Bootstrapping Sequential Change-Point Tests
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Abstract. Frequently, in change-point analysis the calculation of critical values is based on distributional asymptotics of the
test statistic under the null hypothesis. Since convergence is often rather slow, bootstrapping methods to obtain critical values
promise better small sample behavior. We will discuss several approaches to bootstrapping in a sequential context, where new
data arrives steadily which can improve the bootstrap approximation. Taking these new samples into account, however, results
in critical values that are not constant through time. This leads to some additional theoretic problems and the practical question
of how to improve computation time for the bootstrap critical values.
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1 Introduction

For many testing procedures in change-point analysis the calculation of critical values is based on the
limit behavior of the test statistic under the null hypothesis. However, the convergence to the limit distri-
bution of the test statistic is frequently rather slow, in other cases the explicit form is unknown. For time
series models it can also happen that the limit distribution does not take the small sample dependency
structure sufficiently into account. Therefore permutation and bootstrap tests have been developed.

In change-point analysis this approach was first suggested by Antoch and HuSkova (2001) and later
pursued by others (for a recent survey confer HuSkova, 2004).

All of those papers, however, deal with a posteriori tests. In many situations sequential or on-line
monitoring tests are much more realistic, where data arrive steadily and with each new observation the
question arises whether the model is still capable of explaining the data. Critical values in this setting are
also frequently based on asymptotics. Additionally to the problems of a-posteriori tests the asymptotics
usually assume that the monitoring goes on for an infinite time horizon. In many situations it is much
more realistic to monitor data only for a finite time horizon (maybe as long or twice as long as the historic
data set, on which the preliminary assumptions are based). If the calculation of the critical values is based
on an infinite observation period but in fact it is finite, one necessarily looses some power.

It is not obvious how best to do bootstrapping in a sequential setting. New data arrive steadily,
so we could use these new observations in the bootstrap and hopefully improve the estimate of the
critical values. From a practical point of view this is computationally expensive, so one might think
of alternatives, which are less expensive and still good enough. From a theoretical point of view this
means that we have new critical values with each incoming observation, so the question is whether this
procedure remains consistent. The literature on bootstrapping methods for sequential tests is very scarce.
Steland (2006) used a bootstrap in sequential testing of the unit-root problem.

The aim is to examine and compare different bootstrap procedures for sequential change-point tests.
To this end we use the same model as Antoch and HuSkova (2001) when first considering permutation
tests for change-point analysis but we use it in a sequential setting and discuss some possible extensions
to linear regression models later on. We consider the following mean change problem. Let

X (i) = p(3) + (@), )
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where {e(7) : i > 1} is a sequence of i.i.d. random variables with Es(1) = 0, 0 < E|e(1)]” < oo for
some v > 2. We assume that we have observed a historic data set of length m, where no change has
occurred, i.e.

p(i) = po, 1<i<m. )
Now, we are interested in monitoring the future incoming observations sequentially for a change in the
mean, i.e. we want to test the null hypothesis

Hy : Au(l) = po, ©>m,
against the alternative

H; : there exists k* > 0 such that (i) = po, m <i <m+ k",
but u(i) = po+d, i >m+k*, d#0.

The simplest CUSUM-type monitoring statistic is given by

Zm<z<m (Z) o
I'(m, k)(X(1),X(2),...,X(m+k)) = ‘ +k< 2

We reject the null hypothesis at

(m) inf{k >1: 1I'(m,k) > c},
T(m) = m
oo, IfLI(mk)<e¢ k=12,...,N(m),

for

62 =52(X(1),...,X(m)) = —— D (X(i) - Xm)?
=1

and where ¢ is chosen in such a way that we control the false alarm rate, i.e. that under the null hypothesis
lim P(r(m) < 00) = «
m—0o0

for some given level 0 < o < 1. Under a large class of alternatives the limit converges to 1.

2 Bootstrapping methodsin a sequential setting

The goal is to find a suitable bootstrap method to approximate the critical value c. In all cases we will
use a studentized bootstrap because it has shown to work best.

For the bootstrap we need that N (m) is finite. However, the bootstrap procedures are also asymptot-
ically correct for an infinite time horizon if N(m)/m — oc.

First we discuss three possible bootstraps that take different observations into account.

