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Abstract. This study deals with the pointwise estimation of the drift function of an ergodic diffusion. The drift function is
assumed to belong to a neighborhood centred on a Lipschitz function and involving a weak Holder class. The maximal risk of
an estimator of the drift is defined over this neighborhood using the absolute error loss and the ergodic density as normalizing
factor. Then the optimal convergence rate and the sharp asymptotic lower bound are found for the minimax risk. Eventually
an asymptotically efficient kernel estimator, that is an estimator for which the maximal risk attains this bound, is constructed.
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1 Introduction

This paper is devoted to the problem of estimating the drift coefficient of an ergodic diffusion, solution
of the stochastic differential equation

dX, = S(X)dt +dB;, 0<t<T (1)

where (B;)¢>0 is a scalar standard Brownian motion. Assuming that we observe the continuous data
(X¢,0 <t < T) and knowing the smoothness of .S, we want to estimate the function S at a fixed point
zo € R.

Model (1) finds applications in numerous fields, namely financial mathematics, econometrics,
stochastic control, filtering and others, see for example Ait-Sahalia (2002), Jiang and Knight (1997)
and Liptser and Shiryaev (1978). There is a lot of papers studying the problem of nonparametric estima-
tion of the drift of a diffusion. For instance, Banon (1978) proved the consistency whereas Pham (1981)
considered the convergence rate of kernel estimators for our model (1).

Our current purpose is to estimate the drift function at a single point using the absolute error loss
to quantify the performance of an estimator through its corresponding risk. We are first interested in
obtaining the exact asymptotic behavior of the minimax risk and particularly in finding an asymptotic
lower bound of it. Secondly we aim at constructing an estimator of the drift coefficient for which the risk
is asymptotically bounded from above by the same constant as for the minimax risk. Such an estimator
will be called asymptotically efficient, see Ibragimov and Has’minskii (1981).

The problem of sharp estimation of the drift function in diffusion models has already been treated
for some Sobolev classes: Dalalyan and Kutoyants (2002) with known smoothness then Dalalyan (2005)
with an unknown one proposed asymptotically efficient estimators of the drift coefficient in model (1)
for an L2-type risk.

The drift estimation in some Holder classes was handled as well. Galtchouk and Pergamenshchikov
(2004) achieved the optimal convergence rate of the minimax risk for the L?([a; b], dx)-loss function as
the regularity of the drift function is known but as it remains unknown too. The optimal convergence
rate of the minimax risk is also obtained for the pointwise estimation of the drift function with unknown
smoothness and for the absolute error loss in Galtchouk and Pergamenshchikov (2001). For any positive
power of the absolute error loss and the same Holder class, the sharp constant for the local minimax risk
is given in Galtchouk and Pergamenshchikov (2005) as well as an asymptotically efficient estimator of
the drift coefficient with known regularity.
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We consider here the pointwise estimation of the drift function belonging to a Holder class with
known smoothness using the absolute error loss. For this problem Galtchouk and Pergamenshchikov
(2006) gave the sharp asymptotic lower bound for the local minimax risk and an asymptotically efficient
kernel estimator. More precisely they assumed that the drift function belonged to a neighborhood cen-
tred on a Lipschitz function. The neighborhood consists in the centre plus a function satisfying a weak
Holder condition (involving a weak Holder constant) and having a small norm. The asymptotic results
were given with the time of observations tending to infinity, the weak Holder constant and the diameter
of the neighborhood to zero. We propose to find the sharp asymptotic lower bound for the minimax
risk and an asymptotically efficient estimator without making the neighborhood tend to its centre but by
keeping its diameter constant.

2 Statement of the problem

In model (1) we are interested in the estimation of the unknown function S at a fixed point g € R
assuming that S lies in a neighborhood of a function Sy belonging to

f(z) = fy)

Spar = {f O < L-L <
r—y

< —M,Vzx,y ER},

with0 < M < L.
As mentioned in the introduction the neighborhood of the function Sy € X', as consists in the centre
plus an other function lying in

Usp(So) = {S:8 =S50+ D,D e Hy (5,8}
where the weak Holder class is defined by:

MY (5,8) = { D differentiable : sup (\D(x)\ + \D(x)\) < B;
z€eR

1
Vh >0, / (D(zo + zh) — D(x0))d=

-1

géhﬁ},

with 3 €]1;2[,0<d < land0 < B < M.
If So € X' v one has Us g(So) C X'r+B,m—B, so that for all S €~Z/{57g(50) the process (X¢)>0 is
ergodic and there exists an ergodic density gs. The risk of an estimator St (z¢) of S(zo) is the following

RaplSr, S0) = atso) 245(z0)o1Es|Sr(20) — S(x0)|, or = TH/25HD),
SEM&Q So

3 Main results

The asymptotic lower bound of the minimax risk is given in the following theorem.
Theorem 1. If Sy € X' pr we have for any 6 €]0;1]

lim inf inf Rs5(S7,S0) > El¢], €~ N(0,1),
—00 g

where the infimum is taken over all estimators of S(xg).

