective treatments remaining in the trial, less efficient use of resources and a reduction in power. In this 
paper we explore the implementation of a seamless adaptive design in the setting of multiple sclerosis. The objec-
tive is to illustrate how the statistical aspects of the trial design are brought together with the practical considera-
tions of running a trial.  Statistical simulation studies are a powerful tool for exploring the properties of different 
treatment selection rules and a key objective is to explore their use in this setting. Conclusions focus on the im-
portant aspects which need to be considered when planning the actual trial. 
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1 Introduction 

The clinical evaluation of new drugs is generally divided into three phases (Chow and Liu, 2004).  

The first two phases may be considered exploratory, and allow drug tolerability to be explored and 

initial assessment of efficacy to be made, often on the basis of short-term endpoints.  Phase III clinical 

trials are confirmatory and provide definitive evidence of treatment effect.  This is usually via a com-

parison with a randomised placebo control group using long-term endpoints and a clinically realistic 

patient population. 

The assessment of new treatments for multiple sclerosis (MS) presents a number of features that mean 

that the common phase I-II-III paradigm for clinical trial design may not be the most appropriate.  The 

simultaneous availability of a number of drugs for evaluation means that it is desirable to compare 

several active treatments in the same trial rather than conducting trials with a single new treatment 

compared with a placebo.  Furthermore, relatively long follow-up times are required to assess the 

clinical efficacy of new treatments in this indication (CHMP, 2005).  In these circumstances small 

scale Phase II trials of individual drugs have to rely on early outcomes and might be inefficient. 

Recently, advances in statistical methodology for clinical trials have led to the development of seam-

less adaptive designs (Maca et al, 2006; Bretz et al, 2006).  These allow a number of experimental 

treatments to be compared with a control in the same trial, with less promising treatments dropped 

from the trial early.  This paper explores the applicability of adaptive methodology in the setting of 

clinical trials for MS, and presents an approach for determining an efficient clinical trial design for the 

selection and evaluation of potential new MS therapies.  In Section 2 the methodology will be pre-

sented briefly. In Section 3 an explanation is given of how simulations, based on a realistic model 

constructed from analysis of data from previous trials in MS, can be used prior to the commencement 

of an actual clinical trial to ensure that treatments will be dropped appropriately.  Section 4 presents 

an illustrative example.  The paper concludes with a brief discussion in Section 5.  
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2 Adaptive design methodology applied to MS 

A particularly important type of adaptation in the setting of clinical trials in multiple sclerosis as 

described above is the ability to select promising treatments during the trial or to stop the trial early. 

It is assumed that the trial is conducted in two stages, and involves at least two experimental treat-

ments and a single control treatment. In the first stage, patients are randomised to receive one of the 

experimental treatments or the control treatment. The treatments are then compared at the end of 

stage one using one of a number of possible selection rules based on an ‘early’ outcome measure. 

Based on this early outcome measure, either the trial is stopped for futility or one or more of the 

experimental treatments are selected to continue into stage two of the trial. The trial then continues 

with randomisation between the control treatment and the remaining experimental treatments. At the 

end of the second stage, the remaining experimental treatments are compared, using a clinically 

meaningful outcome measure, with the control treatment in a series of formal hypothesis tests 

based on data from both design stages. The hypothesis testing is carried out in such a way that 

the familywise type I error rate is strongly controlled, allowing both for the multiple comparisons and 

for the treatment selection. 

At the outset of the trial assume that there are 1k  experimental treatments and a single control treat-

ment. On completion of the first stage of the trial some experimental treatments might be dropped 

based upon observation of the early outcome measure, and a non-empty subset of 2k  treatment arms 

)0( 12 kk  together with the control are continued into stage two. In what follows, denote by 

1,,1, kii   the treatment effects of the 1k  experimental treatments each compared to the control. 

Furthermore, let 1,iZ  and 2,iZ  denote standardised test statistics in the first and second stage, respec-

tively, where 2,iZ  is based on the data of the second stage only and not on the accumulated data. The 

null hypotheses of interest are denoted by 0: iiH . These are tested against the one-sided alterna-

tive hypotheses 0: iiH . The sample sizes per group in stages one and two are denoted by 1n  and 

2n  respectively and the jiZ ,  follow Normal distributions with expectations ijn 2  and variance 1. 

The standardised test statistic based on the accumulated data at the end of the second stage is denoted 

by iZ . It holds that 2,21,1 iii ZnnZnnZ  for a total sample size per group of 21 nnn . 

