
Delay times of sequential procedures
for multiple time series regression models

Alexander Aue1, Lajos Horváth2, and Matthew Reimherr3
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Abstract. We consider a multiple regression model in which the explanatory variables are specified by time series. To
sequentially test for the stability of the regression parameters in time, we introduce a detector which is based on the first excess
time of a CUSUM-type statistic over a suitably constructed threshold function. The aim of this paper is to study the delay
time associated with this detector. As our main result, we derive the limit distribution of the delay time and provide thereby a
theory that extends the benchmark average run length concept utilized in most of the sequential monitoring literature.
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1 Introduction

Testing time series data for structural stability is undoubtedly of great importance because estimation
and forecast techniques, carried out under the false assumption of stationarity, will inadvertently lead to
inaccurate conclusions. Statisticians and econometricians assess the structure of a given set of time series
observations with a variety of retrospective and sequential tools. For the retrospective case, testing and
change-point estimation procedures have been widely studied and are well established in the literature.
Important contributions include Andrews (1993), Hansen (2001), Perron (1989), and Stock and Watson
(1996), among others. The interested reader is also referred to the monographs Brodsky and Darkhovsky
(1993), and Csörgő and Horváth (1997) which comprise a broad range of methods relevant for the
retrospective analysis. Sequential procedures seem to be more useful when a decision has to be made
on-line, as new data become available. Major developments in sequential change-point detection and
diagnosis were initiated by the pioneering works of Shewhart (1931), Page (1954) and Quandt (1958,
1960) on quality control charts which have since resulted in a rich theory with widespread applications.
For a detailed review we refer to Lai (2001). We follow and extend here the approach taken in Chu et al.
(1996). This setting will be described in Section 2, while the main result will be motivated, stated and
discussed in Section 3.

2 The multiple time series regression setting

Let {yi} be the sequence of random variables to be observed and assume that they follow the multiple
linear regression model

yi = xTi βi + εi, i = 1, 2, . . . ,
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where {xi = (xi1, . . . , xip)T } is a sequence of p-dimensional random (or deterministic) explanatory
variables, {βi = (βi1, . . . , βip)T } are p-dimensional parameter vectors, and {εi} is an innovation se-
quence. The superscript T is used to signify transposition.

Since in this paper we are interested in sequentially monitoring whether or not the regression param-
eter vectors {βi} remain stable over time, we require (see Assumption A of Chu et al., 1996) that there
is a non-contaminated reference frame of m observations for which

βi = β0, i = 1, . . . ,m. (1)

Condition (1) is referred to as a training period in the literature. Because the model parameters remain
stable until observation m, (1) can be used for comparisons with future observations to find out if the
stability assumption still holds. Thus, we shall introduce in Section 3 a monitoring procedure to discrim-
inate between the no change in the regression parameters null hypothesis

H0 : βi = β0, i = m+ 1,m+ 2, . . . , (2)

and the break at an unknown time alternative hypothesis

HA : There is a k∗ ≥ 1 such that βi = β0, i = m+ 1, . . . ,m+ k∗ − 1, (3)

but βi = βA, i = m+ k∗,m+ k∗ + 1, . . . ,

where β0 6= βA. The parameter k∗ is called the change-point and is assumed unknown, as are the
regression parameters β0 and βA.

A standard approach in the linear models methodology is to consider the values of the regressors to
be known and, hence, to study a fixed realization. In the present paper, we allow the {xi} to be modeled
by time series. To obtain the main result, we will then condition on a typical outcome of the {xi}.
Particularly, we shall assume that the following conditions are satisfied. Let

{xi} be a stationary sequence; (4)

and assume that there are a p-dimensional vector d = (d1, . . . , dp)T and K > 0, µ > 2 such that, as
k →∞,

E
∣∣∣ k∑
i=1

(xij − dj)
∣∣∣µ ≤ Kkµ/2, j = 1, . . . , p. (5)

Condition (5) is a novel assumption that has not been used in the econometrics literature before. It is
easily verifiable both in theory and in practice as it is, in turn, virtually always implied by moment
conditions. With (5) we require of the explanatory (time series) variables only that their centered partial
sum fluctuations are controlled individually for each coordinate. No additional conditions regulating the
inter-coordinate behavior of the vector xi need to be imposed and dependence between the coordinates is
therefore explicitly allowed. Condition (5) replaces the standard but more restrictive assumption which
requires that k−1

∑k
i=1 xixTi converges in probability or almost surely to a non-stochastic, positive

definite matrix as k →∞ (see condition (M2) in Leisch et al., 2000, and condition (A2) in Zeileis et al.,
2005; while Horváth et al., 2004, use an even stronger condition). Conditions (4) and (5) are satisfied for
large classes of time series relevant in theory and applications, see Aue et al. (2009) for details.

