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Abstract. In this contribution we study the limiting distribution of the stopping time of a sequential procedure for monitoring
jump changes in linear models. Our main result shows that stopping times based on weighted ordinary residuals have an
asymptotic normal distribution, when the size of a training sample tends to infinity.

1 Introduction

In this paper, we investigate the limiting behaviour of a stopping timeτm (asm → ∞), which has
been studied by Hǔskov́a and Koubkov́a (2005) as a sequential procedure for monitoring jump changes
in linear models. Such procedures are motivated by a wide range of applications, e.g., in economics
and finance, bio- and geosciences, quality control or intensive care inmedicine, to mention just a few.
In contrast to earlier work of Chu et al. (1996), Horváth et al. (2004), Aue et al. (2006), who discussed
sequential CUSUM type test statistics based on the sums ofordinaryresiduals, the procedure of Huškov́a
and Koubkov́a (2005) makes use ofweighted ordinaryresiduals and is able to detect alternatives which
cannot be detected otherwise (confer the simulation results in Huškov́a and Koubkov́a, 2005, Section 3).

We assume that the data follow the linear regression model

Yi = XT
i βi + ei , 1 ≤ i < ∞, (1)

with possible changes in thep-dimensional regression parametersβi , 1 ≤ i < ∞. Stability of the
historical data is requested by the so-callednoncontamination condition

β1 = . . . = βm.

The observationsY1, . . . , Ym represent the training period (historical data),{Xi , 1 ≤ i < ∞} is a
sequence ofp-dimensional regression vectors (random or nonrandom), and{ei, 1 ≤ i < ∞} are the
random errors. It is assumed that the data are arriving sequentially.

Detection of a change in the linear model is formulated as a sequential hypothesis testing problem,
where the null hypothesisH0 corresponds to the model without any change, i.e.,

H0 : βi = β0 , 1 ≤ i < ∞,

and the alternative hypothesisHA reflects that the model changes at some unknown time-point, that is,

HA : there existsk∗ ≥ 1 such thatβi = β0 , 1 ≤ i < m + k∗, but

βi = β0 + ∆m, m + k∗ ≤ i < ∞, ∆m 6= 0,

whereβ0 , ∆m andk∗ are unknown parameters.
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In the following we assume that∆m changes withm (typically ∆m → 0 at some rate asm → ∞,
see details below).

For the detection of changes in the above model, Chu et al. (1996) developed sequential procedures
under the paradigm that data can be observed cheaply (at no cost) andthat there is a training period of
sizem, which can be used for calibration of the model with the goal of an on-line monitoring of the data
afterwards. To this end, they suggested CUSUM type test statistics calculated from recursive residuals
as well as a fluctuation test based on differences between estimates of the regression coefficients. Their
approach has been generalized and extended in various directions. Leisch et al. (2000), for example,
suggested a so-called generalized fluctuation test, whereas Zeileis et al. (2005) developed MOSUM type
test statistics based on observations taken from a moving window over the data.

CUSUM type test statistics based on ordinary and on recursive residualshave further been investi-
gated in Horv́ath et al. (2004) assuming independent, identically distributed (i.i.d.) errors,while Aue et
al. (2006) generalized this setting to allow for a large class of dependent errors. Berkes et al. (2004) dis-
cussed similar problems for the change detection of GARCH(p, q) processes, and Huškov́a et al. (2007,
2008a) studied the testing of stability in autoregressive time series (see also Huškov́a and Koubkov́a
(2006)).

In what follows we are interested in deriving the limiting distribution of the stopping time in the
Huškov́a and Koubkov́a (2005) sequential procedure. Such results, to the best of our knowledge, have
been initiated by Aue (2004) and Aue and Horváth (2004), who considered a “change in the mean”
model, and they have further been investigated by Kvesic (2006) and Aueet al. (2008, 2009) for various
CUSUM type test statistics in linear models. For a recent result concerning MOSUM type sequential
procedures confer also Horváth et al. (2008).

Our main result below extends the above works and proves the asymptotic normality of the delay
time of CUSUM type test statistics for monitoring jump changes in linear models, based on weighted
residuals.

