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Abstract In this work we deal with the problem of decentralized sequential hypistteeting in discrete time in the case that
the sensors have full local memory. We adopt the scheme called fP&caed Sequential Probability Ratio Test (D-SPRT),
which entails asynchronous communication of the sensors with the fusigarat random times. We prove that the D-SPRT
is asymptotically optimal and we show that in a certain sense this asymptoticatiptioan be of order-2, i.e. for small type-I
and type-ll error probabilities the expected time for a decision of the RTS#fiffers from that of the optimal centralized
SPRT by a constant. These results have important implications on the déhigrsuggested scheme. Simulation experiments
reveal that D-SPRT is efficient and outperforms existing asymptoticalilynal schemes of the literature proposed for the
same problem.

1 Introduction

The problem of sequential hypothesis testing is one of the most classicaledistudied problems of
sequential analysis (see for example [3]). In the last two decades, lihsrbeen an intense interest in
thedecentralizedormulation of the problem, where the sequentially acquired information fasibe-
making is distributed across a number of sensors and is transmitted to a gloisamienaker (fusion
center) which is responsible for making the decision. Moreover, cdgtbiléy issues as well as, com-
munication bandwidth constraints require that the sensor observatiansabézedbefore sent to the
fusion center, i.e. the fusion center must send messages that beldingjtaphabet For more details,
see [4].

Depending on thdéocal memorythat the sensors possess and whether thefeedbackirom the
fusion center, there are different configurations of the above seetoork. Here, we consider the case
of full-local memoryi.e. we assume that at each time-instant each sensor has access to eliaisspr
observations and can use them in order to quantize the current diimenidei [2] recently suggested
an asymptotically optimal scheme for this problem in a Bayesian setting.

In this work we assume that the alphabet that the sensors have in theisaigpbinary and that
each time a sensor communicates with the fusion center it must send a onewilit sig

2 Problem Formulation

Consider the existence of a global digital clock that counts the discrete tita@@es{n } with n € N.
Assume also the existence &f sensors which acquire digital signdlg, ;}>>,,¢ = 1,...,K ina
synchronized way. Leff2, 7, P) denote a probability space on which therandom sequenceds,, ; }
areindependenand each sequence hagl. samples. We assume that sensolbservesequentiallythe
sequencd(,, ; } whose common distribution we denote By

We would like to choose between the following tainplehypothesesty : P =Py, H; : P = Py,
where Py, [P; are two probability measures di2, 7). The distributionP; of &, ;, is equal toP ;
underH, andP; ; underH;, wherePy ;, P; ; areknownBorel probability measures. Moreover, we set
én = (€n1, ..., & k), n > 1 and we denote b the distribution of the random vectaofs, therefore
from the independence of observations accross sensors we dbtaif?; x ... x Px. We also denote
by {F..i} ({F.}) the filtration generated by the process ; } ({&,}) with Fo ;(Fo) denoting the trivial
o-algebra.
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We assume that, ;, Py ; are mutually absolutely continuous, therefore the Radon-Nikodym deriva
tive 35;”' and its logarithm are well-defined. From the i.i.d. assumption within the senedr¢he
independence assumption accross the sensors, we can define thelibgdik ratio process locally at

sensor and globally in the sensor-network as:

n K
Up; = E Ligy up = E Un i,
j=1 i1

respectively, whereg; = 0 and/;; = log %*Z (&;,1)- In other words/; ; is the log-likelihood ratio of

the jth observation in théth sensor.

We also define the Kullback-Leibler Divergenég; = Ei[(,,;], lo; = —Eo[¢n,] of P1; versus
Py; andPy ; versusP; ; respectively which we assume that are finite in every sensbet alsol; =
SE Lo lo=YK I,

In classical sequential hypothesis testing, the goal is to choose betwebypbthese&l, andHj;
using asequential testi.e. a pair(7,dr), where7 is an{F, }-adapted stopping time ant}- is an
Fr-measurable r.v. with values {0, 1}.

In the decentralized version of the problem we must choose: (1) araBingesequence dt7;, ; }-
adapted stopping timeg} }°° ; at each sensarat which times to communicate with the fusion center
(sampling strategy), (2) a sequence of quantized sig{m@ﬁ%‘;l to transmit to the fusion center from
sensor; at the times{7/.} (quantization strategy) and (3) a sequential test that is based on théolvaila
information at the fusion center, i.e. the quantized sigl{na,ié, from all sensors and the corresponding
stopping timeg{7} }.