In the remainder of this section we detail the assumptions on the innovation sequence {εi}. It is
required that ∣∣∣∣∣

m∑
i=1

εi

∣∣∣∣∣ = OP (√m) (m→∞), (6)

and that there are a sequence of Brownian motions {Wm(t) : t ≥ 0} and a constant σ > 0 such that, for
some ν > 2,

sup
t≥1/m

1
(mt)1/ν

∣∣∣∣∣
m+mt∑
i=m+1

εi − σWm(mt)

∣∣∣∣∣ = OP (1) (m→∞). (7)
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Assumption (6) is similar to the central limit theorem but weaker, since only the order of the partial
sums containing the first m innovations is specified and not the convergence in distribution to the nor-
mal law. Assumption (7) is a uniform weak invariance principle. Observe that the parameter σ can be
interpreted as the asymptotic standard deviation of k−1/2

∑k
i=1 εi. For a discussion of specific sequences

{εi} satisfying conditions (6) and (7) we refer to Aue and Horváth (2004).
Finally, we do not allow for interaction between the two sequences of random variables and therefore

make the standard assumption that

{xi} and {εi} are independent. (8)

3 The stopping rule and its limit distribution
To sequentially test the null hypothesis and its alternative introduced in the previous section, we need to
define a stopping rule. Usually, these monitoring procedures are given in terms of first excess times of
suitably constructed detectors and threshold functions (see Chu et al., 1996; Horváth et al., 2004; and
Aue et al., 2006, among others).

For i ≥ 1, define the model residuals ε̂i = yi−xTi β̂m, where β̂m denotes the least squares estimator
for β0 based on the first m observations. Here we will work with the stopping time

τm = inf{k ≥ 1: |Γm(k)| ≥ gm(k)} (9)

(using the convention inf ∅ =∞), where

Γm(k) =
m+k∑
i=m+1

ε̂i and gm(k) = q
√
m

(
1 +

k

m

)(
k

m+ k

)γ
(10)

with q = q(α) > 0 and 0 ≤ γ < 1/2. The quantity Γm(k) is referred to as a detector. The model
residuals {ε̂i} have under H0 a probabilistic structure similar to the innovations {εi}. Assumption (7)
consequently implies that the detector Γm(k) exhibits fluctuations akin to those of the Brownian motion
Wm(k) if the {βi} are indeed stable over time. This relates the stopping time τm to crossing probabilities
of Brownian motions over curved boundary functions, and motivates thus the choice of gm(k) in the
present context. One can in fact show that τm is asymptotically equivalent to the stopping time τ =
inf{t ∈ [0, 1] : W (t) ≥ q∗tγ}, where {W (t) : t ∈ [0, 1]} denotes a Brownian motion and q∗ = q∗(α) a
suitably chosen constant linked to q = q(α) in the following way. To ensure a pre-specified asymptotic
level α for the sequential procedure, a practitioner can pick q = σq∗ such that

P

{
sup

0≤t≤1

|W (t)|
tγ

> q∗
}

= α under H0. (11)

The boundary functions gm(k) are chosen due to the simple form they induce for the limit stopping
rule τ . They depend, by construction, on a tuning parameter γ ∈ [0, 1/2) that flexibly adjusts the sensi-
tivity of the testing procedure. Note that the right endpoint 1/2 is excluded, since H0 would else, due to
the law of the iterated logarithm for Brownian motions at zero, be rejected with probability one regard-
less whether it is true or not. Tabulated critical values q∗ for various selections of α and γ are provided in
Table 1 of Horváth et al. (2004). Alternative forms of boundary functions gm(k) may be entertained as
well. The interested reader is in this regard referred to Andreou and Ghysels (2006) and the references
cited in this paper. Other sequential procedures for the same testing problem were introduced in Leisch
et al. (2000), Horváth et al. (2004), Zeileis et al. (2005), and Aue et al. (2006).

The main aim of this exposition is to derive the limit distribution of τm in the presence of a break
in the sequence {βi}. This will require additional assumptions on the model parameters. Denote by
∆m = βA − β0 the difference in the regression parameters before and after the change-point k∗. Since
we are working under HA, ∆m cannot be the zero vector. Note that we have explicitly allowed for ∆m

to depend on m, which, in turn, implies that β0 and βA depend on m as well. For notational simplicity
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this is suppressed. To guarantee that the change can be identified by τm we need to relate ∆m also to the
mean vector d of the explanatory variables {xi}. Let δm = dT∆m. It is assumed that there are positive
constants C1, C2, and C3 ≤ C4 such that, as m→∞,

C1

logm
≤ |∆m| ≤ C2,

C1

logm
≤ |δm| ≤ C2 and C3 ≤

|δm|
|∆m|

≤ C4, (12)

where | · | denotes the maximum norm of vectors. In (12), we allow δm to be constant as well as to tend
to zero subject to a slow convergence. These conditions emulate corresponding assumptions commonly
made in the retrospective change analysis, where limit theorems are often given with reference to fixed
changes (the order of magnitude of the parameter differences before and after the breakpoint does not
change with increasing sample size) and shrinking changes (the order of magnitude disappears in the
long-run). The latter are particularly important if one aims at deriving the limit distribution for the
change-point estimator (see Csörgő and Horváth, 1997). In the sequential setting, we show that both
fixed and shrinking changes can be handled simultaneously as long as (12) is satisfied. The lower bounds
for |∆m| and |δm| in (12) include the term logm in the denominator to control for the fluctuations of
the time series regressors. In the standard case of constant regressors, the additional log term may be
dropped.

