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Abstract In this work we deal with the problem of decentralized sequential hypothesis testing in discrete time in the case that
the sensors have full local memory. We adopt the scheme called Decentralized Sequential Probability Ratio Test (D-SPRT),
which entails asynchronous communication of the sensors with the fusion center at random times. We prove that the D-SPRT
is asymptotically optimal and we show that in a certain sense this asymptotic optimality can be of order-2, i.e. for small type-I
and type-II error probabilities the expected time for a decision of the D-SPRT differs from that of the optimal centralized
SPRT by a constant. These results have important implications on the designof the suggested scheme. Simulation experiments
reveal that D-SPRT is efficient and outperforms existing asymptotically optimal schemes of the literature proposed for the
same problem.

1 Introduction

The problem of sequential hypothesis testing is one of the most classical and well-studied problems of
sequential analysis (see for example [3]). In the last two decades, there has been an intense interest in
thedecentralizedformulation of the problem, where the sequentially acquired information for decision-
making is distributed across a number of sensors and is transmitted to a global decision-maker (fusion
center) which is responsible for making the decision. Moreover, cost, reliability issues as well as, com-
munication bandwidth constraints require that the sensor observations bequantizedbefore sent to the
fusion center, i.e. the fusion center must send messages that belong to afinite alphabet. For more details,
see [4].

Depending on thelocal memorythat the sensors possess and whether there isfeedbackfrom the
fusion center, there are different configurations of the above sensor-network. Here, we consider the case
of full-local memory, i.e. we assume that at each time-instant each sensor has access to all its previous
observations and can use them in order to quantize the current observation. Mei [2] recently suggested
an asymptotically optimal scheme for this problem in a Bayesian setting.

In this work we assume that the alphabet that the sensors have in their disposal is binary and that
each time a sensor communicates with the fusion center it must send a one-bit signal.

2 Problem Formulation

Consider the existence of a global digital clock that counts the discrete time instances{n} with n ∈ N.
Assume also the existence ofK sensors which acquire digital signals{ξn,i}

∞
n=1, i = 1, . . . , K in a

synchronized way. Let(Ω,F , P) denote a probability space on which theK random sequences{ξn,i}
areindependentand each sequence hasi.i.d. samples. We assume that sensori observessequentiallythe
sequence{ξn,i} whose common distribution we denote byPi.

We would like to choose between the following twosimplehypotheses;H0 : P = P0 , H1 : P = P1,
whereP0, P1 are two probability measures on(Ω,F). The distributionPi of ξn,i, is equal toP0,i

underH0 andP1,i underH1, whereP0,i, P1,i areknownBorel probability measures. Moreover, we set
ξn = (ξn,1, . . . , ξn,K), n ≥ 1 and we denote byP the distribution of the random vectorsξn, therefore
from the independence of observations accross sensors we obtain:P = P1 × . . . × PK . We also denote
by {Fn,i}({Fn}) the filtration generated by the process{ξn,i} ({ξn}) with F0,i(F0) denoting the trivial
σ-algebra.
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We assume thatP1,i, P0,i are mutually absolutely continuous, therefore the Radon-Nikodym deriva-

tive dP1,i

dP0,i
and its logarithm are well-defined. From the i.i.d. assumption within the sensors and the

independence assumption accross the sensors, we can define the log-likelihood ratio process locally at
sensori and globally in the sensor-network as:

un,i =
n
∑

j=1

ℓj,i, un =
K
∑

i=1

un,i,

respectively, whereu0,i = 0 andℓj,i = log
dP1,i

dP0,i
(ξj,i). In other words,ℓj,i is the log-likelihood ratio of

thejth observation in theith sensor.
We also define the Kullback-Leibler DivergenceI1,i = E1[ℓn,i], I0,i = −E0[ℓn,i] of P1,i versus

P0,i andP0,i versusP1,i respectively which we assume that are finite in every sensori. Let alsoI1 =
∑K

i=1 I1,i, I0 =
∑K

i=1 I0,i.
In classical sequential hypothesis testing, the goal is to choose between the hypothesesH0 andH1

using asequential test, i.e. a pair(T , dT ), whereT is an{Fn}-adapted stopping time anddT is an
FT -measurable r.v. with values in{0, 1}.