The above formulation of the decentralized problem generalizes the typathkematical setup in
the literature (see e.qg. [2], [4]), where only steps (2) and (3) areded@and the sensors are assumed to
communicate, synchronously, with the fusion centes\agrytime instantn. It should be noted that in
the proposed approach communication between sensors and fusiani€astgchronous and sparse.

2.1 PerformanceCriteria and the Optimal Centralized Tests

We use Wald’s approach [5] to formulate the sequential hypothesis-tggtibéem. We start by intro-
ducing the discrete-time version of the Sequential Probability Ratio TestT{SRRich is defined as
follows:

N=inf{n>1:u, ¢ (A, B)}, dyv = (uy>B} 1)

whereA, B > 0 are two constant thresholds. The SPRT was shown by Wald and Wolfow&} tim be
optimal in the sense that it solves the following optimization problem:

(Ti%f : E;[T]; subjecttaPy(dr = 1] < aandP;[d7 = 0] < S, (2)
,aT

wherej = 0,1 anda, 8 > 0 are such thatv + 5 < 1. The boundaries\, B are chosen so that the
error probability constraints in (2) are satisfied with equalities. It is wellkmthat under appropriate
conditions on the procegs., }, such as existence and finiteness of the moment-generating function (see
[3]), we have that a&, 3 — 0:

A=0(logBl) , LE/N] = [log al(1 + o(1))
B = 0(|logal) , IyEo[A] = |log 8](1 + o(1)).

2.2 Suggested Decentralized Test

Sampling & Quantization Strategy. Following [1] we suggest that sensosends a quantized signal
to the fusion center at the stopping tim[e%f}, which are defined recursively as follows:

mh=inf{n > 1w —u  E (4, A)}, ©)

Th_150
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whereA;, A; > 0 are thesampling threshold® sensori and 7§ = 0. The signal that théth sensor
sends at time;,, i.e. at thekth time it communicates with the fusion center, will be:

i _
Zk B {uﬂ'i i_uTi zZAl} (4)
k’ k—1’

We denote byﬁc the overshoot that occurs in tlkéh sample from théth sensor, i.e.
M = (i g =i o= D)+ (i = A)7

We also denote byzw- the log-likelihood ratio ofz,i. For any given sensar {¢,,;} is a sequence of
i.i.d. r.v’'s under both hypotheses, thiis. } is a sequence of i.i.d. Bernoulli r.v’s with parameter  ;
underH; andm; underHy, where

7T1,i = Pﬂz;; = 0] s 7'('0,@' = IP)O[Z;C = 1],
where we note that ;, 71 ; < 0.5. This suggests that:

~ < ; < 1 -y 1 —moy
Ui = Nizj, — A (1 — 2;,), where \; = log <7T1) , A = log < o, ) .

0,4 T

Sequential test at the fusion center. In order to define the suggested decentralized sequential test we
introduce the following notation, which suppresses the dependence eariber: we denote by, the

time that thejth signal arrived to the fusion centerdependently of the sensor who sent3ince it is
possible to have signals from different sensors sent at the same time tsidve ¢enter, we order them

in an arbitrary way, for example in alphabetic order. Thus, if for exam@isaersi andm both send

a signal at time n=1, with < m, then we setr; = 7; = 1, = 7, = 1. Similarly, we denote

by z;, the signal that arrived at the fusion center at time/,, the log-likelihood ratio ofz;, andn; the
corresponding overshoot. Moreover, we denoté;bthe identity of the sensor which sent the signal

i.e. §; = i, if the kth signal was sent from sensgri = 1, ..., K. Finally we denote by{C}?°, the

flow of information at the fusion center, i.e.

Cr =0{(z2s,05),1 < s <k}.

Clearly,C, C F,.

Suppose now thafay } is the log-likelihood ratio process of the messages} that arrive at the
fusion center fromany sensor. Then, from the independexossand within sensors and since the
fusion center knows which sentor sent each signal, we have the folloepmgsentation:

. K k
= b= > lpmi wherek; =Y (5 _y.i=1,...,K.

m=1 i=1 m=1 m=1

We note that indeXk} counts the number of samples received at the fusion center and not tijloda
Reference to global time is achieved by using the sequence of communicatied timesince thekth
sample received by the center corresponds to the globakiime

The suggested sequential test for the problem in (2) will then be:

N =7, wherel = inf{k > 1: @y ¢ (-A,B)}, dg = (555 ®)

whereA, B are chosen so tha@[d; = 1] = o andP; [d = 0] = 6.