2 Main results

We investigate the limiting distribution of the stopping timeτm defined as follows:

τm = inf{k ≥ 1 : Q(m, k) ≥ c q2
γ(k/m)}, (2)

with inf ∅ := +∞. Here,Q(m, k) are CUSUM type test statistics (detectors) based on the observations
Y1, . . . , Ym+k , k = 1, 2, . . . , the functionq(t), t ∈ (0,∞), is a (critical) boundary function, and the
constantc = c(α) is chosen such that, forα ∈ (0, 1) fixed,

lim
m→∞

PH0

(
τm < ∞

)
= α, lim

m→∞
PHA

(
τm < ∞

)
= 1. (3)

For the sake of convenience we introduce the notation

êi = Yi − XT
i β̂m , (4)

whereβ̂m is the least squares estimator of the regression parameterβ = β0 , based on the firstm
observations, i.e.,

β̂m =

(
m∑

i=1

XiX
T
i

)−1 m∑

i=1

XiYi. (5)

Moreover,

V (m, k) =
( m+k∑

i=m+1

Xiêi

)T
C−1

m

( m+k∑

i=m+1

Xiêi

)
, (6)

Ck =
k∑

i=1

XiX
T
i , k = 1, 2, . . . , (7)
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and the detector, based onY1, . . . , Ym+k, is chosen as

Q(m, k) = V (m, k)/σ̂2
m , (8)

whereσ̂2
m is an estimator ofσ2, calculated fromY1, . . . , Ym , such that

σ̂2
m − σ2 = OP (m−β), β ≥ 1 − 2γ

4(1 − γ)
. (9)

Huškov́a and Koubkov́a (2005) provided an approximationc = ĉp(α, γ) of the critical valuec via the
limiting behaviour of the stopping rule under the “no change” null hypothesisand under the following
assumptions:

(A.1) {ei}∞i=1 is a sequence of independent, identically distributed (i.i.d.) random variablessuch that
E e1 = 0, 0 < Var e1 = σ2 < ∞ andE |e1|ν < ∞ for someν > 2;

(A.2) {XT
i }∞i=1 is a strictly stationary sequence ofp-dimensional vectorsXT

i = (1, X2i, . . . , Xpi),
which is independent of{ei}∞i=1;

(A.3) there exist a positive definite matrixC and a constant0 < η < 1 such that

max
1≤k≤m

∣∣∣
1

k

m∑

i=1

XiX
T
i − C

∣∣∣k1−η = OP (1),

where| · | denotes the maximum norm of vectors and matrices.

The boundary functionsq has been chosen from the following class of functions:

(B.1) q(t) = qγ(t) = (1 + t) (t/(t + 1))γ , t ∈ (0,∞), whereγ is a tuning constant taking values from
the interval

[
0, min{1

2 , 1 − η}
)
.

Here we recall the main result of Huškov́a and Koubkov́a (2005).

Theorem 1. LetY1, Y2, . . . follow the model(1) and let assumptions(A.1) – (A.3)and(B.1)be satisfied.
Then, underH0 , for anyx ∈ R,

lim
m→∞

P

(
sup

1≤k<∞

V (m, k)

σ̂2
mq2

γ(k/m)
≤ x

)
= P

(
sup

0<t≤1

∑p
i=1 W 2

i (t)

t2γ
≤ x

)
, (10)

where{Wi(t); 0 ≤ t ≤ 1}, i = 1, . . . , p, are independent standard Wiener processes.

Huškov́a and Koubkov́a (2006) also established the limiting result (10) in model (1) withXi =
(Yi−1, . . . , Yi−p)

T , i.e., in case that the observationsYi follow an autoregressive process (see also Ex-
ample 4 below). Moreover, combining the proof of Theorem 1 in Huškov́a and Koubkov́a (2005) and
Lemma 4.5 in Hǔskov́a at al. (2007), we can prove (10) under model (1), in which{Xiei} is a martingale
difference sequence. See, e.g., Examples 1–3 in the next section.

