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Abstract. Horváth et al. (2004) developed a monitoring procedure for detecting a change in the parameters of a linear
regression model having independent and identically distributed errors. We extend these results to allow for strongly mixing
errors, which need not be independent of the stochastic regressors, and we also provide a class of consistent variance
estimators. Applications to autoregressive time series and near-epoch dependent regressors are discussed, too.
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1 Introduction

In testing time series data for structural stability we have to distinguish between two approaches. Retro-
spective procedures deal with the detection of a structural break within an observed data set of fixed size,
whereas sequential procedures check the stability hypothesis each time a new observation is available.
Chu et al. (1996) pointed out that the repeated application of a retrospective procedure each time new
data arrive would yield a procedure that rejects a true null hypothesis of no change with probability one,
as the number of applications grows. Therefore they derived an alternative (sequential) testing procedure
for detecting a change in the parameters of a linear regression model, after a stable training period of
size m. Their testing procedure is based on the first excess time of a detector over a boundary function,
where the detector is a cumulative sum (CUSUM) type statistic of the residuals. The boundary function
is suitably chosen such that the test attains a prescribed asymptotic size (say) α and asymptotic power
one as m tends to infinity.

Horváth et al. (2004) extended these results and developed a CUSUM monitoring procedure for
detecting a change expected shortly after the monitoring has begun. Since they modeled the errors of
the linear regression model to be independent and identically distributed (i.i.d.), Aue et al. (2006) ex-
tended this CUSUM monitoring procedure further in order to obtain the right framework for monitoring
changes in econometric data. To this end, they developed a testing procedure for monitoring a linear
regression model with conditionally heteroskedastic errors. Moreover, in Aue et al. (2009), the delay
time associated with the stopping rule is discussed in more detail, that is, the limit distribution under the
alternative is derived for multiple time series regression models which allow for stationary regressors
satisfying certain moment assumptions, but still being independent of the underlying observation errors.

Recently, Perron and Qu (2007) introduced a retrospective multiple change-point analysis of multi-
variate regression. They assumed strongly mixing errors, which are not necessarily independent of the
stochastic regressors. In this note we show that their dependence conditions permit the application of
the CUSUM monitoring procedure as well. In the next section we specify the monitoring procedure and
discuss its application in testing parameter stability of an AR(1) process. We can even show that the
linear model allows for near-epoch dependent (NED) regressors.

2 Model assumptions and main results

Throughout this article we assume that all random variables are defined on a common probability space
(Ω,A, P ). In order to measure the underlying dependency of the error sequence {εi, 1 ≤ i < ∞}, we
follow the strong mixing concept. The dependency of two sub-σ-algebras G and H is measured by

α (G,H) = sup {|P (A ∩B)− P (A) P (B)| : A ∈ G, B ∈ H} .
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For consecutive integers k and ` the notation F `
k denotes the σ-algebra generated by {εj , k ≤ j ≤ `}.

The (so-called) mixing coefficient α(n) is defined as

α(n) = sup
p∈N

α
(Fp

1 ,F∞p+n

)
for n = 1, 2, . . . .

Our aim is to show that the sequential monitoring procedure for the linear model

yi = xT
i βββi + εi = β1,i + x2,iβ2,i + · · ·+ xp,iβp,i + εi, 1 ≤ i < ∞,

which was discussed in Horváth et al. (2004), continues to hold under the strong mixing condition

lim
n→∞α(n) = 0. (1)

We denote the p × 1 random regressors by xi = (1, x2,i, ..., xp,i)
T and set βββi = (β1,i, . . . βp,i)

T as
the p × 1 parameter vectors, which are assumed to be constant over a training period of length m, the
(so-called) “non-contamination assumption”, i.e.

βββi = βββ0, 1 ≤ i ≤ m. (2)

This period is used as a reference for comparisons with future observations, noticing that a decreas-
ing mixing coefficient indicates that the historical period and the future observation are asymptotically
independent in a certain sense.

Based on the newly incoming observations ym+1, ym+2, . . . , we are interested in sequentially testing
the “no change” null hypothesis

H0 : βββm+i = βββ0 ∀ i ≥ 1

versus the “change at k∗” alternative, i.e.

HA : ∃ k∗ such that βββm+i = βββ0, 1 ≤ i < k∗, but βββm+k∗+i = βββ∗ 6= βββ0 ∀ i ≥ 0.