Dunnett's test (1955) can be used to compare the test treatments to the control treatment based on the 

late outcome measure at stage one and stage two. The test is a test for many-to-one comparisons test-

ing the null hypothesis that all i  are equal to 0 against the alternative hypothesis that at least one i  

is larger than 0. The test statistic is given by iki ZZ },,1{

max

1
max  . On observing a zZ max

 a p-

value is calculated as )(1 max zF
Z

 where 

 dxxxzzF
k

Z
)()]([)( 1

max 2 .  (1) 

This expression is the cumulative distribution function of 
maxZ  with (.)  and (.)  denoting the cu-

mulative distribution function and the density function of the standard normal distribution, respective-

ly. An objective of the adaptive design is to control the familywise type I error rate in the strong sense 

at a pre-specified level . In order to do this, the closure test principle is applied (Marcus et al., 

1976). This means that an individual null hypothesis iH  is rejected only if all intersection hypotheses 

iSiS HH   ( },,1{ 1kS  ) with index sets S  that include i  are rejected at level . Considering 

the case of a trial with two test treatments, the intersection hypothesis }2,1{H  is the null hypothesis 

that 021 ; i.e. that neither treatment is effective. An intersection hypothesis SH  is tested using 



Todd et al.  Adaptive designs in MS  3 

a Dunnett test which includes all treatments in S . The null hypothesis SH  is rejected if 

siSi dZmax  where the critical value sd  ( s : number of elements in S ) is the solution of equation 

(1) set to 1  with sk1 . The test procedure is modified to allow for dropped treatments by setting 

test statistics iZ , comparing dropped treatments to the control, to  (Koenig et al., 2008). 

Inferences can be made using the late outcome measure, by combining stagewise p-values from stages 

one and two of the trial; the ‘combination test approach’. Bauer and Kieser (1999) describe the fun-

damental ideas of the combination test approach referring to the combination function described by 

Bauer and Köhne (1994) to combine stagewise p-values which allows for interim adaptations and the 

application of the closed test principle to control the overall size of the test across multiple hypothes-

es. The method for combining p-values that is used here is the weighted inverse normal method as 

described by Lehmacher and Wassmer (1999). Denoting the two p-values from the different stages of 

the trial by 1p  and 2p , the weighted inverse normal combination function for these p-values is given 

by 

 ))1()1((1),( 2

1

21

1

121 pwpwppC   (2) 

where 2,1, jw j  are pre-specified weights with 10 jw  and 12

2

2

1 ww . The most widely used 

option for the weights is nnw jj . If ),( 21 ppC  then the null hypothesis is rejected. When a 

single hypothesis is tested, the inverse normal method with the weights described above is equivalent 

to a classical group-sequential test. The stagewise Dunnett p-values for hypothesis SH  are calculated 

for the test statistics of the first stage 1,max iSi Z  and second stage 2,max iSi Z  according to equation 

(1) and these are then combined using equation (2). 

 

Three distinct types of selection rules have been considered. These are all based on an early outcome 

measure. The treatment effects of the early outcome measure for the 1k  experimental treatments are 

denoted by 1,,1, kii   and assumed to follow a Normal distribution with mean i  and variance 

1.  The three selection rules are as follows; 

(i) A fixed selection rule, selected the m  largest values of i  for 1m , 2m  and 1km .  

(ii) A variable (epsilon) selection rule, continued with all treatments with an early outcome 

measure where 
max

i . This includes the extremes of selecting exactly one treat-

ment ( 0 ) and selecting all treatments ( ). 

(iii)  A futility selection rule, selected only those treatments where Ci , for threshold value 

C . 

 

3 Strategy for simulations 

A general framework for the comprehensive evaluation of competing options for clinical programs, 

trial designs and analysis methods, as a basis for decision making has been proposed by Benda et al. 

(2009). They introduced key terminology and definitions, and described the overall process as Clini-

cal Scenario Evaluation (CSE); shown in Figure 1. Statistical models that describe the data generation 

process in a clinical trial and the specification of parameters such as treatment effects, correlations 

and standard deviations are called assumptions. The range of assumptions under consideration are 

referred to as the assumption set. Particular clinical trial designs and variants of such are called op-

tions. Again the range of options relevant to the comparison at hand are referred to as the option set. 

The combination of the assumption set and the option set are the clinical scenarios. In order to judge 

whether a design is efficient or robust we need to define criteria by which we judge the designs. These 

criteria are referred to as metrics. In the context of clinical trials metrics of interest are for example 



Todd et al.  Adaptive designs in MS  4 

statistical power and selection probabilities of particular treatments at interim. The combination of 

metrics to be used is called metrics set. Finally, clinical scenario evaluation is defined as the compari-

son of the metrics of alternative clinical trial design options for a particular assumption set. We adopt 

and use this convenient CSE framework and terminology throughout this paper. 

