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Abstract. Sequential least squares estimates are proposed for estimating the unknown parameters in an unstable autoregressive
AR(p). A special stopping time is defined by the trace of the observed Fisher information matrix. In the case p = 2, the limiting
distribution of the sequential LSE is shown to be normal for the parameter vector lying both inside the stability region and on
its boundary in contrast to the usual LSE. In the case p ≥ 3, the asymptotic normality of the sequential LSE is shown for the
parameter vector lying both inside the stability region and on some part of its boundary. This asymptotic normality is provided
by a new property of the observed Fisher information matrix which holds both inside the stability region and on some part of
its boundary.
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1 Introduction
Consider the autoregressive AR(p) model

xn = θ1xn−1 + . . .+ θpxn−p + εn, n = 1, 2, . . . , (1)

where (xn) is the observation, (εn) is the noise which is a sequence of independent identically distributed
(i.i.d.) random variables with Eε1 = 0 and 0 < Eε21 = σ2 < ∞, σ2 is known (or unknown), x0 =
x−1 = . . . = x1−p = 0; the parameters θ1, . . . , θp of the model are unknown.

A commonly used estimate of the parameter vector θ = (θ1, . . . , θp)′ is the least squares estimate
(LSE)

θ(n) = M−1
n

n∑
k=1

Xk−1xk, Mn =
n∑
k=1

Xk−1X
′
k−1, (2)

where Xn = (xn, xn−1, . . . , xn−p+1)′, M−1
n denotes the inverse of matrix Mn if detMn > 0 and

M−1
n = 0 otherwise, the prime denotes the transposition; Mn is called the observed Fisher information

matrix. Let
P(z) = zp − θ1zp−1 − . . .− θp (3)

denote the characteristic polynomial of the autoregressive model (1). The process (1) is said to be stable
if all roots zi = zi(θ) of the characteristic polynomial (3) lie inside the unit circle, that is the parameter
vector θ = (θ1, . . . , θp)′ belongs to the parametric stability region Λp defined as

Λp = {θ ∈ Rp : |zi(θ)| < 1, i = 1, . . . , p} . (4)

The process (1) is called unstable if the roots of P(z) lie on or inside the unit circle, that is, θ ∈ [Λp],
where [Λp] denotes the closure of the stability region Λp.
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It is well known (see,e.g. Anderson (1971), Th.5.5.7) that the LSE θ(n) is asymptotically normal
for all θ ∈ Λp, that is

√
n(θ(n)− θ) L=⇒ N (0, F ), as n→∞,

where F = F (θ) is a positive definite matrix, L=⇒ indicates convergence in law. It should be noted
that the asymptotic normality of θ(n) is provided by the following asymptotic property of the observed
Fisher information matrix

lim
n→∞

Mn/n = F a.s. (5)

for all θ ∈ Λp. On the boundary ∂Λp of the stability region Λp, this property does not hold and the
distribution of θ(n) is no longer asymptotically normal.

The investigation of the asymptotic distribution of LSE θ(n) when (xn) is unstable goes back to the
late fifties with the paper of White (1958) (see also Ahtola and Tiao (1987), Dickey and Fuller (1979),
Rao (1978), Sriram (1987),(1988)) who considered the AR(1) model with i.i.d.N (0, σ2) random errors
εn and θ = 1, and established that

n(θ(n)− 1) L=⇒ (W 2(1)− 1)/
∫ 1

0
W 2(t)dt ,

where W (t) is a standard brownian motion. Subsequently the research of the limiting distribution of
θ(n) for unstable AR(p) processes has been receiving considerable attention due to important applica-
tions in time series analysis, in modeling economic and financial data and in system identification and
control. For the detail we refer the reader to the paper by Chan and Wei (1988) who derived the limiting
distribution of LSE θ(n) for the general unstable AR(p) model. By making use of the functional central
limit theorem approach, Chan and Wei expressed the limiting distribution of LSE θ(n) in terms of func-
tionals of standard brownian motions. However, the closed forms of the distribution functions of these
functionals are not known and that may cause difficulties in practice (see section 4 in Chan and Wei).