The parameter k∗ is called the change-point, which is assumed to be unknown as well as the values of
the parameters βββ0 and βββ∗.

The monitoring procedure is defined via a stopping rule τm based on the first exit time of a detector
Q̂m( · ) over a boundary function g∗m( · ), i.e.

τm = inf{k ≥ 1 : |Q̂m(k)| > σ c g∗m(k)}, with inf ∅ := ∞,

where σ is a positive constant, c = c(α) a critical value, and g∗m( · ) a certain function to be specified
below.

The idea is to determine the detector, the boundary function and the critical constant such that the
false alarm rate is asymptotically fixed to a prescribed level α, and that the power of the testing procedure
tends to one, i.e.

lim
m→∞PH0 (τm < ∞) = α and lim

m→∞PHA
(τm < ∞) = 1.

Let

β̂ββm =
( m∑

i=1

xixT
i

)−1
m∑

j=1

xjyj and ε̂i = yi − xT
i β̂ββm

denote the least squares estimator for βββ0, solely based on the training period, and the i-th residual,
respectively. Following Chu et al. (1996) and Horváth et al. (2004), we use a CUSUM type detector and
boundary function as follows:

Q̂m(k) =
m+k∑

i=m+1

ε̂i and g∗m(k) = m1/2
(
1 +

k

m

)( k

m + k

)γ
,
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where γ is a certain tuning constant (see below).
The main goal of this note is to derive a limiting distribution (under H0) in the case of strongly

mixing errors. It will also turn out that, if the mean regressor is not orthogonal to the parameter shift, the
test has asymptotic power one.

We assume that the following conditions are satisfied: For each m, we can find two standard Wiener
processes {W0,m(t), 0 ≤ t < ∞} and {W1,m(t), 0 ≤ t < ∞} and positive constants σ and δ such that
a uniform weak invariance principle holds over the training period, i.e.

sup
1≤k≤m

k−1/(2+δ)
∣∣∣

k∑

i=1

εi − σW0,m(k)
∣∣∣ = OP (1) (m →∞), (3)

together with a uniform weak invariance principle for the monitoring sequence, i.e.

sup
1≤k<∞

k−1/(2+δ)
∣∣∣

m+k∑

i=m+1

εi − σW1,m(k)
∣∣∣ = OP (1) (m →∞). (4)

Furthermore, we assume that there is a positive-definite p× p matrix C and a constant τ > 0 such that

∥∥∥ 1
n

n∑

i=1

xixT
i −C

∥∥∥ = O
(
n−τ

)
a.s. (n →∞), (5)

where ‖ · ‖ denotes the maximum norm. We also assume that

∥∥∥
m∑

j=1

xjεj

∥∥∥ = OP

(
m1/2

)
(m →∞). (6)

With the parameters σ and τ introduced above we define the boundary function

gm(k) = σ c g∗m(k) = σ c m1/2
(
1 +

k

m

)( k

m + k

)γ
, 0 ≤ γ < min {τ, 1/2} .

The Wiener process in (4) is constructed from the innovations of the monitoring sequence, whereas the
first Wiener process in (3) relies only on the innovations of the training period. Except for the case of an
independent error sequence, both processes are typically dependent. We point out that this dependency
is also influenced by the specific construction among the various methods to obtain a strong invari-
ance principle (cf., e.g., Philipp, 1986). We allow the approximating Wiener processes to depend on m,
because we do not impose strict stationarity of the error sequence. Moreover, no rate in the decay of
the mixing coefficient is assumed. The parameter σ2 is the asymptotic variance of m−1/2

∑m
i=1 εi. The

choice of the parameter δ is closely related to a moment condition, e.g., sup1≤i<∞Eε2+δ
i < ∞.

Now we state our main results. For details and proofs we refer to Schmitz and Steinebach (2008).

Theorem 1. Assume that the conditions (1) – (6) hold. Then, under H0, we have

lim
m→∞P

( 1
σ

sup
1≤k<∞

|Q̂m(k)|
g∗m(k)

> c
)

= P
(

sup
0<t≤1

|W (t)|
tγ

> c
)
,

where {W (t), 0 ≤ t < ∞} is a standard Wiener process.

