
Adaptive sequential estimation for ergodic diffusion processes in
quadratic metric. ?

Leonid Galtchouk1 and Sergey Pergamenshchikov2

1 IRMA, Department of Mathematics, University of Strasbourg,
7 Rene Descartes str.,
67084, Strasbourg Cedex, France
galtchou@math.u-strasbg.fr
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Abstract. An adaptive nonparametric estimation procedure is constructed for estimating the drift coefficient in ergodic diffu-
sion processes. A non-asymptotic upper bound (an oracle inequality) is obtained for the quadratic risk. Asymptotic efficiency
is proved, i.e. Pinsker’s constant is found in the asymptotic lower bound for the minimax quadratic risk. It is shown that the
asymptotic minimax quadratic risk of the constructed procedure coincides with this constant.
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1 Introduction
We consider the following stochastic differential equation

dyt = S(yt) dt+ dwt , 0 ≤ t ≤ T , (1)

where (wt)t≥0 is a scalar standard Wiener process, the initial value y0 is a given constant and S(·) is an
unknown function. The problem is to estimate the function S(x) from observations of (yt)0≤t≤T .

It seems that, for the first time, the problem of non-asymptotic parameter estimation for diffusion
processes has been studied in [1] for wobbling analysis of the axis of the equator. There, for a special
diffusion process, the exact distribution of the ML-estimators of unknown parameters has been obtained
for any finite sample time T . Unfortunately, in the majority of cases, when the sample time is finite, it is
difficult to study classical estimators such as LS-estimators or ML-estimators since they are non-linear
functionals of observations. In particular, it is difficult to compute the mean, a minimax risk etc.

In [14] it has been shown that many difficulties in non-asymptotic parameter estimation for one-
dimensional diffusion processes can be overcome by the sequential approach. It turns out that the the-
oretical analysis of the sequential ML-estimator is easier than the analysis of classical procedures. In
particular, it is possible to calculate non-asymptotic bounds for quadratic risk in the sequential proce-
dure. By making use of the sequential approach non-asymptotic parameter estimation problems have
been studied in [11], [2] for multidimensional diffusion processes and recently in [3] for multidimen-
sional continuous and discrete time semimartingales. In the paper [12] a truncated sequential method
has been developed for parameter estimation in diffusion processes.

The sequential approach to nonparametric minimax estimation problem of the drift coefficient in
ergodic diffusion processes has been developed in [4]–[7]. The papers [4],[6] and [7] deal with sequential
pointwise kernel estimators of the drift coefficient. For these estimators non-asymptotic upper bounds
were obtained for absolute error risks, the estimators yield also the optimal convergence rate as the
sample time T → ∞. In the paper [4] it is shown that this procedure is minimax and adaptive in
the both cases when either the smoothness is known or unknown. The same type of the sequential
? The paper is supported by the RFFI-Grant 09-01-00172-a.
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kernel estimators is used in the paper [5] for the nonparametric estimation in the L2- metric of the
drift coefficient via model selection. A non-asymptotic upper bound for the quadratic risk is proved.
The procedure is minimax and adaptive in the asymptotic setting as well. A sequential asymptotically
efficient kernel estimator is constructed for pointwise drift estimation in [7].

This paper deals with the estimation of the drift coefficient S(·) on the interval [a, b] in adaptive
setting for the quadratic risk

R(ŜT , S) = ES‖ŜT − S‖2 , ‖S‖2 =
∫ b

a

S2(x)dx , (2)

where ŜT is an estimator of S based on observations (yt)0≤t≤T , a < b are some real numbers. Here ES

is the expectation with respect to the distribution law PS of the process (yt)0≤t≤T given by the drift S.
To obtain a good estimate of the function S, it is necessary to impose some conditions on the function

S which are similar to the periodicity of the deterministic signal in the white noise model (see,e.g.,
[10]). One of conditions which is sufficient for this purpose is the assumption that the process (yt)0≤t≤T
returns to any vicinity of each point x ∈ [a, b] infinite times. The ergodicity provides this property
(see,e.g., [13]). Let L > 1 and N > |a|+ |b|. We define the following functional class :

ΣL,N = {S ∈ LipL(R) : |S(N)| ≤ L ; ∀|x| ≥ N, ∃ Ṡ(x) ∈ C(R)

such that− L ≤ inf
|x|≥N

Ṡ(x) ≤ sup
|x|≥N

Ṡ(x) ≤ −1/L} , (3)

where

LipL(R) =

{
f ∈ C(R) : sup

x,y∈R

|f(x)− f(y)|
|x− y|

≤ L

}
.