The final assumption ensures that the change-point k∗ occurs shortly after the end of the training
period: as m→∞,

k∗ = O
(
mθ
)

for some 0 ≤ θ < 1− 2γ
4(1− γ)

. (13)

Condition (13) is not motivated by the fact that CUSUM-type detectors perform better than other avail-
able procedures in the case of early changes but is rather a technical necessity imposed to ensure that the
limit result of Theorem 1 holds in fact true. Given that (13) is required, the CUSUM procedure is also
the optimal choice in terms of minimized empirical detection time.

The assumptions imposed are sufficient to find normalizing sequences {am} and {bm} such that
the standardized variables τ0

m = (τm − am)/bm converge in distribution to a standard normal random
variable, whose distribution function is abbreviated by Φ(z).

Theorem 1. If conditions (1), (3)–(5), (6)–(8), (12) and (13) hold, and if µ > 8(1 − γ)/(1 − 2γ) then
as m→∞,

lim
m→∞

P{τm ≤ am + bmz} = Φ(z)

for all real z, where

am =

(
c1−γm − 1

cγm|δm|

m+cm∑
i=m+k∗

(xi − d)T∆m

)1/(1−γ)

,

bm =
√
cmσ

(1− γ)|δm|

and cm = (qm1/2−γ/|δm|)1/(1−γ) with q = σq∗(α) determined by (11).

Theorem 1 establishes the central limit theorem for a suitably standardized version of τm. The quan-
tities {am} are consequently the centering constants which, by assumption (13) on k∗, can also conve-
niently be interpreted as the average delay time of the sequential procedure. If the regressors {xi} are
constant, am = cm, whereas in the time series regressor case, an additional correction term is to be
included in the definition of am. This implies that generally am 6= cm. Note, however, that

am
cm

P−→ 1 (m→∞),

where P→ signifies convergence in probability, and that therefore the influence of the time series regressor
fluctuations dampens out in the long-run. Their impact to the asymptotic is solely given by their mean
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component d which enters through the term δm = dT∆m used in the definition of cm. Moreover, bm
represents the standard deviation, determining the order of magnitude of the fluctuations around τm−am.

Even further, we one can verify that τm satisfies the weak law of large numbers with normalizing
sequence cm, that is,

τm
am

P−→ 1 and
τm
cm

P−→ 1 (m→∞).

The standard approach in sequential analysis is to determine the average run length (ARL) of the
monitoring procedures under consideration only. Theorem 1 offers more. For a fixed m, am can be
interpreted as approximate ARL with bm giving the average fluctuations around this average. But with
the central limit theorem readily available for τm other asymptotic quantiles of interest can easily be
computed. To the best of our knowledge, the first contribution in the literature presenting such a limit
theorem was Aue and Horváth (2004). Their result was stated in the much simpler and less relevant
(univariate) location model which is a special case of Theorem 1.

The idea behind the proof of Theorem 1 can be explained as follows. By definition of the stopping
rule τm, the monitoring procedure will not have been terminated by time N if and only if the detector
Γm(k) has remained below the threshold function gm(k) for all time indices k ≤ N . Consequently, the
probabilities of these two events must be the same, that is

P{τm > N} = P

{
max

1≤k≤N

|Γm(k)|
gm(k)

≤ 1
}
. (14)

The main goal is now to define an appropriate sequence N = Nm(z), related to the sequences {am},
{bm} and {cm}, so that the convergence in distribution result of Theorem 1 follows. That is, we have to
prove that, with τ0

m = (τm − am)/bm,

lim
m→∞

P{τm > Nm(z)} = lim
m→∞

P{τ0
m > −z} = 1− Φ(−z) = Φ(z).

holds for all real z.
Equation (14) relates exceedance probabilities of τm to probabilities of a maximum over a weighted

random partial sum. It is somewhat surprising and unusual that the resulting asymptotic in Theorem 1
is normal and not of extreme value type. The reason for this fact is that, asymptotically, only those time
indices close to N will contribute to the limit and that therefore Γm(N)/gm(N) contains all relevant
information.

There are various other lines of research established in the literature dealing with structural breaks.
In contrast to our approach which gives a change-point the role of an additional parameter present under
the alternative hypothesis, Pesaran et al. (2006), and Pesaran and Timmerman (2007) use a Bayesian
framework for forecasting in a Markov switching model utilizing and extending the methodologies de-
veloped in Hamilton (1988), Chib (1998) and others. In assuming more structure on the timing and
magnitude of breaks via so-called meta distributions, the derivation of a delay time as in our main result
becomes obsolete and makes the two approaches incompatible.
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