Proor: For u > 0, denote Sy, (x) = So(z) + uD,(z), where

Dy(z) = 07V, (x _hxo> L Vi(z) = vt /Z Ou(u)g <“ - z) du,

1%

~ cexp(—(1—22)71), 2| < 1;
Qu(u) = Ly<i—20) + 2L _op<jui<i—iy, 9(2) = {07 2] > 1,
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with 0 < v < 1/4; the normalizing constant ¢ > 0 is such that f_ll g(z)dz = 1.
Now fix b > 0 and 6 > 0. We can easily see that there exists 73, > 0 such that for any |u| < b and
T > Ty, one has S, € Us 3(50).

Furthermore we may write for all 7' > T, ,,

Rs5(ST, So) > / V/'2gs, (20)Es, W r(St, Su)du =: I(a,b),

with ¥, (1, §) = v (¢T(§T(x0) - S(mo))) and vg(2) = a A |z], a > 0.
Denoting Pg the distribution of the process (X;) in C'([0;T]) as the drift function is .S, we have
thanks to Lemma 4.2 in Galtchouk and Pergamenshchikov (2006)

1
= exp{udr — ~u?o2 +r7(u)}, Yu >0,

pr(u) = 5

dPs,

where AT_/ D, (X;)dBy and o2 —qgo(xo)/ V2(2)dz.

Moreover we can assume that £, and Ap are independent and we have

EPSO 2 Psy
Ar — &, & ~N(0,00) and 7rp(u) —0 0, )
Then write
Ip(a,b) > 2b/ V' 2qs, (x0)EsyIp, ¥, 1( ST,S ) %(u)du—l—é%(a, b) =: Jr(a,b) +5%(a,b),

where By = {|Ar| < d}, d = 02(b — Vb), p%(u) = exp(uly — u?02/2).
Using the fact that the family {pp(u),T > 0} is umformly integrable and the convergence (2) of
r7(u), one can show that
sup 6%(a,b) —— 0. 3)

T—o00
Sr
Now we consider the quantity
1 b
20 J_

Bl ¥, (51, 84 (\/2(]5 (z0) — /245, (mo)> P9 (w)du =: Jr(a,b) — Kr(a,b).
Bounded convergence yields g, ,, (o) = s (o) and then

sup |Jr(a,b) — Kr(a,b)| P 0. 4)
3r —00

As a consequence only the study of the quantity K (a, b) remains. So rewrite
Pr(u) = (rexp(—op(u — Ar)*/2), (r = exp(A3/207), Ar = Ar/a,
and put g7 = o7 (St (o) — So(20)), gr = g7 — Ap. Then one successively has

I .
KT(CL, b) = ?b bESO]IBdWa,T(STaSu) 2QS0($0)pg“(u)du

b

= ESOHBdCT21b/ ve(u — gr) exp (—O’?,(u — AT)2/2> vV 2qs, (zo)du

b
1 Ve 2,2
> ESOHBdCT%/\[Ua(U — gr) exp (—oyu’/2) \/2qs, (x0)du
—Vb

NG
1
> Bl Crgy [ valu)exp (~a2ut/2) y2as, (o)
1 Vo
=: ESOHBdCT?b / y lul exp (—o2u?/2) \/2qs, (z0)du + 61(a, b),
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the second inequality arising from Anderson’s lemma (see Ibragimov and Has’minskii, 1981, Lemma
10.2, p.157).
Noticing that

Tlim ESO]IBdCT = 2Uu(b - \/l;)/\/%’

one obtains for all b > 0,
lim liminf 6} (a, b) = 0, 5)

a—o0 T—oo

and

b— b2 [V
lim inf lim inf K'7(a,b) > Vb /245 (0)o / u| exp(—u?c?/2)du. (6)
b V2 Vb

a—o0  T—o00

Remarking here that o, — 2¢g,(z¢) as ¥ — 0 and limiting b — oo before v — 0 in (6) yield with (3),
(4) and (5) :

liminf Rs (ST, So) > El¢], &~ N(0,1).

T—o00

O
In order to exhibit an asymptotically efficient estimator of S(xg) we begin with estimating the er-
godic density at the point o through the observations { Xy, < to}, where tg = T?7, v, < v < 1/2 and

_ B-1
Y« = op77- Let
1 to X —xg
7 = Q dt
ar (o) 2tOlT/0 ( It ) ’

with @ =Ty, and Ir = o(1/VT)as T — .
Then for H > 0 we define the sequential procedure (77, .S7.(20)) as

t X, —
TH:inf{t>t0:/Q< thx0>dt>H},

to

1 TH X —
St(x0) = i, Q < ! A 930> dXilr <1y @)
0

We choose the bandwidth h = hp = T—1/(26+1) and the level H = Hy = (T — t0)(2G7(20) — e7)hr,
where §r(z0) = max(qr (o), vp /%), er = 1/(vpT7) and vp = In T.