In the decentralized version of the problem we must choose: (1) an increasing sequence of{Fn,i}-
adapted stopping times{τ i

k}
∞
k=1 at each sensori at which times to communicate with the fusion center

(sampling strategy), (2) a sequence of quantized signals{zi
k}

∞
k=1 to transmit to the fusion center from

sensori at the times{τ i
k} (quantization strategy) and (3) a sequential test that is based on the available

information at the fusion center, i.e. the quantized signals{zi
k} from all sensors and the corresponding

stopping times{τ i
k}.

The above formulation of the decentralized problem generalizes the typicalmathematical setup in
the literature (see e.g. [2], [4]), where only steps (2) and (3) are included and the sensors are assumed to
communicate, synchronously, with the fusion center ateverytime instantn. It should be noted that in
the proposed approach communication between sensors and fusion center is asynchronous and sparse.

2.1 Performance Criteria and the Optimal Centralized Tests
We use Wald’s approach [5] to formulate the sequential hypothesis-testingproblem. We start by intro-
ducing the discrete-time version of the Sequential Probability Ratio Test (SPRT), which is defined as
follows:

N = inf{n ≥ 1 : un /∈ (−A, B)} , dN = {uN≥B} , (1)

whereA, B > 0 are two constant thresholds. The SPRT was shown by Wald and Wolfowitz in[6] to be
optimal in the sense that it solves the following optimization problem:

inf
(T ,dT )

Ej [T ]; subject toP0[dT = 1] ≤ α andP1[dT = 0] ≤ β, (2)

wherej = 0, 1 andα, β > 0 are such thatα + β < 1. The boundariesA, B are chosen so that the
error probability constraints in (2) are satisfied with equalities. It is well-known that under appropriate
conditions on the process{un}, such as existence and finiteness of the moment-generating function (see
[3]), we have that asα, β → 0:

A = O(| log β|) , I1E1[N ] = | log α|(1 + o(1))

B = O(| log α|) , I0E0[N ] = | log β|(1 + o(1)).

2.2 Suggested Decentralized Test
Sampling & Quantization Strategy. Following [1] we suggest that sensori sends a quantized signal
to the fusion center at the stopping times{τ i

k}, which are defined recursively as follows:

τ i
k = inf{n ≥ τ i

k−1 : un,i − uτ i
k−1

,i /∈ (−∆i, ∆i)}, (3)
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where∆i, ∆i > 0 are thesampling thresholdsin sensori andτ i
0 = 0. The signal that theith sensor

sends at timeτ i
k , i.e. at thekth time it communicates with the fusion center, will be:

zi
k = {u

τi
k

,i
−u

τi
k−1

,i
≥∆i}

. (4)

We denote byηi
k the overshoot that occurs in thekth sample from theith sensor, i.e.

ηi
k = (uτ i

k
,i − uτ i

k−1
,i − ∆i)

+ + (uτ i
k
,i − uτ i

k−1
,i − ∆i)

−.

We also denote bỹℓk,i the log-likelihood ratio ofzi
k. For any given sensori, {ξn,i} is a sequence of

i.i.d. r.v’s under both hypotheses, thus{zi
k} is a sequence of i.i.d. Bernoulli r.v’s with parameter1−π1,i

underH1 andπ0,i underH0, where

π1,i = P1[z
i
k = 0] , π0,i = P0[z

i
k = 1],

where we note thatπ0,i, π1,i < 0.5. This suggests that:

ℓ̃k,i = λiz
i
k − λi(1 − zi

k), where λi = log

(

1 − π1,i

π0,i

)

, λi = log

(

1 − π0,i

π1,i

)

.

