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7 rue René-Descartes, 67084 Strasbourg Cedex, France
brua@math.u-strasbg.fr

Session: ”Sequential estimation for dependent observations”, organizer : L. Galtchouk.

Abstract. This study deals with the pointwise estimation of the drift function of an ergodic diffusion. The drift function is
assumed to belong to a neighborhood centred on a Lipschitz function and involving a weak Hölder class. The maximal risk of
an estimator of the drift is defined over this neighborhood using the absolute error loss and the ergodic density as normalizing
factor. Then the optimal convergence rate and the sharp asymptotic lower bound are found for the minimax risk. Eventually
an asymptotically efficient kernel estimator, that is an estimator for which the maximal risk attains this bound, is constructed.

Keywords. Asymptotic efficiency, drift, ergodic diffusion, minimax, nonparametric estimation, sequential estimation.

1 Introduction
This paper is devoted to the problem of estimating the drift coefficient of an ergodic diffusion, solution
of the stochastic differential equation

dXt = S(Xt)dt + dBt, 0 ≤ t ≤ T (1)

where (Bt)t≥0 is a scalar standard Brownian motion. Assuming that we observe the continuous data
(Xt, 0 ≤ t ≤ T ) and knowing the smoothness of S, we want to estimate the function S at a fixed point
x0 ∈ R.

Model (1) finds applications in numerous fields, namely financial mathematics, econometrics,
stochastic control, filtering and others, see for example Ait-Sahalia (2002), Jiang and Knight (1997)
and Liptser and Shiryaev (1978). There is a lot of papers studying the problem of nonparametric estima-
tion of the drift of a diffusion. For instance, Banon (1978) proved the consistency whereas Pham (1981)
considered the convergence rate of kernel estimators for our model (1).

Our current purpose is to estimate the drift function at a single point using the absolute error loss
to quantify the performance of an estimator through its corresponding risk. We are first interested in
obtaining the exact asymptotic behavior of the minimax risk and particularly in finding an asymptotic
lower bound of it. Secondly we aim at constructing an estimator of the drift coefficient for which the risk
is asymptotically bounded from above by the same constant as for the minimax risk. Such an estimator
will be called asymptotically efficient, see Ibragimov and Has’minskii (1981).

The problem of sharp estimation of the drift function in diffusion models has already been treated
for some Sobolev classes: Dalalyan and Kutoyants (2002) with known smoothness then Dalalyan (2005)
with an unknown one proposed asymptotically efficient estimators of the drift coefficient in model (1)
for an L2-type risk.

The drift estimation in some Hölder classes was handled as well. Galtchouk and Pergamenshchikov
(2004) achieved the optimal convergence rate of the minimax risk for the L2([a; b], dx)-loss function as
the regularity of the drift function is known but as it remains unknown too. The optimal convergence
rate of the minimax risk is also obtained for the pointwise estimation of the drift function with unknown
smoothness and for the absolute error loss in Galtchouk and Pergamenshchikov (2001). For any positive
power of the absolute error loss and the same Hölder class, the sharp constant for the local minimax risk
is given in Galtchouk and Pergamenshchikov (2005) as well as an asymptotically efficient estimator of
the drift coefficient with known regularity.
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We consider here the pointwise estimation of the drift function belonging to a Hölder class with
known smoothness using the absolute error loss. For this problem Galtchouk and Pergamenshchikov
(2006) gave the sharp asymptotic lower bound for the local minimax risk and an asymptotically efficient
kernel estimator. More precisely they assumed that the drift function belonged to a neighborhood cen-
tred on a Lipschitz function. The neighborhood consists in the centre plus a function satisfying a weak
Hölder condition (involving a weak Hölder constant) and having a small norm. The asymptotic results
were given with the time of observations tending to infinity, the weak Hölder constant and the diameter
of the neighborhood to zero. We propose to find the sharp asymptotic lower bound for the minimax
risk and an asymptotically efficient estimator without making the neighborhood tend to its centre but by
keeping its diameter constant.