The centre Sy of the considered neighborhood needs to verify an additional condition described by the
following property:

So(y) — S
lim 208 = Sol@o) _ ®)
y—z0 |y — zo|P1
We are now able to give the upper bound of the risk for the estimator (7).

Theorem 2. Let Sy € X1, v, 5 €]1; 2] and assume that the condition (8) is satisfied. Then one has

lim sup lim sup Ry, 5(S7(20), 50) < Elel, € ~ (0, 1).
6—0 T—o0

As a consequence of Theorems 1 and 2, the estimator (7) of the drift coefficient is asymptotically
efficient.
Proor: Let S € U; 3(Sp) and parse the error of estimation as

St(xo) — S(wo) = <BT —Gr + %) Lirp<ry — S(@0) 7,1}
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where
Br= o /T Q(F) (s(x) - st
or = [ QT (5000 - st
Q

First we want to show that

limlimsup sup Egv/2qs(z0)¢r|Br|li-,<r) = 0. 9)
0=0 T—oo Sells 5(So)

We begin with writing

B T Tt 1

Br = Gar(ee) —en) @ — to) ( U+ 77

where fr(y) = ¢n(y)(S(y) — S(z0)), dn(y) = +Q (522), m(f) = [ f(y)as(y)dy and Ay 7(f) =
7= i (F(Xe) = m(f))dt.

We can rewrite the term m/( f;,) as

Ato,T(fh)> , (10)

1 1
m(fr) = / (S(zo + hz) — S(x0))(gs(xo + hz) — gs(xo))dz + qs(xo) / (S(xo + hz) — S(zg))dz

-1 -1
=:mi(h) + gs(zo)mo(h).

Putting 7(y) := So(y) — So(zo) — S‘o(:ro)(y — 1), we easily get
1

1
|mo(h)| = ‘/_1 r(xo + zh)dz + /_I(D(xo + zh) — D(x0))dz

< 2 sup
lu|<h |u‘/8

Using the zero-constant” Holder condition (8) one can show that

im lim @7|mo(h)| = 0. (11)

1
0—0T—o0

Moreover it is not difficult to see that there exists a constant C' = C(L, M, B) such that
or|mi(h)| < Corh? = Ch?7P, (12)

In addition, thanks to inequality (A.1) in Galtchouk and Pergamenshchikov (2006), there exists a con-
stant x > 0 such that for all A > 0:

sup sup sup Ps (| A7 (fr)] > A) < 26, (13)
T>10<to<T S€Xr1B,M-B

Hence it is easy to prove that 7T~ /?Eg| Ay, 7(f4)| tends to zero as T — oo uniformly in S €

UCS»ﬂ (SO) °
Now remark that g« (zo) := infses, , 5 1,5 ¢5(70) > 0 and write for sufficiently large T

1 1 1 1 1
S —

7r(z0)  as@0)| | au(m0)

A

2Gr(w0) —er — qr(zo)
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Assertion (9) follows then from (10), (11), (12) and Lemma A.2 in Galtchouk and Pergamenshchikov
(2006).
Now let us show that for all 6 € (0, 1)

lim  sup Egv/2qs(zo)er|Grlir,<r) = 0. (14)
T—00 geits 5(So)

Applying Taylor’s formula to gg at the second order, one obtains

sup  |m(op) — 2qs(xo)| =  sup ‘/ u?h?Gs(xg + Quh)du| < C(L,M,B)h?.  (15)

Sells,5(S0) Seuts 5(S0) 2

Then we have successively

T 2 T
Gl < - [ hon(xIS 60 - Stawlar < EEI ([ o 0xan- 5T

g(HHm(f TAu2(én) + (T = to)m(én) - (T — to) (2dr(x0) — 7))

T

< LB (i 2(60) + (T = t0)2iir(w0) = mlgn)] + ex(T — 1))
T

We finally get (14) from (15), inequality (A.1) and Lemma 3.2 in Galtchouk and Pergamenshchikov
(2006).
Eventually since {7 is a Gaussian standard random variable, one has

&7 V/2qs (o) TP/ (25+1)
vV 2qs5(z0)¢rEs - Eglé]| =
vV Hp \/ — to 2qT(:1:0) —er)h
< v/ 2qs(zo)( 1/2 2qs (o) Ej¢| + V2qs(20) 1| Ele] (16)
B V2qr(zo) — 7 \/ 2G7(x0) V247 (x
It is easy to show that the second part of (16) tends to 0 uniformly on Us g(Sp) as T — oo. Combining

this with (9), (14) and Lemma A.1 in Galtchouk and Pergamenshchikov (2006) finishes the proof of
theorem 2. O

L E[E]|
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