For the unstable AR(1) model with i.i.d. random errors and −1 ≤ θ ≤ 1, Lai and Siegmund (1983)
proposed, for θ, to use the sequential least squares estimate

θ(τ) =

(
τ∑
k=1

x2
k−1

)−1 τ∑
k=1

xk−1xk , τ = τ(h) = inf{n ≥ 1 :
n∑
k=1

x2
k−1 ≥ hσ2}. (6)

They proved that, in contrast with the ordinary LSE θ(n), the sequential LSE is asymptotically normal
uniformly in θ ∈ [−1, 1].

In the next section, for the unstable AR(2) model, we apply the sequential LSE with a particu-
lar stopping time based on the trace of the observed Fisher information matrix and establish that it is
asymptotically normal not only inside the stability region Λ but also on its boundary in contrast to the
usual LSE (see Galtchouk and Konev (2008)). In section 3, for the case of unstable AR(p), p ≥ 3,
process, we propose a sequential LSE for θ and find the conditions on θ (see Conditions 1-3 hereafter)
ensuring its asymptotic normality. The set Λ̃p of the points θ , satisfying these conditions includes the
stability region Λp and some part of its boundary. It is shown that the convergence of the sequential LSE
to the normal distribution is uniform in θ ∈ K for any compact set K ∈ Λ̃p.

2 Asymptotic normality of the sequential LSE for AR(2).

In this section we develop a sequential sampling scheme for estimating parameter vector θ = (θ1, θ2)′

in model (1) with p = 2. We will use the sequential least squares estimate defined by the formula

θ(τ(h)) = M−1
τ(h)

τ(h)∑
k=1

Xk−1xk, (7)
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where τ(h) is the stopping time for the threshold h > 0 :

τ(h) = inf{n ≥ 1 : trMn ≥ hσ2}, inf{∅} = +∞. (8)

This construction of sequential estimate is similar to that in (6) of Lai and Siegmund for AR(1). It
should be noted, however, that the first factor on the right-hand side of (7) is a random matrix and not a
random variable, as in (6), and this makes additional difficulties.

For AR(1) the stopping time τ in (6) turns the denominator in θ(τ) (6) practically into a constant
hσ2 and this allows to use the central limit theorem for martingales. In the case of AR(2) the stopping
time (8) enables one to control the inverse matrix M−1

τ(h) in (7) only partially since it remains random.
Nevertheless, we will see that such a change of time also enables one to improve the properties of the
estimate (2).

In our paper (2006) we proved the following result.

Theorem 1. Let (εn)n≥1 in (1) with p = 2 be a sequence of i.i.d. random variables with Eεn = 0, 0 <
Eε2n = σ2 <∞, σ2 is known. Then, for any compact set K ⊂ Λ∗2,

lim
h→∞

sup
θ∈K

sup
t∈R2

|Pθ
(
M

1/2
τ(h)(θ(τ(h))− θ) ≤ t

)
− Φ2(t/σ)| = 0,

where Φ2(t) = Φ(t1)Φ(t2), Φ is the standard normal distribution function,

Λ∗2 = {θ = (θ1, θ2)′ : −1 + θ2 < θ1 < 1− θ2, −1 ≤ θ2 < 1}, t = (t1, t2)′.

This theorem implies, in particular, that estimate (7) is asymptotically normal uniformly on the compact
sets not only inside the stability region (4) but also on the part of its boundary {θ = (θ1,−1)

′
: −2 <

θ1 < 2} in contrast to the LSE (2).
The following result claims that the asymptotic normality of the estimate (7),(8) holds in the whole

region [Λ2] including its boundary ∂Λ2.

Theorem 2. Suppose that in model (1) with p = 2, (εn)n≥1 is a sequence of i.i.d. random variables,
Eεn = 0 and 0 < Eε2n = σ2 <∞, σ2 is known. Define τ(h), θ(τ(h)) and Mτ(h) as in (8),(7) and (2).
Then for any θ ∈ [Λ2]

lim
h→∞

sup
t∈R2

∣∣∣Pθ (M1/2
τ(h)(θ(τ(h))− θ) ≤ t

)
− Φ2(t/σ)

∣∣∣ = 0,

where Φ2(t) = Φ(t1)Φ(t2), t = (t1, t2)′, Φ is the standard normal distribution function; [Λ2] is the
closure of the stability region (4).

