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Abstract. In this contribution we study the limiting distribution of the stopping time of a setigigmrocedure for monitoring
jump changes in linear models. Our main result shows that stopping tinsesl o weighted ordinary residuals have an
asymptotic normal distribution, when the size of a training sample tends taynfin

1 Introduction

In this paper, we investigate the limiting behaviour of a stopping titpgasm — oo), which has
been studied by Hikova and Koubko# (2005) as a sequential procedure for monitoring jump changes
in linear models. Such procedures are motivated by a wide range of djpigae.g., in economics
and finance, bio- and geosciences, quality control or intensive camedicine, to mention just a few.
In contrast to earlier work of Chu et al. (1996), Hatl et al. (2004), Aue et al. (2006), who discussed
sequential CUSUM type test statistics based on the sumslwfary residuals, the procedure of Bkpva
and Koubkowa (2005) makes use @feighted ordinaryresiduals and is able to detect alternatives which
cannot be detected otherwise (confer the simulation results$kd¥a and Koubko&, 2005, Section 3).

We assume that the data follow the linear regression model

Y, =XIBi+e, 1<i<oo, 1)

with possible changes in thedimensional regression parametgrs 1 < ¢ < oo. Stability of the
historical data is requested by the so-calethcontamination condition

By = ... =8,

The observationd?, . ..,Y,, represent the training period (historical dateX;, 1 < i < oo} is a
sequence op-dimensional regression vectors (random or nonrandom),{apd < i < oo} are the
random errors. It is assumed that the data are arriving sequentially.

Detection of a change in the linear model is formulated as a sequential hgottgting problem,
where the null hypothesiH|, corresponds to the model without any change, i.e.,

HOZIBi:/807 1SZ<OO)
and the alternative hypothedig, reflects that the model changes at some unknown time-point, that is,

H 4 : there existg™ > 1 suchthai3;, = 8,, 1 <i<m+ k", but
,312,30+Am,m+k*§z<oo, Am?’é(),

whereg, , A,, andk* are unknown parameters.
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In the following we assume thad,,, changes withn (typically A,,, — 0 at some rate ag. — oo,
see details below).

For the detection of changes in the above model, Chu et al. (1996) dededeguential procedures
under the paradigm that data can be observed cheaply (at no coshiadrigere is a training period of
sizem, which can be used for calibration of the model with the goal of an on-line mamitof the data
afterwards. To this end, they suggested CUSUM type test statistics cattftriane recursive residuals
as well as a fluctuation test based on differences between estimates edithesion coefficients. Their
approach has been generalized and extended in various directiossh le¢ al. (2000), for example,
suggested a so-called generalized fluctuation test, whereas Zeilei2€0&]) (eveloped MOSUM type
test statistics based on observations taken from a moving window overtthe da

CUSUM type test statistics based on ordinary and on recursive resttaasfurther been investi-
gated in Honath et al. (2004) assuming independent, identically distributed (i.i.d.) ewbite Aue et
al. (2006) generalized this setting to allow for a large class of dependens.eBerkes et al. (2004) dis-
cussed similar problems for the change detection of GARCH) processes, and Blkowa et al. (2007,
2008a) studied the testing of stability in autoregressive time series (see @d&ova and Koubko@
(2006)).

In what follows we are interested in deriving the limiting distribution of the stogpime in the
Huskowa and Koubko@ (2005) sequential procedure. Such results, to the best of ourdahgey have
been initiated by Aue (2004) and Aue and Hattv (2004), who considered a “change in the mean”
model, and they have further been investigated by Kvesic (2006) anét/ale(2008, 2009) for various
CUSUM type test statistics in linear models. For a recent result concernd§ WM type sequential
procedures confer also Hdxth et al. (2008).

Our main result below extends the above works and proves the asymptatialitprof the delay
time of CUSUM type test statistics for monitoring jump changes in linear modelsd lmaseeighted
residuals.

2 Mainresults

We investigate the limiting distribution of the stopping timg defined as follows:
Tm = inf{k >1: Q(m, k) > cqg(k:/m)}, 2

with inf () := +o00. Here,Q(m, k) are CUSUM type test statistics (detectors) based on the observations
Yi,..., Yok, k= 1,2,..., the functiong(t), t € (0,00), is a (critical) boundary function, and the
constant = ¢(«) is chosen such that, fer € (0, 1) fixed,

lim PHO(Tm < oo) = a, lim Py, (Tm < oo) = 1. 3)

m—0o0 m—00

For the sake of convenience we introduce the notation
& =YX B, 4)

whereBm is the least squares estimator of the regression parareter 3, , based on the firstn
observations, i.e.,

m -1 m
B = (Z X@-X?> S X (5)
=1 =1

Moreover,
m+k T m+k
Vim, k) = ( 3 Xia) c,;}( 3 Xia-), (6)
i=m—+1 i=m+1

k
Cr=) X:X[, k=12, (7)
=1
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and the detector, based o, . . ., Y, 1, is chosen as
Q(m.k) = V(m.k)/55,, )
wheres?, is an estimator of2, calculated froni, . .., Y;, , such that
1-2
~2 2 _ -3 g
52, —0?=0p(m™), Bz 9)
") 4(1—7)