2 Statement of the problem
In model (1) we are interested in the estimation of the unknown function S at a fixed point x0 ∈ R
assuming that S lies in a neighborhood of a function S0 belonging to

ΣL,M :=
{

f : |f(0)| ≤ L,−L ≤ f(x)− f(y)
x− y

≤ −M, ∀x, y ∈ R
}

,

with 0 < M < L.
As mentioned in the introduction the neighborhood of the function S0 ∈ ΣL,M consists in the centre

plus an other function lying in

Uδ,β(S0) =
{
S : S = S0 + D, D ∈ Hw

x0
(δ, β)

}

where the weak Hölder class is defined by:

Hw
x0

(δ, β) = { D differentiable : sup
x∈R

(
|D(x)|+ |Ḋ(x)|

)
≤ B;

∀h > 0,

∣∣∣∣
∫ 1

−1
(D(x0 + zh)−D(x0))dz

∣∣∣∣ ≤ δhβ

}
,

with β ∈]1; 2[, 0 < δ < 1 and 0 < B < M .
If S0 ∈ ΣL,M one has Uδ,β(S0) ⊂ ΣL+B,M−B , so that for all S ∈ Uδ,β(S0) the process (Xt)t≥0 is

ergodic and there exists an ergodic density qS . The risk of an estimator S̃T (x0) of S(x0) is the following

Rδ,β(S̃T , S0) = sup
S∈Uδ,β(S0)

√
2qS(x0)ϕTES |S̃T (x0)− S(x0)|, ϕT = T β/(2β+1).

3 Main results
The asymptotic lower bound of the minimax risk is given in the following theorem.

Theorem 1. If S0 ∈ ΣL,M we have for any δ ∈]0; 1[

lim inf
T→∞

inf
S̃
Rδ,β(S̃T , S0) ≥ E|ξ|, ξ ∼ N (0, 1),

where the infimum is taken over all estimators of S(x0).

PROOF: For u > 0, denote Su(x) = S0(x) + uDν(x), where

Dν(x) = ϕ−1
T Vν

(
x− x0

h

)
, Vν(x) = ν−1

∫ ∞

−∞
Q̃ν(u)g

(
u− x

ν

)
du,

Q̃ν(u) = I{|u|≤1−2ν} + 2I{1−2ν≤|u|≤1−ν}, g(z) =
{

c exp(−(1− z2)−1), |z| ≤ 1;
0, |z| > 1,
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with 0 < ν < 1/4; the normalizing constant c > 0 is such that
∫ 1
−1 g(z)dz = 1.

Now fix b > 0 and δ > 0. We can easily see that there exists Tb,ν > 0 such that for any |u| ≤ b and
T ≥ Tb,ν one has Su ∈ Uδ,β(S0).

Furthermore we may write for all T ≥ Tb,ν

Rδ,β(S̃T , S0) ≥ 1
2b

∫ b

−b

√
2qSu(x0)ESuΨa,T (S̃T , Su)du =: IT (a, b),

with Ψa,T (S̃T , S) = va

(
ϕT (S̃T (x0)− S(x0)

)
) and va(x) = a ∧ |x|, a > 0.

Denoting PS the distribution of the process (Xt) in C([0;T ]) as the drift function is S, we have
thanks to Lemma 4.2 in Galtchouk and Pergamenshchikov (2006)

ρT (u) :=
dPSu

dPS0

= exp{u∆T − 1
2
u2σ2

ν + rT (u)}, ∀u > 0,

where ∆T =
∫ T

0
Dν(Xt)dBt and σ2

ν = qS0(x0)
∫ 1

−1
V 2

ν (z)dz.

Moreover we can assume that ξν and ∆T are independent and we have

∆T

LPS0−−−−→
T→∞

ξν , ξν ∼ N (0, σ2
ν) and rT (u)

PS0−−−−→
T→∞

0, (2)

Then write

IT (a, b) ≥ 1
2b

∫ b

−b

√
2qSu(x0)ES0IBd

Ψa,T (S̃T , Su)ρ0
T (u)du + δ0

T (a, b) =: JT (a, b) + δ0
T (a, b),

where Bd = {|∆T | ≤ d}, d = σ2
ν(b−

√
b), ρ0

T (u) = exp(u∆T − u2σ2
ν/2).

Using the fact that the family {ρT (u), T > 0} is uniformly integrable and the convergence (2) of
rT (u), one can show that

sup
S̃T

δ0
T (a, b) −−−−→

T→∞
0. (3)

Now we consider the quantity

1
2b

∫ b

−b
ES0IBd

Ψa,T (S̃T , Su)
(√

2qSu(x0)−
√

2qS0(x0)
)

ρ0
T (u)du =: JT (a, b)−KT (a, b).