In the both previous results the variance σ2 is supposed to be known.
Suppose now that the variance σ2 in (1) is unknown. A commonly used estimate for σ2 in autore-

gressive processes on the basis of observations (x1, . . . , xn) is defined as

σ̂2
n = n−1

n∑
k=1

(xk − θ
′
(n)Xk−1)2 , (9)

where θ(n) is the least squares estimate of θ defined in (2). Now we must modify the stopping time
(8). At first sight, to this end one should replace σ2 in (8) by σ̂2

n. However, we will use a different
modification similar to that proposed by Lai and Siegmund for AR(1) model, which turns out to be more
convenient in the theoretic studies. Define the sequential estimate as

θ(τ̂(h)) = M−1
τ̂(h)

τ̂(h)∑
k=1

Xk−1xk , (10)

τ̂(h) = inf{n ≥ 3 :
n∑
k=1

(x2
k−1 + x2

k−2) ≥ hs2n} , (11)

where s2n = σ̂2
n ∨ δn, δn is a sequence of positive numbers with δn → 0.

The asymptotic normality in the case of unknown variance is stated in the following theorems.
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Theorem 3. Let (εn)n≥1 in (1) with p = 2 be a sequence of i.i.d. random variables, Eεn = 0, 0 <
Eε2n = σ2 <∞, σ2 is unknown. Then, for any compact set K ⊂ Λ∗2,

lim
h→∞

sup
θ∈K

sup
t∈R2

|Pθ
(
M

1/2
τ̂(h)(θ(τ̂(h))− θ)/σ̂τ̂(h) ≤ t

)
− Φ2(t)| = 0,

where Φ2(t) = Φ(t1)Φ(t2), Φ is the standard normal distribution function,

Λ∗2 = {θ = (θ1, θ2)′ : −1 + θ2 < θ1 < 1− θ2, −1 ≤ θ2 < 1}, t = (t1, t2)′ .

Theorem 4. Let (εn)n≥1 in (1) with p = 2 be a sequence of i.i.d. random variables, Eεn = 0, 0 <
Eε2n = σ2 <∞, σ2 is unknown. Then, for any θ ∈ [Λ2],

lim
h→∞

sup
t∈R2

|Pθ
(
M

1/2
τ̂(h)(θ(τ̂(h))− θ)/σ̂τ̂(h) ≤ t

)
− Φ2(t)| = 0 .

Now we study the asymptotic behavior of the stopping time τ(h).
The boundary ∂Λ2 includes three sides:

Γ1 = {θ : −θ1 + θ2 = 1,−2 < θ1 < 0} , Γ2 = {θ : θ1 + θ2 = 1, 0 < θ1 < 2} ,

Γ3 = {θ : −2 < θ1 < 2, θ2 = −1} (12)

and three apexes (0, 1), (−2,−1), (2,−1). Denote

A =
(
θ1 θ2
1 0

)
, B =

(
1 0
0 0

)
,

W (n)(t) =
1

σ
√
n

[nt]∑
i=0

εi, W
(n)
1 (t) =

1
σ
√
n

[nt]∑
i=0

(−1)iεi, 0 ≤ t ≤ 1, (13)

and introduce the following functionals

J1(x; t) =
∫ t

0
x2(s)ds, J2(x; t) =

∫ t

0

(∫ s

0
x(u)du

)2

ds, (14)

J3(x; y; t) =
∫ t

0
(x2(s) + y2(s))ds, J4(x; t) =

(∫ t

0
x(s)ds

)2

.

Theorem 5. Let (εn)n≥1 in (1.1) be a sequence of i.i.d. random variables withEεn = 0, Eε2n = σ2 and
τ(h) be defined by (8). Denote by a and b real roots of the polynomial (3) with p = 2, −1 ≤ a < b ≤ 1.
Then, for each θ ∈ Λ2,

Pθ − lim
h→∞

τ(h)/h = 1/trF, F −AFA′ = B. (15)

Moreover, for each θ ∈ ∂Λ2, as h→∞,

τ(h)
ψ(θ, h)

L=⇒


ν1(W1) = inf{t ≥ 0 : J1(W1; t) ≥ 1} if θ ∈ Γ1,
ν2(W ) = inf{t ≥ 0 : J1(W ; t) ≥ 1} if θ ∈ Γ2,
ν3(W,W1) = inf{t ≥ 0 : J3(W ;W1; t) ≥ 1} if θ ∈ Γ3 ∪ {(0, 1)},
ν4(W ) = inf{t ≥ 0 : J2(W ; t) ≥ 1} if θ = (2,−1),
ν5(W1) = inf{t ≥ 0 : J2(W1; t) ≥ 1} if θ = (−2,−1),