Notice thatk is a stopping time with respect to filtration of the fusion centeriie a{Cy }-adapted
stopping time. MoreoveCx C Fy, since N = 7¢. Finally, by the definition of the likelihood ratio
process we have the following relationship:

Eo[e"V |Cx] = e'*.
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This is true, since the probability measures projected onto the spacetgengydhe data transmitted to
the fusion center involves only Bernoulli random variables. Consetyuttre log-likelihood ratio at the
kth sample is simplyig.

We now state some Lemmas, which are useful for proving the main results qicibés, however
we omit most of the proofs, due to space constraints.

Lemmal A <|logf|, B <|logal.
Lemma 2. For large values ofA;, A; we have:

E1[lm.ll = 0(1), o(1)
E()Hnl,i” = O(l) ) 0(1) ’

wherep;, p. are positive constants which do not dependbinA,.

= O(|log(mo,i)])
= O([log(m1.:)])

>~ >l
I

> b

i+ P+ A;
it + A

7

Lemma 3. For j = 0, 1, we have the following inequalities:

K K
E; [Z k]| < E;[K] ZEJU"?LZH
k=1 =1

The performance of the suggested scheme is characterized by the fglioequalities:

K

PN H A

k=1

K

E,[K] Y Bjl6: — B0yl

i=1

Proposition 1.

LBV S5 () S Eallmall ©)
|log o |log o 6
LBV (25 > iz Eollmil
"Thog 3] = (“ log 3 > (” % ’ "

Where(1 = mini El[gl,i] — szil Vl [gl,i] , Cg = mini Eo[gl,i} — Zfil VO[gl,i] ande denotes
variance.

Proof. We will work undert; and prove (6), we can prove (7) in the same way. We observéhats

a random walk andy” an integrable stopping time with respect to the filtrat{dh, }. Therefore, we can
apply Wald's identity and havéiE, [N] = Eq [u o] = Eq[u g —tx] +Eq [ax]. From the definition of the
overshootgn; } we haveu g — g = Zk LMk < Zk 4 k|, thus from Lemma 3 we obtaiR; [u ¢ —
i) < E[K] X0, Ballmil]. Moreover,iue = Soi, (2 — Ealf]) + S Eallh] > = 30, |k —
El[ékﬂ + K min; Eq [Zl i]. Using Lemma 3, the fact that thie, norm is larger than thé;, and assuming
¢ > Oyields LE;[N] < (1 + Z@ 1 Exl[m,il]/¢1)E1[ug]. Our proof is completed by observing
that from the definition of the sequential test in (5) and Lemma 1, we hayex B+ Zfilx <
[log a| + 2K N, since>" X | X, is the maximum possible overshagt — B on the even{ax > B}.
Thus:Eq[ix] < |logal + 3K N

~ We can now show that the suggested scheme is asymptotically optimal if we letréisdiuls
A;, A, — oo appropriatelyasa, 5 — 0. Before we do that, we state the following Lemma:

Lemmad. (i, — ocasd;, 4; — .

Proposition 2. If a, 3 — 0 and 4;, A; — oo so that:

A= o(|logal), A4; = o(|log 3]), (8

thenEﬂ % — 1, j = 0,1, i.e. the suggested scher¥, d ) is asymptotically optimal of order-1.
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2.3 Optimal Rate for the Sampling Thresholds

Itis very interesting now to determine the optimal divergence rate of thentbiidssA,;, A; as a function
of the error probabilities, 5.

Proposition 3. If A;, A, — oo then the optimal divergence rate for the sampling threshaldsq; as

o, —0is:
A;=0(|logal), 4; = O(y/|log 3]).

Under this selection, as, 3 — 0, we have that:

- 1 const.y/|1 const. - 1 const.y/|1 const.
1 0

Ei[N] ~Ei[V] = O(V]logal) , EolN] —Eo[N] = O(/|log ).

2.4 Oversampling and Asymptotic Optimality of order 2

Suppose now that, at each sensor, we have the possibility to modify thebeiute momeri; (|, ;]
of the acquired samples. In a real sensor network system where saanglebtained by sampling
continuous-time signals this can be realized by changing the sampling rate at\tban show that
provided that the second moment is sufficiently small we obtain asymptotic optirélisder-2 for
the suggested schersgen with fixed sampling thresholds, A,. This is the content of the following
proposition.