Sequential test at the fusion center. In order to define the suggested decentralized sequential test we
introduce the following notation, which suppresses the dependence on thesensor: we denote byτk the
time that thejth signal arrived to the fusion centerindependently of the sensor who sent it. Since it is
possible to have signals from different sensors sent at the same time to the fusion center, we order them
in an arbitrary way, for example in alphabetic order. Thus, if for example sensorsi andm both send
a signal at time n=1, withi < m, then we set:τ1 = τ1,i = 1, τ2 = τ1,m = 1. Similarly, we denote
by zk the signal that arrived at the fusion center at timeτk, ℓ̃k the log-likelihood ratio ofzk andηk the
corresponding overshoot. Moreover, we denote byδk the identity of the sensor which sent the signalzk,
i.e. δk = i, if the kth signal was sent from sensori, i = 1, . . . , K. Finally we denote by{Ck}

∞
k=0 the

flow of information at the fusion center, i.e.

Ck = σ {(zs, δs), 1 ≤ s ≤ k} .

Clearly,Ck ⊂ Fτk
.

Suppose now that{ũk} is the log-likelihood ratio process of the messages{zk} that arrive at the
fusion center fromany sensor. Then, from the independeceacrossandwithin sensors and since the
fusion center knows which sentor sent each signal, we have the followingrepresentation:

ũk =
k
∑

m=1

ℓ̃m =
K
∑

i=1

ki
∑

m=1

ℓ̃m,i, whereki =
k
∑

m=1

{δm=i}, i = 1, . . . , K.

We note that index{k} counts the number of samples received at the fusion center and not global time.
Reference to global time is achieved by using the sequence of communication times {τk} since thekth
sample received by the center corresponds to the global timeτk.

The suggested sequential test for the problem in (2) will then be:

Ñ = τK, whereK = inf{k ≥ 1 : ũk /∈ (−Ã, B̃)} , dÑ = {ũK≥B̃} , (5)

whereÃ, B̃ are chosen so thatP0[dÑ = 1] = α andP1[dÑ = 0] = β.
Notice thatK is a stopping time with respect to filtration of the fusion center, i.eK is a{Ck}-adapted

stopping time. Moreover,CK ⊂ FÑ , sinceÑ = τK. Finally, by the definition of the likelihood ratio
process we have the following relationship:

E0[e
u
Ñ |CK] = eũK .
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This is true, since the probability measures projected onto the space generated by the data transmitted to
the fusion center involves only Bernoulli random variables. Consequently the log-likelihood ratio at the
kth sample is simplỹuk.

We now state some Lemmas, which are useful for proving the main results of thispaper, however
we omit most of the proofs, due to space constraints.

Lemma 1. Ã ≤ | log β| , B̃ ≤ | log α|.

Lemma 2. For large values of∆i, ∆i we have:

E1[|η1,i|] = O(1) , λi = ∆i + ρi + o(1) , ∆i = O(| log(π0,i)|)

E0[|η1,i|] = O(1) , λi = ∆i + ρ
i
+ o(1) , ∆i = O(| log(π1,i)|)

whereρi, ρi
are positive constants which do not depend on∆i, ∆i.

Lemma 3. For j = 0, 1, we have the following inequalities:

Ej

[

K
∑

k=1

|ηk|

]

≤ Ej [K]
K
∑

i=1

Ej [|η1,i|] , Ej

[

K
∑

k=1

|ℓ̃k − Ej [ℓ̃k]|

]

≤ Ej [K]
K
∑

i=1

Ej [|ℓ̃1,i − Ej [ℓ̃1,i]|].

The performance of the suggested scheme is characterized by the following inequalities:

Proposition 1.

I1
E1[Ñ ]

| log α|
≤

(

1 +

∑K
i=1 λi

| log α|

)(

1 +

∑K
i=1 E1[|η1,i|]

ζ1

)

, (6)

I0
E0[Ñ ]

| log β|
≤

(

1 +

∑K
i=1 λi

| log β|

)(

1 +

∑K
i=1 E0[|η1,i|]

ζ0

)

, (7)

whereζ1 ≡ mini E1[ℓ̃1,i] −
∑K

i=1

√

V1[ℓ̃1,i] , ζ0 ≡ mini E0[ℓ̃1,i] −
∑K

i=1

√

V0[ℓ̃1,i] andVj denotes
variance.