The main theorem of our paper is proved under the following assumptions, inwhich we assume that
m → ∞ :

(C.1) k∗ = O(mθ) with 0 < θ < 1−2γ
2(1−γ) (early changes);
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(C.2)
∑m

i=1 Xiei = OP (
√

m);

(C.3) max1≤k≤Km

{
|∑m+k

i=m+1 Xiei|2/k2γ
}

= OP (K1−2γ
m ) for anyKm = o(m), and

maxkm≤k≤Km

{
|∑m+Km

i=m+k+1 Xiei|2
}

= OP (Km−km) for anyKm = o(m) with Km−km → ∞;

(C.4) there are positive definite (symmetric) matricesC, C∗ and a constantη ≥ 1
2 such that

|Cm − mC|/mη = OP (1)

max
k∗≤k≤Km

|Cm+k − Cm − kC∗|/kη = OP (1)

for anyKm = o(m), but Km/k∗ → ∞;

(C.5) it holds that

m |∆m|2 → ∞, but m
(1−2γ)(2η−1)

3−2γ−2η |∆m|2 → 0

where∆m = βm+k∗ − β0 ;

(C.6) for anyKm = o(m), but Km/k∗ → ∞,
( ∑m+Km

i=m+1 Xiei

)T
C−1C∗∆m has an asymptotic nor-

mal distribution with mean zero and variancev2
m = σ2Km∆T

mC∗C−1C∗C−1C∗∆m , i.e.

v−1
m

( m+Km∑

i=m+1

Xiei

)T
C−1C∗∆m

D→N(0, 1),

whereN(0, 1) is a standard normal random variable.

Theorem 2. LetY1, Y2, . . . follow the model(1) and let assumptions(C.1) – (C.6)and(B.1)be satisfied.
Then, underHA , for anyx ∈ R,

lim
m→∞

P
(
τm ≤ am + dm

√
am x

)
= Φ(x), (11)

where
am = m

( c σ2

m∆T
mC∗C−1C∗∆m

)1/(2(1−γ))
,

dm =
σ

1 − γ

√
∆T

mC∗C−1C∗C−1C∗∆m

∆T
mC∗C−1C∗∆m

,

andΦ denotes the distribution function of a standardN(0, 1) random variable.

Proof. The proof is based on the fact that under (C.1) – (C.6) and (B.1),

P
(
τm ≤ am +

√
am dm x

)
= P

(
max

1≤k≤Km

V (m, k)

σ̂2
m q2

γ(k/m)
≥ c

)
, (12)

whereKm = K(x, m) = [am +
√

am dm x], with [ · ] denoting the integer part, and on a proper decom-
position of the statisticV (m, k). We confer to Hǔskov́a et al. (2008b) for many details.

Remark 1.The assertion of Theorem 2 remains true ifσ2 is replaced by an estimator̂σ2
m satisfying

assumption (9).
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3 Examples

There are many models satisfying the assumptions of Theorem 2. Here is a listof some examples.

Example 1. Let {Xi}∞i=1 and{ei}∞i=1 be independent sequences such that

(i) Xi = (1, Xi2, . . . , Xip)
T = (1, X̃

T
i )T , where

{X̃T
i } are i.i.d random vectors with finite covariance matrixV and such thatE |X̃1|4 < ∞;

(ii) {ei}∞i=1 is a martingale difference sequence, with respect to (w.r.t.) the filtration{Fi}, whereFi =
σ{et, t ≤ i}, such thatE e2

i = σ2, E |ei|ν ≤ K < ∞, for some constantsν > 2 andK > 0,

andm−1
∑m

i=1 E (e2
i |Fi−1)

P→σ2 asm → ∞. [This includes the i.i.d. case as well as ARCH and
GARCH-type stationary sequences.]

In this case, Condition (C.2) follows from the Chebyshev inequality, (C.3) from the H́ajek-Ŕenyi in-
equality for martingale differences (see, e.g., Huškov́a et al. (2007), Lemma 4.3). Condition (C.4) holds,
with C = C∗ = E X1X

T
1 , as a consequence of the strong law of large numbers (SLLN) for i.i.d.

random vectors and of the Hájek-Ŕenyi inequality, and (C.6) holds as a consequence of the central limit
theorem (CLT) for martingales. Relation (9) holds withσ̂ 2

m = 1
m

∑m
i=1 ê 2

i .

The assertion even remains true, if the{X̃i} are independent, but not necessarily identically dis-
tributed, with zero mean andE|X̃i|4 ≤ D < ∞ for all i and someD > 0, and if, for somek0m such that
k0m m−(1−2γ)/(2(1−γ))|∆m|1/(1−γ) → 0 asm → ∞, X1, . . . ,Xm+k0m

are i.i.d., withE X1X
T
1 = C

positive definite, andXm+k0m+1, Xm+k0m+2, . . . are i.i.d., withE Xm+k0m+1X
T
m+k0m+1 = C∗ posi-

tive definite.