HuSkova and Koubko# (2005) provided an approximation= ¢,(«, y) of the critical value: via the
limiting behaviour of the stopping rule under the “no change” null hypothesisunder the following
assumptions:

(A.1) {e;}32, is a sequence of independent, identically distributed (i.i.d.) random varisindesthat
Ee1 =0,0 < Vare; = 02 < oo andE |e; |V < oo for somev > 2;

(A.2) {XT} <, is a strictly stationary sequence pfdimensional vectorsX? = (1, Xy, ...  Xpi),
which is independent ofe; }2°

i=1>

(A.3) there exist a positive definite mat® and a constartt < n < 1 such that

NS xT 1-n _
lg}%xm‘ ZXZXi C(k; = 0p(1),

where| - | denotes the maximum norm of vectors and matrices.

The boundary functiong has been chosen from the following class of functions:

(B.1) q(t) =¢,(t) = (1+1t)(t/(t+1))7, t € (0,00), wherevy is a tuning constant taking values from
the interval[0, min{1,1 — n}).

Here we recall the main result of Bkova and Koubko& (2005).

Theorem 1. LetY:, Y5, ... follow the mode(l) and let assumption@\.1) — (A.3)and(B.1) be satisfied.
Then, undeiH , for anyx € R,

P 2(¢
m—0o0 1<k<o0 O—mq'y(k/m) 0<t<1 =

where{W;(t); 0 <t <1},i=1,...,p, are independent standard Wiener processes.

HuSkova and Koubko#@ (2006) also established the limiting result (10) in model (1) wkth =
(Yi—1,...,Yi—p)T, i.e., in case that the observatiohisfollow an autoregressive process (see also Ex-
ample 4 below). Moreover, combining the proof of Theorem 1 irskéna and Koubko& (2005) and
Lemma 4.5 in H8kowa at al. (2007), we can prove (10) under model (1), in wKi&he; } is a martingale
difference sequence. See, e.g., Examples 1-3 in the next section.

The main theorem of our paper is proved under the following assumptiow$jah we assume that

m — 00.

(C) k* = O(m?) with 0 <6 < 21(1 2”) (early changes);
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(C2) Z;il Xiei = Op(\/m);

(C.3) maxi<p<r,, {|S0HF Xiei2/k*'} = Op(Ky »7) foranyK,, = o(m), and

maxg, <k<K, {‘ Z?lt;fi%-&-l Xiez-]2} = Op(Km—km> for anyK = O(m) with Km—km — 00;
(C.4) there are positive definite (symmetric) matri€ésC™ and a constanj > % such that
|Cy — mC|/m" = Op(1)

_ — kC*| k" =
k*g]lgzg(m]Cerk C,, — kC*|/k Op(1)

forany K,, = o(m), but K,,/k* — oc;

(C.5) it holds that
9 (1-27)(2n—1) 9
m|An,|° — oo, but m 322 |A,[°—0

whereA,, = 83,1 — Bo;

(C.6) forany K,,, = o(m), but K,,, /Jk* — o0, (Zﬁﬁfi"{ Xiei)TC”C*Am has an asymptotic nor-

mal distribution with mean zero and variangg = o2K,, AL c*C~'Cc*C~'C*A,, , i.e.

m+Km T b
’U;}( Z Xi€i> C_IC*AmHN(O,l),
i=m-+1

whereN (0, 1) is a standard normal random variable.

Theorem 2. LetY, Y5, ... follow the mode(l) and let assumption&.1) — (C.6)and(B.1) be satisfied.
Then, undeiH 4 , for anyz € R,

lim P(Tm <y, + dm \/@x) = &(x), (12)

m—0o0

where 9

o m< co )1/(2(1—7))
" mAl c*Cc~'C* A, ’

. \/Aﬁc*c—lc*c—lcmm
S 1-~  Alcrc'cra,,

dm
and® denotes the distribution function of a standaydo0, 1) random variable.

Proof. The proof is based on the fact that under (C.1) — (C.6) and (B.1),

V(m, k)
< = —_ >
P(Tm < Gy + /O iy J:) P(lgr?gﬁm =y q%(k:/m) > C), (12)

whereK,, = K(z,m) = [am + /am dm, ], With [ -] denoting the integer part, and on a proper decom-
position of the statistié’ (m, k). We confer to Hgkowa et al. (2008b) for many details.

Remark 1.The assertion of Theorem 2 remains truerffis replaced by an estimatei?, satisfying
assumption (9).
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3 Examples

There are many models satisfying the assumptions of Theorem 2. Here isfaslishe examples.