First of all, note that if S ∈ ΣL,N , then the equation (1) has an unique strong solution and there exists
the invariant density

q(x) = qS(x) =
exp{2

∫ x
0 S(z)dz}∫ +∞

−∞ exp{2
∫ y
0 S(z)dz}dy

. (4)

(see,e.g., [9], Ch.4, 18, Th2).

2 Sequential procedure

We start with the partition of the interval [a, b] by points (xk)1≤k≤n defined as

xk = a +
k

n
(b− a) , (5)

where n = n(T ) is a integer-valued function of T such that

lim
T→∞

n(T )
T

= 1 .

At any point xk we estimate the function S by the sequential kernel estimator from [5]-[6]. We fix
some 0 < t0 < T and we set

τk = inf{t ≥ t0 :
∫ t

t0

Q

(
ys − xk
h

)
ds ≥ Hk}

and

S∗k =
1
Hk

∫ τk

t0

Q

(
ys − xk
h

)
dys ,
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where Q(z) = 1{|z|≤1}, h = (b − a)/(2n) and Hk is a positive threshold. From (1) it is easy to obtain
that

S∗k = S(xk) + ζk .

The error term ζk is represented as the following sum of the approximation term Bk and the stochastic
term:

ζk = Bk +
1√
Hk

ξk ,

where

Bk =
1
Hk

∫ τk

t0

Q

(
ys − xk
h

)
(S(ys) − S(xk))ds ,

ξk =
1√
Hk

∫ τk

t0

Q

(
ys − xk
h

)
dws .

Taking into account that the function S is lipschitzian, we obtain the upper bound for the approximation
term as

|Bk| ≤ Lh .

It is easy to see that the random variables (ξk)1≤k≤n are i.i.d. normal N (0, 1).
Moreover, in [7] it is established that the efficient kernel estimator has the stochastic term distributed

as N (0, 2ThqS(xk)). Therefore for the efficient estimation at each point xk we need to estimate the
ergodic density (4) from the observations (yt)0≤t≤t0 . We put

q̃T (xk) = max{q̂(xk) , εT } ,

where εT is positive, 0 < εT < 1,

q̂(xk) =
1

2t0h

∫ t0

0

Q

(
ys − xk
h

)
ds .

Now we choose the threshold Hk as

Hk = (T − t0)(2q̃T (xk)− ε2T )h ,

where for T ≥ 32,

t0 = max{min{ln4 T , T/2} , 16} and εT =
√

2 t−1/8
0 .

We set now
Γ = { max

1≤k≤n
τk ≤ T} .

One can show that for any m > 0

lim
T→∞

Tm sup
S∈ΣL,N

PS(Γ c) = 0 . (6)

For Yk = S∗k with 1 ≤ k ≤ n, we come to the regression model on the set Γ :

Yk = S(xk) + ζk , ζk = σk ξk + δk , (7)

where (ξk)1≤k≤n is a sequence of i.i.d. random variables N (0, 1), δl = Bl and

σ2
l =

n

(T − t0)(q̃T (xl)− ε2T /2)(b− a)
≤ 4
εT (bς − aς)

:= σ∗(T ) = σ∗ ,

where

lim
T→∞

σ∗(T )
Tm

= 0 for any m > 0 .

Obviously that the random variables (ξk)1≤k≤n are independent of (σk)1≤k≤n.
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3 Oracle inequality
In this section we consider the estimation problem for the regression model (7). Now we fix a basis
(φj)1≤j≤n which is orthonormal with respect to the empirical inner product :

(φi , φj)n =
b− a
n

n∑
l=1

φi(xl)φj(xl) = Krij ,

where Krij is Kronecker’s symbol.
By making use of this basis we apply the discrete Fourier transformation to (7) on the set Γ , i.e.

θ̂j,n =
b− a
n

n∑
l=1

Ylφj(xl) , θj,n =
b− a
n

n∑
l=1

S(xl)φj(xl) .