Proposition 4. Assume that ag, 3 — 0 we have the ability to forc&;[|¢,,|] — 0, j = 0,1, i =
1,..., K. If for every sensoi we keep the sampling thresholds, A; fixed and select the rates as
follows

[logal - E1[[§14]] — 0, [log 8] - Eo[[€1,i[] — 0, 9)

thenE; N] - E;[N]=0(1),j =0,1,i.e. the suggested schelif€, d ) is asymptotically optimal of
order-2 under bottH, andH; for the problem in (2).

Example: Suppose that the i.i.d. sequence of observations in each sensor is dlfitamecanonical
deterministic sampling of a continuous-time proc€&s; }+>o at the discrete times = nh, n € N,
where eacH &, ;} is a Brownian Motion with drift 0 undell, andy; underH;. Eachy; is a real non-
zero constant and > 0 is the common sampling period for all sensors. We then have the followning
hypothesis testing problem:

Ho : {&uni — En-nynit ~" P N(0,h) , Hy : {&ani — Eorynit ~* N (uih, b) (10)

Letting h — 0 makes the discrete problem converge to the continuous problem, thus:
lim,—o E;[|&14]] = 0, j = 0,1. Therefore, lettingh — 0 anda, 5 — 0 in such a way that condi-
tion (9) is satisfied, leads torder-2 asymptotic optimality of the D-SPRT. Of course the question is
how dense the sampling must be in order to have performance which is aitgtr the optimum. As

the next simulation example reveals, even crude sampling is sufficient tardeara very satisfactory
performance.

3 Design and Simulation Experiments

The main challenge in the implementation of the D-SPRT is the choice of the samplsahdsA;

and 4,. Small values of4;, A,’s entail more frequent communication between the sensors and the
fusion center, but make the scheme more vulnerable to the oversharttveffiite overly large values of

the same parameters result in larger detection delays. Thus, we shoakkdhe sampling thresholds
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to be large enough in order to stabilize the overshoot effect, but not ige ta affect the frequency of
communication between sensors and fusion center.

In Propositions 2 and 3 we deal exactly with this problem and provide thex(ab rate of diver-
gence for the sampling thresholds that allow the scheme to be asymptotically optioaéver, the
scheme will in practice be implemented with constant predetermined samplingdlisghus there is
still a lot of flexibility in the specification of the sampling thresholds, since Psitjpm 3 determines
only the optimal divergence rate of th&, A,’s with respect to the error probabilities 3.

In Proposition 4, we take a different approach and consider the samipiqgencyh of the
continuous-time signal at the sensors as the control parameter, instéedsaimpling thresholds. The
results of these propositions imply thatersamplingat the sensor-level improves dramatically the effi-
ciency of the D-SPRT by minimizing the overshoot effect. In that case xpect smallerd;, A;’s to
lead to better performances for the D-SPRT.

We illustrate these ideas by performing two simulation experiments in the contprildem (10).
We setK = 4andu; = ... = pg = 1. We compare our scheme defined in (5) with the optimal central-
ized SPRT (1) and also with the test suggested by Mei in [2], which is ajso@stically optimal. We
consider two casés = 1 and 0.1 while the sampling thresholds take the vallies- A; = 1.5,4.5,7.5.
We plot the resulting average-length-run (ARL) curves and compare tbehe corresponding curves
of the optimal SPRT and Mei’s test. The horizontal axis represdnise|(= |log 3]), since in our
example we consider = § and the vertical axis represents the expected time for a decision.

Average Run Length Average Run Length

— Mei
—— Optimal SPRT

— Mei
—— Optimal SPRT

Expected Time for a Decision
Expected Time for a Decision

— A=A=15 — A=4=15
2 —— A=A=45 2 —— A=A=45
— A=A=75 — A=A=75
o — o -
T T T 1 T T T T
40 60 80 100 40 60 80 100
Absolute Logarithmic Type /Il Error Absolute Logarithmic Type /Il Error

Both graphs show the D-SPRT has a substantially better performance #iant@st and is also very
close to the optimal performance. This is true for all three choices of thelisgtigresholds. Moreover,

in the graph to the right which corresponds/to= 0.1, the D-SPRT (with the same choices for the
sampling thresholds) is much closer to the optimal centralized test than in thadefinherér = 1.

In addition to that, whek = 0.1 there is a clear ordering in the curves that correspond to the different
A; = A,;’s with smaller sampling thresholds leading to better performances. Thesfesgree consistent
with our results and seem to advocate the use of our scheme especially imatambwith oversampling

at the sensor level.
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