Example 1. Let { X;}?°, and{e;}°, be independent sequences such that

() X; = (1, Xo, ..., X)) = (1,X])T, where
{X;TF} are i.i.d random vectors with finite covariance matvixand such tha | X 1|* < oo;

(i) {e;}:2, is a martingale difference sequence, with respect to (w.r.t.) the filtrgtfoh, whereF; =
of{er, t < i}, such thatEe? = o2, Ele;|” < K < oo, for some constants > 2 and K > 0,

andm !> E(e?Fiz1) L 6% asm — oo. [This includes the i.i.d. case as well as ARCH and
GARCH-type stationary sequences.]

In this case, Condition (C.2) follows from the Chebyshev inequality, (C@nfthe Hajek-Renyi in-
equality for martingale differences (see, e.g.5kma et al. (2007), Lemma 4.3). Condition (C.4) holds,
with C = C* = EX X7, as a consequence of the strong law of large numbers (SLLN) for i.i.d.
random vectors and of thediek-Renyi inequality, and (C.6) holds as a consequence of the central limit
theorem (CLT) for martingales. Relation (9) holds witf = L " | €2.

The assertion even remains true, if t{ﬁ(i} are independent, but not necessarily identically dis-
tributed, with zero mean arfg| X ;|* < D < oo for all i and someD > 0, and if, for soméky,, such that
kom m~1=20/CA=M | A, VA=) = 0asm — oo, X1, ..., Xmik,, areiid., withE X, X7 =C
positive definite, andX 4+ k,,,+1, X m-+ko,+2; - - - are i.i.d., withE Xm+k0m+1X£L+k0m+1 = C"* posi-
tive definite.

Example 2. Let {X;} and{e;} be independent sequences such that

(i) X, = (1,X;TF)T, whereX;; = S5° o (vig, i = 1,2,...,5 = 2,...,p (i.e., X;; is alinear
process, e.g. an ARMA process) wifh; } being i.i.d. random variables with zero mean and finite
fourth moment, andv,(j) = c;a*, for some constants; and0 < « < 1 (or ax(j) = O(a*) as
m — oo, for somel < a < 1, uniformly in 5);

(i) {ei}:2, is amartingale difference sequence, that satisfies the same conditionsramdixample 1.

Then{Xe;} are martingale differences w.r.t. the filtrati¢g; }, G, = o{X e, t < i}, which implies
that Conditions (C.2), (C.3), and (C.6) hold true, with= C* = E X ; X7 . Moreover, the first property
in (C.4) follows from the SLLN and martingale properties of linear procegsee Hall and Heyde
(1980)). The second property in (C.4) is a consequence of #jekHRenyi type inequality given in
Kokoszka and Leipus (1998). The variance estimagpican be chosen as in Example 1.

Example 3. Let { X;} and{e;} be independent sequences such that

(i) X; = (1, XZ-T)T, where{Xi} is a sequence of stationary, strongly mixing random vectors of size
—4r/(r —2),r > 2, with E| X ;|"+® < M < oo for somes > 0 andM > 0;
(i) {e;} is a martingale difference sequence as given in Example 1.

Again, Conditions (C.2), (C.3), (C.4), and (C.6) hold true, with= C* = E X X 7. The first part
of Condition (C.4) follows from Hall and Heyde (1980) by using the sangements as in Example 2,
while the second one is a consequence of tagekiRenyi inequality for the strong mixing sequences
{Xi; X —E X Xie }32, (4, k= 2,...,p), which is a modification of results by Bai and Perron (1998),
Lemma A.6, and Qu and Perron (2007) together with the supplement to the kpier bemma A.1
there). The variance estimat@f, can again be chosen as in Example 1.

Example 4.Let {Y;} be a sequence that satisfies model (1) where

() Xi=(Yie1,Yia,....Yi,)T;
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(i) {e;} arei.i.d. random variables with zero mean, variamt¢e- 0 andE |e;|* < oo for somer > 2;
(iii) the parameter@, satisfy

Bi =By 1<i<m-+k",
B, =Bo+An, m+k"<i<oo, A, #0,
whereg) # 0, and all the roots of the polynomiaf — 30 z#~! — ... — 39 are inside the unit circle.
Thus,
YVi=RYia+... +8)Yip+e, 1<i<m+k,
Yi:(ﬂ?JrAT)Yi_l+...+(ﬁ2+AL”)§€_p+ei, m+ k™ <i<oo.

Then{ X e;} is amartingale difference sequence w.r.t. the filtrafiéin}, 7; = o{e;, t < i}. Hence,
Condition (C.2) is satisfied as a consequence of Chebyshev’s ineq(@l&y,follows from Lemma 4.3
in HuSkowa et al. (2007), Condition (C.4) remains true, wth= C* = E X,, X | for any% <n<l1
and anykK,, = O(m\=20/C0-1)|4,,|~1/(1-7)) see H&kowa et al. (2008b) for details. Condition
(C.6) holds as a consequence of a CLT for martingale differencesvaitences? can be replaced by

~9 1 xm =2
O = 7 2oim1 € -
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