(16)

where inf{∅} =∞, Λ2 is defined in (4) for p = 2,

ψ(θ, h) =



(1 + b)
√
h/2 if θ ∈ Γ1,

(1− a)
√
h/2 if θ ∈ Γ2,√

2h sinϕ if θ = (2 cosϕ,−1)′ ∈ Γ3,√
2h if θ = (0, 1),

(h/2)1/4 if θ ∈ {(−2,−1), (2,−1)} ,

(17)

W (t),W1(t) are independent standard Brownian motions.

The proofs of the theorems 2-5 are given in our paper (2008a).
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3 Asymptotic normality of the sequential LSE for AR(p).

The uniform asymptotic normality of sequential least squares estimators for the parameters in a stable
AR(p) has been studied in the author paper (2004). In this section we consider the unstable model (1)
with p ≥ 3. We assume that the variance σ2 is known and that the parameter vector θ = (θ1, . . . , θp)′ in
(1) satisfies the following conditions.

Condition 1. Parameter θ = (θ1, . . . , θp)′ is such that all roots zi = zi(θ) of the characteristic
polynomial (3) lie inside or on the unite circle.

Condition 2. All the roots zi = zi(θ) of P(z), which are equal to one in modulus, are simple.
Condition 3. The system of linear equations with respect to Y1, . . . , Yp−1

Y1 −
∑p

l=2 θlYl−1 = θ1
−
∑j−1

k=1 θj−kYk + Yj −
∑p−j

k=1 θk+jYk = θj ,
2 ≤ j ≤ p− 1,

(18)

has a unique solution (Y1, . . . , Yp−1), Yi = κi(θ), 1 ≤ i ≤ p− 1, and the matrix

L = L(θ) =


1 κ1(θ) κ2(θ) . . . κp−1(θ)

κ1(θ) 1 κ1(θ) . . . κp−2(θ)
...

...
...

. . .
...

κp−1(θ) κp−2(θ) . . . κ1(θ) 1

 (19)

is positive definite.
Let Λ̃p denotes all θ = (θ1, . . . , θp)′ in (1) which satisfy all Conditions 1-3.

Theorem 6. Suppose that in the AR(p) model (1), the parameter vector θ = (θ1, . . . , θp)′ satisfies
Conditions 1-3. Let θ(τ(h)), τ(h) be defined by (7),(8). Then for any compact set K ⊂ Λ̃p

lim
h→∞

sup
θ∈K

sup
t∈Rp

∣∣∣Pθ (M1/2
τ(h)(θ(τ(h))− θ) ≤ t

)
− Φp(t/σ)

∣∣∣ = 0 , (20)

where Φp(t) = Φ(t1) · · ·Φ(tp), Φ is the standard normal distribution function, t = (t1, . . . , tp)′.

The proof of this theorem is given in our paper (2008b). Conditions 1-3, imposed on the parameter
θ = (θ1, . . . , θp)′ in (1), provide the convergence of the ratio Mn/Sn to the matrix L given in (19),
where Sn =

∑n
k=1 x

2
k−1. This property can be viewed as an extension of (5) outside the stability region

(4).

Lemma 1. Let parameters θ1, . . . , θp in the equation (1) satisfy Conditions 1-3, the p×p matrix Mn be
given by (2) and L be defined in (19). Then, for any compact set K ⊂ Λ̃p and each δ > 0,

lim
m→∞

sup
θ∈K

Pθ

(
‖Mn

Sn
− L‖ ≥ δ for some n ≥ m

)
= 0.

The extension of the property of asymptotic normality of the sequential estimate to the part of the
boundary ∂Λp is achieved by making use of a above new property of observed Fisher information matrix
Mn, which holds in a broader subset of [Λp] as compared with (4).

In the conclusion it should be noted that the sequential LSE possesses two advantages over the
ordinary LSE:

–its limit distribution is standard normal independent of unknown parameters;
– the normalizing factor, M1/2

τ(h), in the limit asymptotic normality is the same for each value of the
parameters.
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