Proof. We will work underH1 and prove (6), we can prove (7) in the same way. We observe that{un} is
a random walk and̃N an integrable stopping time with respect to the filtration{Fn}. Therefore, we can
apply Wald’s identity and have:I1E1[Ñ ] = E1[uÑ ] = E1[uÑ − ũK]+E1[ũK]. From the definition of the
overshoots{ηk} we have:uÑ − ũK =

∑K
k=1 ηk ≤

∑K
k=1 |ηk|, thus from Lemma 3 we obtain:E1[uÑ −

ũK] ≤ E1[K]
∑K

i=1 E1[|η1,i|]. Moreover,ũK =
∑K

k=1(ℓ̃k − E1[ℓ̃k]) +
∑K

k=1 E1[ℓ̃k] ≥ −
∑K

k=1 |ℓ̃k −
E1[ℓ̃k]|+Kmini E1[ℓ̃1,i]. Using Lemma 3, the fact that theL2 norm is larger than theL1, and assuming
ζ1 > 0 yields I1E1[Ñ ] ≤ (1 +

∑K
i=1 E1[|η1,i|]/ζ1)E1[uÑ ]. Our proof is completed by observing

that from the definition of the sequential test in (5) and Lemma 1, we have:ũK ≤ B̃ +
∑K

i=1 λi ≤

| log α|+
∑K

i=1 λi, since
∑K

i=1 λi is the maximum possible overshootũK − B̃ on the event{ũK ≥ B̃}.
Thus:E1[ũK] ≤ | log α| +

∑K
i=1 λi.

We can now show that the suggested scheme is asymptotically optimal if we let the thresholds
∆i, ∆i → ∞ appropriatelyasα, β → 0. Before we do that, we state the following Lemma:

Lemma 4. ζ1, ζ0 → ∞ as∆i, ∆i → ∞.

Proposition 2. If α, β → 0 and∆i, ∆i → ∞ so that:

∆i = o(| log α|) , ∆i = o(| log β|), (8)

then Ej [Ñ ]
Ej [N ] → 1, j = 0, 1, i.e. the suggested scheme(Ñ , dÑ ) is asymptotically optimal of order-1.



Decentralized Testing 5

2.3 Optimal Rate for the Sampling Thresholds
It is very interesting now to determine the optimal divergence rate of the thresholds∆i, ∆i as a function
of the error probabilitiesα, β.

Proposition 3. If ∆i, ∆i → ∞ then the optimal divergence rate for the sampling thresholds∆i, ∆i as
α, β → 0 is:

∆i = O(
√

| log α|) , ∆i = O(
√

| log β|).

Under this selection, asα, β → 0, we have that:

E1[Ñ ] ≤
| log α| + const.

√

| log α| + const.

I1
, E0[Ñ ] ≤

| log β| + const.
√

| log β| + const.

I0
,

and

E1[Ñ ] − E1[N ] = O(
√

| log α|) , E0[Ñ ] − E0[N ] = O(
√

| log β|).

2.4 Oversampling and Asymptotic Optimality of order 2
Suppose now that, at each sensor, we have the possibility to modify the firstabsolute momentEj [|ξn,i|]
of the acquired samples. In a real sensor network system where samplesare obtained by sampling
continuous-time signals this can be realized by changing the sampling rate. We can then show that
provided that the second moment is sufficiently small we obtain asymptotic optimalityof order-2 for
the suggested schemeeven with fixed sampling thresholds∆i, ∆i. This is the content of the following
proposition.

Proposition 4. Assume that asα, β → 0 we have the ability to forceEj [|ξn,i|] → 0, j = 0, 1, i =
1, . . . , K. If for every sensori we keep the sampling thresholds∆i, ∆i fixed and select the rates as
follows

| log α| · E1[|ξ1,i|] → 0 , | log β| · E0[|ξ1,i|] → 0, (9)

thenEj [Ñ ] − Ej [N ] = O(1), j = 0, 1 , i.e. the suggested scheme(Ñ , dÑ ) is asymptotically optimal of
order-2 under bothH0 andH1 for the problem in (2).

