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Abstract. The paper reviews the SPRT-type selection procedures for phase 2 clinical trials, whose objective is to identify an
experimental treatment that is more effective than a prospective control, or to declare futility if no such treatment exists. The
SPRT-type procedures has a practical advantage in that the selection boundaries can be easily chosen with respect to a given set
of error constraints. This paper illustrates the method using normal endpoints (Cheung, 2009,Journal of Biopharmaceutical
Statistics in press), although the same principles has also been applied to binomial outcomes (Cheung, 2008,Biometrics 64,
940–949).
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1 Introduction

We address the same selection problem as in Cheung (2009) for phase 2 clinical trials with a set of
treatments{0, 1, . . . , K}, where 0 represents the control group. Precisely, letXij ∼ N(µi, σ

2) denote a
desirable outcome of thejth patient in armi. We consider two particular scenarios (hypotheses). First,
under the “global null” whereµ0 = · · · = µK , we would like to control the selection probability for
the control, denoted byP0, to be at or above1 − α. The valueα in this context can be viewed as an
extension of type I error rate from a hypothesis test to treatment selection. Second, when there is in truth
a clinically superior treatment, i.e.,µ0 = µ1 = · · · = µK−1 andµK = µ0 + δ for some prespecified
δ > 0, our goal is to keep the selection probability for armK, denoted byP1, at about1− β. The value
β is analogous to type II error in a hypothesis test.

2 An SPRT-type selection procedure

We address the same selection problem as in Cheung (2009) for phase 2 clinical trials with a set of
treatments{0, 1, . . . , K}, where 0 represents the control group. Precisely, letXij ∼ N(µi, σ

2) denote a
desirable outcome of thejth patient in armi. We consider two particular scenarios (hypotheses). First,
under the “global null” whereµ0 = · · · = µK , we would like to control the selection probability for
the control, denoted byP0, to be at or above1 − α. The valueα in this context can be viewed as an
extension of type I error rate from a hypothesis test to treatment selection. Second, when there is in truth
a clinically superior treatment, i.e.,µ0 = µ1 = · · · = µK−1 andµK = µ0 + δ for some prespecified
δ > 0, our goal is to keep the selection probability for armK, denoted byP1, at about1− β. The value
β is analogous to type II error in a hypothesis test.

THEOREM 1. Suppose the shifted outcomeYij ∼ N(θi, σ
2) andθk ≥ θi for i 6= k. Then if the

enrollment processes do not depend onθi’s, an open-ended SPRT (i.e.,Nmax = ∞) will correctly select
armk with probability bounded below by

{
K∑

i=0

exp
[
2d

σ2
(θi − θk)

]}−1

. (1)

If we run the SPRT witha0 = · · · = aK under the global null, thenθ0 = · · · = θK and the lower
bound (1) is equal to(1+K)−1. By symmetry, we can deduce that the probability of selecting armk, or
any arm, by the SPRT is equal to(1 + K)−1. Thus, the lower bound is exact in this case. Furthermore,
we observe that the probability of selecting an experimental arm under the global null (i.e., type I error
rate) will equalK/(K + 1) which is apparently too large to be considered in practice. Therefore, we
need to choose the shiftsa0, a1, . . . , aK differently so as to satisfy conventional error constraints.
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COROLLARY 1. If the shifts are chosen such thata0 > ai for i = 1, . . . , K, thenP0 is bounded
below by

LB0 =

{
K∑

i=0

exp
[
2d

σ2
(ai − a0)

]}−1

which increases and converges to 1 asd → ∞.
COROLLARY 2. If the shifts can be chosen such thataK + δ > ai for i = 0, 1, . . . , K − 1, then

P1 is bounded below by

LB1 =

{
K−1∑

i=0

exp
[
2d

σ2
(ai − aK − δ)

]
+ 1

}−1

which increases and converges to 1 asd → ∞.
The corollaries guarantee we can always find a constantd for any given error constraints if the shifts

are chosen to satisfy the conditions in the corollaries. Applications of these results are given in Section
3. The proof of Theorem 1 can be undertaken in the same manner as in Levin and Robbins (1981) who
extend the SPRT to the multi-arm selection problem with binomial data and equal sample sizes, and is
available from the author upon request.