Remark 1. The limit distribution in Theorem 1 is a functional of the Wiener process and allows for an
asymptotic choice of the critical value c = c(α). Selected quantiles are given in Horváth et al. (2004).
According to Horváth et al. (2007), in the case of γ = 1/2, which is excluded here, an asymptotic
extreme value distribution can be derived by proving a Darling-Erdős type limit theorem.
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An application of Theorem 1 in practice requires the estimation of the unknown parameter σ. As a
consequence of the invariance principles for dependent random variables, σ2 is the long run variance,
i.e.

0 < σ2 = Eε2
1 + 2

∞∑

k=2

Eε1εk < ∞.

Consistent estimators are, for example, available by using squares of sums of residuals from “non-
overlapping blocks” as follows. Let {`m, 1 ≤ m < ∞} be a non-decreasing sequence of positive inte-
gers with 1 ≤ `m ≤ m such that `m/m → 0 as m →∞, but

lim inf
m→∞

`m

mθ
> 0 for some max

{
1− 2τ, 1− τ − δ

2(2 + δ)

}
< θ < 1. (7)

We propose the estimator

σ̂2
m =

1
k

k∑

j=1

{ 1√
`

j∑̀

i=(j−1)`+1

ε̂i

}2
, (8)

with ` = `m and k = km = [m/`].

Remark 2. The estimator above is not the same but motivated by the class of consistent estimators
introduced in Peligrad and Shao (1995) for the case of a ρ-mixing sequence. Our approach here is to
prove the consistency of σ̂2

m from (8) in the case of α-mixing errors solely via the approximating Wiener
process.

Theorem 2. Assume that the conditions (1) – (8) hold. Then, under H0, we have

lim
m→∞P

( 1
σ̂m

sup
1≤k<∞

|Q̂m(k)|
g∗m(k)

> c
)

= P
(

sup
0<t≤1

|W (t)|
tγ

> c
)
,

where {W (t), 0 ≤ t < ∞} is a standard Wiener process.

Theorem 3. Let cT
1 (βββ0 − βββ∗) 6= 0, where c1 denotes the first column of C from (5). Assume that the

conditions (1) – (8) hold. Then, under HA, we have

lim
m→∞P

( 1
σ̂m

sup
1≤k<∞

|Q̂m(k)|
g∗m(k)

> M
)

= 1 for all M > 0.

2.1 Monitoring changes in autoregressive models
Other than Horváth et al. (2004), we do not assume any longer in this section that the regressors are
independent of the errors. This, for example, allows for lag-dependent variables as regressors. Consider,
e.g., an application of the monitoring procedure to an AR(1) model yi = βyi−1 + ui, where 0 ≤ β < 1.
Note that the first assumption of Theorem 3 is not satisfied, since the mean regressor is zero. But for
detecting a change in the parameter of the AR(1) model it suffices to monitor the linear model

yiyi−1 =

{
βy2

i−1 + uiyi−1, m + 1 ≤ i < m + k∗;
β∗y2

i−1 + uiyi−1, i = m + k∗, m + k∗ + 1, . . . ,
(9)

where 0 ≤ β < 1 and β∗ ≥ 1.
In the sequel we assume that

{ui, −∞ < i < ∞} is a centered i.i.d. sequence (10)

such that
{yi, −∞ < i < ∞} is strictly stationary, strongly mixing and

that condition (3) holds with the εi’s being replaced by yi’s.
(11)
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If γ(j) = Ey1y1+j denotes the autocovariance function, we also assume that there is a positive constant
τ > 0 such that ∣∣∣ 1

n

n∑

i=1

y2
i − γ(0)

∣∣∣ = O
(
n−τ

)
a.s. (n →∞). (12)

We note that
{
y2

i − γ(0), 0 ≤ i < ∞}
is also strongly mixing. Thus, it is sufficient to replace (12) by

a moment condition guaranteeing that the squares satisfy an invariance principle (cf., e.g., Kuelbs and
Philipp, 1980, Theorem 4). Then, via the approximating Wiener process, a Marcinkiewicz-Zygmund
type law of large numbers yields the desired assertion. We set

β̂m =
{ m−1∑

i=0

y2
i

}−1
m−1∑

i=0

yiyi+1 and R̂m(k) =
m+k∑

i=m+1

(yiyi−1 − β̂my2
i−1).