Example: Suppose that the i.i.d. sequence of observations in each sensor is obtained from canonical
deterministic sampling of a continuous-time process{ξt,i}t≥0 at the discrete timest = nh, n ∈ N ,
where each{ξt,i} is a Brownian Motion with drift 0 underH0 andµi underH1. Eachµi is a real non-
zero constant andh > 0 is the common sampling period for all sensors. We then have the followning
hypothesis testing problem:

H0 : {ξnh,i − ξ(n−1)h,i} ∼iid N (0, h) , H1 : {ξnh,i − ξ(n−1)h,i} ∼iid N (µih, h) (10)

Letting h → 0 makes the discrete problem converge to the continuous problem, thus:
limh→0 Ej [|ξ1,i|] = 0, j = 0, 1. Therefore, lettingh → 0 andα, β → 0 in such a way that condi-
tion (9) is satisfied, leads toorder-2 asymptotic optimality of the D-SPRT. Of course the question is
how dense the sampling must be in order to have performance which is comparable to the optimum. As
the next simulation example reveals, even crude sampling is sufficient to guarantee a very satisfactory
performance.

3 Design and Simulation Experiments

The main challenge in the implementation of the D-SPRT is the choice of the sampling thresholds∆i

and∆i. Small values of∆i, ∆i’s entail more frequent communication between the sensors and the
fusion center, but make the scheme more vulnerable to the overshoot effect while overly large values of
the same parameters result in larger detection delays. Thus, we should choose the sampling thresholds



6 Fellouris and Moustakides

to be large enough in order to stabilize the overshoot effect, but not too large to affect the frequency of
communication between sensors and fusion center.

In Propositions 2 and 3 we deal exactly with this problem and provide the (optimal) rate of diver-
gence for the sampling thresholds that allow the scheme to be asymptotically optimal.However, the
scheme will in practice be implemented with constant predetermined sampling thresholds; thus there is
still a lot of flexibility in the specification of the sampling thresholds, since Proposition 3 determines
only the optimal divergence rate of the∆i, ∆i’s with respect to the error probabilitiesα, β.

In Proposition 4, we take a different approach and consider the samplingfrequencyh of the
continuous-time signal at the sensors as the control parameter, instead ofthe sampling thresholds. The
results of these propositions imply thatoversamplingat the sensor-level improves dramatically the effi-
ciency of the D-SPRT by minimizing the overshoot effect. In that case, we expect smaller∆i, ∆i’s to
lead to better performances for the D-SPRT.

We illustrate these ideas by performing two simulation experiments in the context ofproblem (10).
We setK = 4 andµ1 = . . . = µ4 = 1. We compare our scheme defined in (5) with the optimal central-
ized SPRT (1) and also with the test suggested by Mei in [2], which is also asymptotically optimal. We
consider two casesh = 1 and 0.1 while the sampling thresholds take the values∆i = ∆i = 1.5, 4.5, 7.5.
We plot the resulting average-length-run (ARL) curves and compare them to the corresponding curves
of the optimal SPRT and Mei’s test. The horizontal axis represents| log α|(= | log β|), since in our
example we considerα = β and the vertical axis represents the expected time for a decision.

Both graphs show the D-SPRT has a substantially better performance than Mei’s test and is also very
close to the optimal performance. This is true for all three choices of the sampling thresholds. Moreover,
in the graph to the right which corresponds toh = 0.1, the D-SPRT (with the same choices for the
sampling thresholds) is much closer to the optimal centralized test than in the left case whereh = 1.
In addition to that, whenh = 0.1 there is a clear ordering in the curves that correspond to the different
∆i = ∆i’s with smaller sampling thresholds leading to better performances. These graphs are consistent
with our results and seem to advocate the use of our scheme especially in combination with oversampling
at the sensor level.
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