Bounded convergence yields qSν,u(x0) −−−−→
T→∞

qS0(x0) and then

sup
S̃T

|JT (a, b)−KT (a, b)| −−−−→
T→∞

0. (4)

As a consequence only the study of the quantity KT (a, b) remains. So rewrite

ρ0
T (u) = ζT exp(−σ2

ν(u− ∆̃T )2/2), ζT = exp(∆2
T /2σ2

ν), ∆̃T = ∆T /σ2
ν

and put gT = ϕT (S̃T (x0)− S0(x0)), g̃T = gT − ∆̃T . Then one successively has

KT (a, b) =
1
2b

∫ b

−b
ES0IBd

Ψa,T (S̃T , Su)
√

2qS0(x0)ρ0
T (u)du

= ES0IBd
ζT

1
2b

∫ b

−b
va(u− gT ) exp

(
−σ2

ν(u− ∆̃T )2/2
)√

2qS0(x0)du

≥ ES0IBd
ζT

1
2b

∫ √
b

−
√

b
va(u− g̃T ) exp

(−σ2
νu

2/2
)√

2qS0(x0)du

≥ ES0IBd
ζT

1
2b

∫ √
b

−
√

b
va(u) exp

(−σ2
νu

2/2
) √

2qS0(x0)du

=: ES0IBd
ζT

1
2b

∫ √
b

−
√

b
|u| exp

(−σ2
νu

2/2
)√

2qS0(x0)du + δ1
T (a, b),
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the second inequality arising from Anderson’s lemma (see Ibragimov and Has’minskii, 1981, Lemma
10.2, p.157).
Noticing that

lim
T→∞

ES0IBd
ζT = 2σν(b−

√
b)/
√

2π,

one obtains for all b > 0,

lim
a→∞ lim inf

T→∞
δ1
T (a, b) = 0, (5)

and

lim inf
a→∞ lim inf

T→∞
KT (a, b) ≥ b−

√
b

b

√
2qS0(x0)σν√

2π

∫ √
b

−
√

b
|u| exp(−u2σ2

ν/2)du. (6)

Remarking here that σν → 2qS0(x0) as ν → 0 and limiting b → ∞ before ν → 0 in (6) yield with (3),
(4) and (5) :

lim inf
T→∞

Rδ,β(S̃T , S0) ≥ E|ξ|, ξ ∼ N (0, 1).

In order to exhibit an asymptotically efficient estimator of S(x0) we begin with estimating the er-
godic density at the point x0 through the observations {Xt, t ≤ t0}, where t0 = T 2γ , γ∗ < γ < 1/2 and
γ∗ = β−1

2β+1 . Let

q̂T (x0) =
1

2t0lT

∫ t0

0
Q

(
Xt − x0

lT

)
dt,

with Q = I[−1;1] and lT = o(1/
√

T ) as T →∞.
Then for H > 0 we define the sequential procedure (τH , S∗T (x0)) as

τH = inf{t ≥ t0 :
∫ t

t0

Q

(
Xt − x0

h

)
dt ≥ H},

S∗T (x0) =
1
H

∫ τH

t0

Q

(
Xt − x0

h

)
dXtI{τH≤T}. (7)

We choose the bandwidth h = hT = T−1/(2β+1) and the level H = HT = (T − t0)(2q̃T (x0)− εT )hT ,
where q̃T (x0) = max(q̂T (x0), ν

−1/2
T ), εT = 1/(νT T γ∗) and νT = ln T .

The centre S0 of the considered neighborhood needs to verify an additional condition described by the
following property:

lim
y→x0

Ṡ0(y)− Ṡ0(x0)
|y − x0|β−1

= 0. (8)

We are now able to give the upper bound of the risk for the estimator (7).

Theorem 2. Let S0 ∈ ΣL,M , β ∈]1; 2[ and assume that the condition (8) is satisfied. Then one has

lim sup
δ→0

lim sup
T→∞

Rδ,β(S∗T (x0), S0) ≤ E|ξ|, ξ ∼ N (0, 1).

As a consequence of Theorems 1 and 2, the estimator (7) of the drift coefficient is asymptotically
efficient.
PROOF: Let S ∈ Uδ,β(S0) and parse the error of estimation as

S∗T (x0)− S(x0) =
(

BT −GT +
ξT√
HT

)
I{τH≤T} − S(x0)I{τH>T},
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where

BT =
1

HT

∫ T

t0

Q

(
Xt − x0

h

)
(S(Xt)− S(x0))dt,

GT =
1

HT

∫ T

τH

Q

(
Xt − x0

h

)
(S(Xt)− S(x0))dt,

ξT =
1√
HT

∫ T

t0

Q

(
Xt − x0

h

)
dBt.