Historic Bootstrap B.1

The simplest idea is to use a bootstrap only based on the historic data set X (1), ..., X (m). Precisely we
use the bootstrap sample X (V*(i) = X (U, (7)), i = 1,...,m + N(m), where {U,,(-)} are i.i.d. (and
independent of X (-)) with P(U,,(1) = k) = 1/m, k = 1,...,m. Then, we calculate the critical value
c,%) based on the conditional distribution of the studentized statistic

D (m, )XW (1), ..., X% (m + k))
max —
1<E<N(m) T (XW*(1), ..., XU*(m))
This bootstrap yields an asymptotic consistent test in the sense that

1
lim Py, (A— sup  I'(m,k) > cn%)) = q,

m—00 Om 1<k<N(m)

1
lim Py, (A— sup  I'(m,k) > cn%)) =1

m—00 Om 1<k<N(m)
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for a large class of alternatives.
The simulations below show that it holds the level much better than the test based on asymptotic
critical values at least for small m but that we loose some power.

Bootstrap B.2

The second bootstrap uses all data available up to this point. This means that the critical value now
depends on the time point. At time m -+ k consider the bootstrap sample X (i) = X (U, x(i)),
i=1,...,m+ N(m), where {Uj,,(-)} are i.i.d. (and independent of X (-)) with P(Uyj ,,,(1) = j) =
1/im+k-1),j=1,... m+k—1

We calculate the critical value cﬁﬁ) (k) at time m + k based on the conditional distribution

1
F@*(z) = pr — sup D(m,D)(XPD*1),...,. XD*m+) <z,
em () = P <Jm(X(2)*(1),m,X(Q)*(m)) 1<I<N (m) (m, DXD) (m +4)

where Py (1) = P(-|X(1),..., X(m+k — 1)) is the conditional probability given X (1),..., X (m +
k—1).

This bootstrap also yields an asymptotic consistent test and holds the level quite well for small sam-
ple sizes. Furthermore, the power is much better than for the historic bootstrap above as some simulations
show.

The disadvantage is that it is computationally very expensive, since we calculate a new critical value
after each incoming observation.

Bootstrap B.3

The third bootstrap tries to use new information but at the same time reduce the computation time. The
idea is that the older bootstrap samples do not represent the current data well enough whereas the newer
ones are still reasonably good. This bootstrap procedure was suggested by Steland (2006).

We use two modifications to reduce the computation time significantly.

First of all we only calculate new critical values after each Lth observation.

Secondly and maybe even more importantly we use a convex combination of the latest A/ bootstrap
distributions. Thus, in applications we use an empirical distribution function not only based on the
newest samples (which are generated from X (1),..., X(m+k—1)) as in B.2 but also on older samples.
This is why we need to generate only a fraction of the bootstrap samples needed for Bootstrap B.2 in
each step. For the parameters below we only need t; = t/M new samples each time we update the
critical values to get an empirical distribution function based on ¢ samples. Therefore the procedure is
significantly accelerated even if we calculate new critical values after each new observation (L = 1).

For a theoretical description we calculate the critical values cff;)(k:) at time m + k based on the
conditional distribution function

M-1
(3)= 1 (2)= . .
Fkr)n (z) = iV Z Fma?x((jfi)L,O),m7 fork=jL,...,j +1)L—1.
i=0

This modification yields also asymptotically correct critical values in the sense that

1 I k
lim Py, (,\— sup L(m, k) > 1) = q,

m—00

1 r k
lim Py, (,\— sup #’) > 1) =

m—o0 Om 1<k<N(m) ¢y (k)

for a large class of alternatives.

In the simulations below we use L = m/5 and M = 5. Thus after monitoring for m observations
we have completely replaced the bootstrap samples.

With this parameters this bootstrap is computationally only little more expensive than Bootstrap B.1
based on the historical data sequence, since we only replace all ¢ bootstrap samples after m observations.
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The simulations show that it yields almost the same results as Bootstrap B.2 but the computations are
indeed a lot faster.

3 Selected Simulations
The goodness of sequential tests can essentially be determined by three criteria:

C.1 The actual level (a-error) of the test should be close to the nominal level.
C.2 The power of the test should be large, preferably close to 1, i.e. the 3-error should be small.
C.3 The test should stop shortly after the change-point.