3 Choosing the selection boundaries

3.1 Design parameters

In situations where the experimental regimens are exchangeablea priori, we may seta1 =
· · · = aK . Then the lower bounds become LB0 =

{
1 + K exp

[
2d(a1 − a0)/σ2

]}−1
and LB1 ={

exp
[
2d(a0 − a1 − δ)/σ2

]
+ (K − 1) exp

(
−2dδ/σ2

)
+ 1

}−1
. We observe that LB0 and LB1 depend

ona0 anda1 only through their difference, and therefore will seta1 = 0 without loss of generality. As a
result, we need0 < a0 < δ in order to satisfy the conditions in Corollary 1 and Corollary 2, which then
give

LB0 =
[
1 + K exp

(
−2da0

σ2

)]−1

and LB1 =
{

exp
[
2d(a0 − δ)

σ2

]
+ (K − 1) exp

(
−2dδ

σ2

)
+ 1

}−1

.

This constraint on the choice ofa0 is intuitive: it needs to be positive so that the control will look fa-
vorable under the global null withµ0 + a0 > µi, but smaller thanδ so that a treatment with a clinically
significant improvement remains superior in terms of the shifted mean. With the clinician-defined pa-
rametersδ, K and the error constraintsα, β specified, the lower bounds LB0 and LB1 for the probability
of correct selection depends ona0, d, and the true varianceσ2.

3.2 d-minimal design

For a givena0 that is between 0 andδ, LB0 and LB1 are increasing functions ofd. This is expected
because a larger value ofd invokes trial termination or treatment elimination when more information
has been accrued, and hence the decision is less likely to be error-prone. For the same reason, SPRT
with a smallerd are expected to conclude a trial with fewer patients than when a largerd is used. We
take the design approach in Cheung (2008, 2009) whereby the shifta0 is chosen to bed-minimal: a
shift a∗0 is d-minimal when it minimizes the required termination constantd∗ for given error constraints
LB0 ≥ 1 − α and LB1 ≥ 1 − β and a given set of clinician-defined parametersδ andK. In particular,
Cheung (2009) gives

a∗0 = δ

[
logK − logit(α)

log
(

K
α − 1

)
− logit(β)

]
and d∗ =

σ2

2δ

[
log

(
K

α
− 1

)
− logit(β)

]
. (3.3)
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Sincea∗0 does not depend on the true varianceσ2, each observation in the control arm will be shifted
by the same constant throughout the trial. Note that0 < a∗0 < δ whenβ < 0.5, or more precisely,
β < (K − α)/{K − α + K(1 − α)}. In other words, thed-minimal criterion can be applied if the
research team sets its goal to identify the superior experimental arm with a target probability greater
than 0.5.

The termination constantd∗, on the other hand, does depend onσ2. When implementing the method,
we could repeatedly estimateσ2 with the unbiased pooled sample varianceσ̂2 throughout the trial.
Therefore, the termination criteria will be slightly different at each interim; empirically, we find that the
estimate ofd∗ becomes quite stable whenσ2 is estimated with at least 30 degrees of freedom.

3.3 Sample size determination

The lower bound formulae derived from (1) are based on the open-ended SPRT. While we expect the
theoretical results will hold if the truncationNmax is sufficiently large, the choice of a sufficiently large
Nmax apparently depends also onσ2. Since the motivation of a sequential design is to improve the
enrollment feasibility on the single-stage design, we may initially set to truncate the sequential proce-
dures atNmax, which is defined according to a single-step procedure with respect to an assumedσ2

0 ; see
Cheung (2009). This guarantees the sequential designs adopted will always enroll fewer patients than
the single-stage design. As seen in extensive simulations, the truncationNmax thus computed keeps the
actual error rates at the target level, if the true variance is less than or equal toσ2

0.

4 Discussion

This article reviews a SPRT-type design for treatment selection with a prospective control group using a
normal endpoint. Extensive simulations have shown substantial gain in sample size over the traditional
single-step design. Furthermore, Cheung (2009) suggest two practical modifications. First, a sequential
elimination using the SPRT selection boundaries will likely further reduce sample size with comparable
accuracies. Second, to anticipate the situations when the trueσ2 is larger than the assumedσ2

0, we
may re-estimate the truncationN ′

max based on the pooled sample varianceif the trial reachesNmax

without reaching the termination criteria. That is, continue with an additionalN ′
max − Nmax subjects if

N ′
max > Nmax; stop the trial and select the arm with the largest observed mean if otherwise. These two

practical measures have been evaluated in Cheung (2009) and are recommended for practical use.
Finally, the proposed method is versatile and can be adapted for different outcome types. Cheung

(2008) studies analogous procedures for binomial outcomes; we are currently working an extension for
outcomes following a distribution from the exponential family.
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