First we want to show that

lim
δ→0

lim sup
T→∞

sup
S∈Uδ,β(S0)

ES

√
2qS(x0)ϕT |BT |I{τH≤T} = 0. (9)

We begin with writing

BT =
T

(2q̃T (x0)− εT )(T − t0)

(
T − t0

T
m(fh) +

1√
T

∆t0,T (fh)
)

, (10)

where fh(y) = φh(y)(S(y) − S(x0)), φh(y) = 1
hQ

(y−x0

h

)
, m(f) =

∫
f(y)qS(y)dy and ∆t0,T (f) =

1√
T

∫ T
t0

(f(Xt)−m(f))dt.
We can rewrite the term m(fh) as

m(fh) =
∫ 1

−1
(S(x0 + hz)− S(x0))(qS(x0 + hz)− qS(x0))dz + qS(x0)

∫ 1

−1
(S(x0 + hz)− S(x0))dz

=: m1(h) + qS(x0)m0(h).

Putting r(y) := S0(y)− S0(x0)− Ṡ0(x0)(y − x0), we easily get

|m0(h)| =
∣∣∣∣
∫ 1

−1
r(x0 + zh)dz +

∫ 1

−1
(D(x0 + zh)−D(x0))dz

∣∣∣∣

≤ 2 sup
|u|≤h

|r(x0 + u)|
|u|β hβ + δhβ.

Using the ”zero-constant” Hölder condition (8) one can show that

lim
δ→0

lim
T→∞

ϕT |m0(h)| = 0. (11)

Moreover it is not difficult to see that there exists a constant C = C(L,M,B) such that

ϕT |m1(h)| ≤ CϕT h2 = Ch2−β. (12)

In addition, thanks to inequality (A.1) in Galtchouk and Pergamenshchikov (2006), there exists a con-
stant κ > 0 such that for all λ > 0:

sup
T≥1

sup
0≤t0≤T

sup
S∈ΣL+B,M−B

PS (|∆t0,T (fh)| > λ) ≤ 2e−κλ2
. (13)

Hence it is easy to prove that ϕT T−1/2ES |∆t0,T (fh)| tends to zero as T → ∞ uniformly in S ∈
Uδ,β(S0).
Now remark that q∗(x0) := infS∈ΣL+B,M−B

qS(x0) > 0 and write for sufficiently large T

1
2q̃T (x0)− εT

≤ 1
q̃T (x0)

≤
∣∣∣∣

1
q̃T (x0)

− 1
qS(x0)

∣∣∣∣ +
1

q∗(x0)
.
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Assertion (9) follows then from (10), (11), (12) and Lemma A.2 in Galtchouk and Pergamenshchikov
(2006).

Now let us show that for all δ ∈ (0, 1)

lim
T→∞

sup
S∈Uδ,β(S0)

ES

√
2qS(x0)ϕT |GT |I(τH≤T ) = 0. (14)

Applying Taylor’s formula to qS at the second order, one obtains

sup
S∈Uδ,β(S0)

|m(φh)− 2qS(x0)| = sup
S∈Uδ,β(S0)

1
2

∣∣∣∣
∫ 1

−1
u2h2q̈S(x0 + θuh)du

∣∣∣∣ ≤ C(L,M,B)h2. (15)

Then we have successively

|GT | ≤ 1
HT

∫ T

τH

hφh(Xt)|S(Xt)− S(x0)|dt ≤ (L + B)h2

HT

(∫ T

t0

φh(Xt)dt− HT

h

)

≤ (L + B)h2

HT

(√
T∆t0,T (φh) + (T − t0)m(φh)− (T − t0)(2q̃T (x0)− εT )

)

≤ (L + B)h2

HT

(√
T∆t0,T (φh) + (T − t0)|2q̃T (x0)−m(φh)|+ εT (T − t0)

)
.

We finally get (14) from (15), inequality (A.1) and Lemma 3.2 in Galtchouk and Pergamenshchikov
(2006).

Eventually since ξT is a Gaussian standard random variable, one has

∣∣∣∣
√

2qS(x0)ϕTES
|ξT |√
HT

− ES |ξ|
∣∣∣∣ =

∣∣∣∣∣

√
2qS(x0)T β/(2β+1)

√
(T − t0)(2q̃T (x0)− εT )h

− 1

∣∣∣∣∣E|ξ|

≤
∣∣∣∣∣

√
2qS(x0)(1− t0

T )−1/2

√
2q̃T (x0)− εT

−
√

2qS(x0)√
2q̃T (x0)

∣∣∣∣∣E|ξ|+
∣∣∣∣∣

√
2qS(x0)√
2q̃T (x0)

− 1

∣∣∣∣∣E|ξ|. (16)

It is easy to show that the second part of (16) tends to 0 uniformly on Uδ,β(S0) as T → ∞. Combining
this with (9), (14) and Lemma A.1 in Galtchouk and Pergamenshchikov (2006) finishes the proof of
theorem 2.
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