We visualize these qualities by the following plots:
Size-Power Curves

Size-power curves are plots of the empirical distribution function of the p-values of the test under the
null hypothesis as well as under various alternatives. In the sequential setting with varying critical values
it is the minimum of the p-values for each step, i.e. the minimum of p;, 1 < k£ < N(m) < oo, where
pr. is the p-value of I"(m, k) /&, with respect to the distribution from which we obtain the critical value
em (k).

What we get is a plot that shows the empirical size and power (i.e. the empirical a—errors resp. 1—(8-
errors)) on the y-axis for the chosen level on the z-axis, thus visualizes C.1 and C.2. So, the graph for the
null hypothesis should be close to the diagonal (which is given by the dotted line) and for the alternatives
it should be as steep as possible.

Plot of the estimated density of therun length

We give a plot of the (estimated) density of the run length for d = 2, i.e. the time (after monitoring starts)
at which the null hypothesis is rejected at the 5% level. Runs for which the null hypothesis is never
rejected are not taken into account. The vertical line in the plot indicates where the change occurred.
This is a visualization of C.3.

We only give some examples to show that the claims in the previous section are indeed true.
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Fig. 1. Different bootstrap procedures for exponential errors and m = 10, N(m) = 5m, k™ = 5 (left) respectively m =
50, N(m) = 2m, k* = 25 (right).

Bootstrap B.2 works best, but B.3 is almost as good yet the computation time is much better. There-
fore we only consider Bootstrap B.3 in the following.

For the parametric bootstrap we used the actual distribution of the statistic under the assumption
that the observations are normal with a variance that is equal to the estimated variance (this is the
asymptotic distribution for fixed observation horizon N (m)). The asymptotic critical value are based on
the asymptotics of the test statistic for an infinite observation horizon.

One can see that for m = 50 all methods become approximately equivalent and that the parametric
bootstrap and the asymptotic test become approximately equivalent for N'(m) = 10m (cf. Figures 1 -3).
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Fig. 2. Bootstrap and asymptotic tests for exponential errors and m = 10, N(m) = 10m, k* = 5: SPC (left), plot of estimated

density (right).
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Fig. 3. Bootstrap and asymptotic tests for exponential errors
estimated density (right).

= 25: SPC (left), plot of

If we choose the statistic slightly different, namely we divide by (k/(m + k))7,0 < v < 3, then

the asymptotic statistic has for larger values of + a high tendency to reject the null hypothesis at the very
beginning of the observation period even if nothing has changed yet. Figure 4 shows that the bootstrap
also behaves much better with respect to this phenomenon.
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Fig. 4. Density plots of the run length for bootstrap and asymptotic tests for exponential errors and m = 10,y = 0.25 as well
as N(m) = 2m, k™ = 5 (left) respectively N(m) = 5, k = 20 (right).
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4 Testing for achangein alinear regression model
Instead of finding a mean change we would like to find a change in the regression coefficient 3 = 3, for
a linear regression y (i) = x(i)” B; + (7). The statistic of interest is given by

SR (i) — SR e ()R S ®(5)y ()
ml/2 (1+£) ’

r'(m,k,vy) =
where .
Cm =) x(i)z(i)".
=1
Under the null hypothesis and for & < k* the statistic is equal to

Sk e(i) = R ()L x()e())
mi/2 (1+£) ’

I'(m,k,v) =

which is the version that we will bootstrap.
A typical bootstrap in this context is the so called regression bootstrap, where the regressors x(i) are
kept constant and only the estimated errors

m

Emn(i) = () — ()T CLL Yz () ()

Jj=1

are bootstrapped, i.e. €, ;.(i) = € k(U k(4)).

We can then use the same techniques as in the previous section. The additional problem arising is the
term >+ .12 (i)" which depends on regressors that we have not yet observed for I > k. Therefore in
the bootstrap statistic we replace it at time point m + & by

Z?i—;i—i—l IB(Z)7 l S k;
ci(m, k1) = Z?l—;]:+kfl+l (1), k<l<k+m,
LSt a(i), 1>m+k

We can then again show that the corresponding sequential bootstrap test has asymptotic level « and
power 1 for the same class of alternatives as the original asymptotic test.
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