For any clinical scenario, the methods described in Section 2 can be implemented as follows. For giv-

en treatment means for the early outcome i , a selection rule is used at the end of stage one to choose 

a number of treatments to progress to stage two. Late outcome data from stages one and two are com-

bined together using Dunnett’s test, for a many-to-one comparison against the control treatment, using 

the weighted inverse normal method Hypothesis testing proceeds using a closed test procedure, such 

that for elementary hypotheses iH  for 1,,2,1 ki   and intersection hypotheses iSiS HH   for 

},,1{ 1kS  , iH  is rejected if all intersection hypotheses SH  with Si  are rejected at level . 

This closed testing procedure controls the familywise error rate in the strong sense. 

 

Fig. 1. Clinical Scenario Evaluation 

 

Programs were written in R (http://www.r-project.org/) to implement the methodologies described 

above. Following the CSE framework, four design options for the MS scenario were identified.  These 

are 

(a) Number of experimental treatments 

(b) Total number of patients in the trial 

(c) Patient numbers at stages 1 and 2 

(d) Selection rule at the interim analysis (see above) 

In order to determine suitable assumptions to be used in the CSE framework, three key sources of in-

formation were used.  First, the results from a comprehensive literature review of the MS literature; 

second, detailed analysis of clinical datasets supplied to the project team and third, consultation with 

experts in the field.  The following four assumptions were identified 

(a) Standardised treatment effect size 

(b) Treatment effect type 

(c) Early and final treatment effect sizes 

(d) Correlation between early and final outcomes 

http://www.r-project.org/
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A variety of settings were made for each of the options and assumptions in order to evaluate a range 

of potential design scenarios.  Particular combinations of the options and assumptions make up clini-

cal scenarios for evaluation. 

The performance of each of the clinical scenarios was assessed by the power to reject at least one 

false hypothesis, based on repeated simulations of Normally distributed standardized treatment ef-

fects. This is the key metric of interest. Two thousand simulations were used for each of clinical sce-

narios described; this was chosen mainly for practical reasons, based on the available computing re-

sources. 

 

4 Example 

In this section a number of clinical scenarios are selected from the available matrix of op-

tions and assumptions in order to illustrate a range of potential trial designs. The power to 

reject at least one false hypothesis is plotted against the total trial size (between 750 and 2000 

patients in total) for the following set of assumptions/options  

(i) four experimental treatments (plus a single control) 

(ii) a standardized treatment effect size of  = 0.25 

(iii) a correlation between the early and late outcome measures of  = 0.1 

(iv)  a ratio between the early and the late outcome measures (F) of 1.25 

(v)  a treatment effect type scenario where only one of the experimental treatments is 

effective 

 

Three selection rules are compared, for designs that allocate patients in the ratio 1:1 and the 

ratio 1:3, for the two stages of the trial. The three chosen selection rules are (i) a fixed rule 

selecting one test treatment only at the interim, (ii) a variable selection rule where  = 0.15 

and (iii) a futility selection rule determined by F = 1.25. 

 
Plots of power to reject at least one false hypothesis are shown in Figure 2 for these clinical scenarios. 
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Fig. 2. Power to reject at least one false hypothesis against total trial sample size (patients) for four test 

treatments, for a fixed selection rule (select 1), a variable selection rule (  = 0.15) and a futility rule 
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5 Conclusions 

The aim of this work has been to describe an application of adaptive designs for a clinical trial in MS.  

The methodology has been presented briefly, together with an explanation of how simulations, based 

on a realistic model constructed from analysis of data from previous trials in MS, relevant literature 

and expert opinion, can be used prior to the commencement of the actual clinical trial to ensure that 

treatments will be dropped appropriately.  Much of the challenge of implementation of a treatment 

selection design as described above arises exactly because of its flexibility. It is important to consider 

carefully the range of options and assumptions likely to arise and then to use these in a range of simu-

lation evaluations. Our work has brought together statisticians and clinicians, all of whom, as a result 

of the process described in this paper, now have a greater understanding of the important factors im-

pacting the design of trials in this therapeutic area.  However, it is only when definitive statements can 

be made on the number of test treatments and the likely treatment effect types that a more definitive 

statement indicating the optimal settings of the design parameters for a future study be made. 
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