Example 2. Let {Xi} and{ei} be independent sequences such that

(i) Xi =
(
1, X̃

T
i

)T
, whereX̃ij =

∑∞
k=0 αk(j)vi−k, i = 1, 2, . . . , j = 2, . . . , p (i.e., X̃ij is a linear

process, e.g. an ARMA process) with{vi} being i.i.d. random variables with zero mean and finite
fourth moment, andαk(j) = cjα

k, for some constantscj and0 < α < 1 (or αk(j) = O(αk) as
m → ∞, for some0 < α < 1, uniformly in j);

(ii) {ei}∞i=1 is a martingale difference sequence, that satisfies the same conditions as given in Example 1.

Then{Xiei} are martingale differences w.r.t. the filtration{Gi}, Gi = σ{Xtet, t ≤ i}, which implies
that Conditions (C.2), (C.3), and (C.6) hold true, withC = C∗ = E X1X

T
1 . Moreover, the first property

in (C.4) follows from the SLLN and martingale properties of linear processes (see Hall and Heyde
(1980)). The second property in (C.4) is a consequence of the Hájek-Ŕenyi type inequality given in
Kokoszka and Leipus (1998). The variance estimatorσ̂ 2

m can be chosen as in Example 1.

Example 3. Let {Xi} and{ei} be independent sequences such that

(i) Xi = (1, X̃
T
i )T , where{X̃i} is a sequence of stationary, strongly mixing random vectors of size

−4r/(r − 2), r > 2, with E|X̃1|r+δ ≤ M < ∞ for someδ > 0 andM > 0;
(ii) {ei} is a martingale difference sequence as given in Example 1.

Again, Conditions (C.2), (C.3), (C.4), and (C.6) hold true, withC = C∗ = E X1X
T
1 . The first part

of Condition (C.4) follows from Hall and Heyde (1980) by using the same arguments as in Example 2,
while the second one is a consequence of the Hájek-Ŕenyi inequality for the strong mixing sequences
{XijXik−E XijXik}∞i=1 (j, k = 2, . . . , p), which is a modification of results by Bai and Perron (1998),
Lemma A.6, and Qu and Perron (2007) together with the supplement to the latter paper (Lemma A.1
there). The variance estimatorσ̂ 2

m can again be chosen as in Example 1.

Example 4.Let {Yi} be a sequence that satisfies model (1) where

(i) Xi = (Yi−1, Yi−2, . . . , Yi−p)
T ;
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(ii) {ei} are i.i.d. random variables with zero mean, varianceσ2 > 0 andE |ei|ν < ∞ for someν > 2;
(iii) the parametersβi satisfy

βi = β0 , 1 ≤ i < m + k∗,

βi = β0 + ∆m , m + k∗ ≤ i < ∞, ∆m 6= 0,

whereβ0
p 6= 0, and all the roots of the polynomialzp − β0

1 zp−1 − . . .− β0
p are inside the unit circle.

Thus,

Yi = β0
1 Yi−1 + . . . + β0

p Yi−p + ei , 1 ≤ i < m + k∗,

Yi = (β0
1 + ∆m

1 )Yi−1 + . . . + (β0
p + ∆m

p )Yi−p + ei , m + k∗ ≤ i < ∞.

Then{Xiei} is a martingale difference sequence w.r.t. the filtration{Fi},Fi = σ{et, t ≤ i}. Hence,
Condition (C.2) is satisfied as a consequence of Chebyshev’s inequality,(C.3) follows from Lemma 4.3
in Huškov́a et al. (2007), Condition (C.4) remains true, withC = C∗ = E XmXT

m, for any 3
4 < η < 1

and anyKm = O(m(1−2γ)/(2(1−γ))|∆m|−1/(1−γ)), see Hǔskov́a et al. (2008b) for details. Condition
(C.6) holds as a consequence of a CLT for martingale differences. Thevarianceσ2 can be replaced by
σ̂ 2

m = 1
m

∑m
i=1 ê 2

i .
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