Theorem 4. Assume that the conditions (10) – (12) hold. Then, under H0, we have

lim
m→∞P

( 1
Γ

sup
1≤k<∞

|R̂m(k)|
g∗m(k)

> c
)

= P
(

sup
0<t≤1

|W (t)|
tγ

> c
)
,

where Γ 2 = E (u1y0)
2 and {W (t), 0 ≤ t < ∞} is a standard Wiener process.

The statement of Theorem 4 remains true if we plug in a consistent estimator Γ̂m based on the stable
training period. According to (10), condition (11) holds with yi being replaced by uiyi−1, i.e.

m∑

i=1

uiyi−1 − ΓW (m) = OP

(
m1/(2+δ)

)
.

From the autocovariances of the AR(1) process we compute that σ2
u = Eu2

1 = γ(0) − βγ(1) and
Γ 2 = γ2(0)− βγ(1)γ(0). Therefore Γ̂ 2

m = γ̂2
m(0)− β̂mγ̂m(1)γ̂m(0) is a natural estimator for Γ 2, as a

combination of covariance estimators and the least squares estimator β̂m, and hence is consistent.
Despite the fact that a change in the parameter also causes a change in the distribution of the errors

uiyi−1 of the linear model (9), we can establish asymptotic power one.

Theorem 5. Assume that the conditions (10) – (12) hold. If, in addition, P (y1 = 0) = 0, then, under
HA, we have

lim
m→∞P

( 1
Γ̂m

sup
1≤k<∞

|R̂m(k)|
g∗m(k)

> M
)

= 1 for all M > 0.

Remark 3. We point out that the monitoring of (9) overcomes the restriction in Theorem 3 concern-
ing detectable parameter shifts. For another approach we refer to Hušková and Koubková (2005) and
Koubková (2006) who introduced CUSUM type test statistics based on weighted residuals which are
able to detect any change in the slope parameter of a linear model with i.i.d. errors. Moreover, they
extended these results to AR(p) time series (cf. Hušková and Koubková, 2006).

2.2 Monitoring changes in linear models with NED regressors

In this section it is shown that our approach is also applicable for near-epoch dependent (NED) regres-
sors. The NED concept covers widely used nonlinear time series like, e.g., the GARCH models (see
Davidson, 2002). In the particular case of an NED sequence on an independent process, Ling (2007)
established a strong law of large numbers (SLLN) and a strong invariance principle. For convenience we
state the definition adapted from Ling (2007).

Let {εt, −∞ < t < ∞} be a sequence of independent random variables and assume that xt isF t−∞-
measurable, where F t−∞ = σ (. . . , εt−1, εt) .
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Definition 1. The process {xt, 1 ≤ t < ∞} is called Lp(ν)-near-epoch dependent (Lp(ν)-NED) on
{εt, −∞ < t < ∞} if

sup
1≤t<∞

∥∥xt

∥∥
p

< ∞ and sup
1≤t<∞

∥∥xt −E(xt|F t
t−k)

∥∥
2

= O
(
k−ν

)
(k →∞),

where p ≥ 1 and ν > 0.

If we assume that {εt, −∞ < t < ∞} is i.i.d. and centered with ‖ε1‖4 < ∞ and {xt, 1 ≤ t < ∞}
is L4(ν)-NED with ν > 1/2 and constant variance (say) σ2

x > 0, then the regression model

yt = β1 + β2xt−1 + εt

allows for an application of the monitoring procedure, provided conditions (3) – (6) hold.
Here, we can establish (3) and (4) via the well-known “Hungarian construction”, (cf., e.g., Csörgő

and Révész, 1981, Theorem 2.6.3).
Moreover, it can be proved that {xt−1εt, 1 ≤ t < ∞} is an L2(ν)-NED sequence on

{εt, −∞ < t < ∞} , which also satisfies an appropriate mixingale property, so that an application of
McLeish’s (1975) maximal inequality for mixingales yields condition (6).

Finally, since the regressors are assumed to be L4(ν)-NED with ν > 1/2 and constant variance
σ2

x > 0, some further estimations show that
{
x2

t − σ2
x, 1 ≤ t < ∞}

is a centered L2(ν)-NED sequence.
Hence, the required rate in (5) follows from an application of the SLLN for NED sequences obtained by
Ling (2007).

For details of the arguments above confer Schmitz and Steinebach (2008).
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