We estimate the function S in (7) on the sieve (5) by the weighted least squares estimator

Ŝλ(xl) =
n∑
j=1

λ(j) θ̂j,n φj(xl)1Γ , 1 ≤ l ≤ n ,

where the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some finite set Λ ⊂ [0, 1]n, the prime denotes
the transposition. We set for any x ∈ [a, b]

Ŝλ(x) = Ŝλ(x1)1{a≤x≤x1} +
n∑
l=2

Ŝλ(xl)1{xl−1<x≤xl} .

Now we have to write a rule to choose a weight vector λ ∈ Λ to obtain a “good” estimator. To this
end we set

θ̃j,n = θ̂2
j,n −

b− a
n

sj,n with sj,n =
b− a
n

n∑
l=1

σ2
l φ

2
j (xl) .

and we define the cost function as

Jn(λ) =
n∑
j=1

λ2(j)θ̂2
j,n − 2

n∑
j=1

λ(j) θ̃j,n + ρPn(λ) ,

where

Pn(λ) =
b− a
n

n∑
j=1

λ2(j)sj,n

and 0 < ρ < 1 is some positive coefficient. We put

Ŝ∗ = Ŝbλ with λ̂ = agrmin
λ∈Λ Jn(λ) . (8)

We make use of the special weight set (see, [17], [16])

Λ = {λα , α ∈ Aε} ,

where for 0 < ε < 1 we define the set

Aε = {1, . . . , k∗} × {t1, . . . , tm} ,

with ti = iε, m = [1/ε2], εn = 1/ ln(n+ 2) and k∗n =
√

ln(n+ 2).
For any α = (β, t) ∈ Aε we will take the weight vector λα = (λα(1), . . . , λα(n))′ of the form

λα(j) =

{
1 , for 1 ≤ j ≤ j0 ,(

1− (j/ωα)β
)
+
, for j0 < j ≤ n ,
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where
j0 = j0(α) = [ωα/ lnn] + 1 , ωα = (Aβ t n)1/(2β+1)

and

Aβ =
(b− a)2β+1(β + 1)(2β + 1)

π2ββ
.

For the procedure (8) we show the following oracle inequality.

Theorem 1. Assume that S ∈ ΣL,N . Then for any T ≥ 32 and 0 < ρ < 1/6 the procedure Ŝ∗ satisfies,
the following inequality

R(Ŝ∗, S) ≤ (1 + ρ)2(1 + 4ρ)
1− 6ρ

min
λ∈Λ
R(Ŝλ, S) +

BT (ρ)
T

, (9)

where for any γ > 0

lim
T→∞

BT (ρ)
T γ

= 0 .

In the following section by making use of the inequality (9) we show that the procedure (8) is
asimptotically efficient.

4 Asymptotic efficiency
We define the following functional Sobolev ball

W 0
k,r = {f ∈ Ck

0([a, b]) :
k∑
j=0

‖f (j)‖2 ≤ r} ,

where r > 0 and k ≥ 1 are some unknown parameters, Ck
0([a, b]) is the set of k times differentiable

functions f : R→ R such that

f (i)(x) = 0 for 0 ≤ i ≤ k − 1 and x /∈ [a, b] .

Let S0 be some fixed k + 1 times continuously differentiable function from ΣL/2,N . We set

Θk,r = {S = S0 + f , f ∈W 0
k,r ∩ LipL/2(R)} .

In order to formulate our asymptotic results we define the following normalizing coefficient

γ(S) = ((1 + 2k)r)1/(2k+1)

(
J(S)k
π(k + 1)

)2k/(2k+1)

(10)

with

J(S) =
∫ b

a

1
qS(u)

du .

It is well known that for any S ∈ Θk,r the optimal rate of convergence is T−2k/(2k+1). Now we state the
following asymptotic upper bound for the quadratic risk of the estimator Ŝ∗.

Theorem 2. The quadratic risk (2) for sequential procedure Ŝ∗ has the following asymptotic upper
bound

lim sup
T→∞

T 2k/(2k+1) sup
S∈Θk,r

R(Ŝ∗, S)
γ(S)

≤ 1 . (11)

Moreover, we show that this upper bound is sharp in the following sense.

Theorem 3.

lim inf
T→∞

infbS T 2k/(2k+1) sup
S∈Θk,r

R(Ŝ, S)
γ(S)

≥ 1 . (12)

Note that the inequalities (11) and (12) imply that the function (10) is the Pinsker constant in this
case (see Pinsker (1981)).
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