Quickest Change Detection in Hidden Markov Models for Sensio
Networks

Cheng-Der Fuhand Yajun Met

o

Institute of Statistical Science, Academia Sinica, and
Graduate Institute of Statistics, National Central Ursitgr
128, Academia Rd. Sec. 2, Taipei 11529, Taiwan
stcheng@stat.sinica.edu.tw

School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA, U.S.A.

Email: ymei@isye.gatech.edu

"Invited session: Sequential Methods in Sensor Networkga@izers: Y. Mei and C.-D. Fuh.”

Abstract. The decentralized quickest change detection problem dextun sensor networks, where a set of sensors receive
observations from a hidden Markov model (HM®)and send sensor messages to a central processor, calleditredenter,
which makes a final decision when observations are stoppedassumed that the paramefein the hidden Markov model

for X changes front, to 6; at some unknown time. The primary goal of this paper is tostigate how to choose the best
stationary quantizers in the context of quickest changedtien in sensor networks. A closely related goal of thisgpap to
report the distribution of the run length to false alarm fdviM in some scenarios.
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1 Introduction

Sensor networks have many important applications incydinvironment monitoring, target detection
and tracking, and security and surveillance systems [cfirBit al. (1997), and Viswanathan and Varsh-
ney (1997)]. Since communication costs are usually dontiimesensor networks, especially for wireless
sensor networks, it is crucial to reduce communicationscossensor networks. One naive approach is
to transmit all raw data from each sensor node to a centralegsor, called th&usion center, which
then undertakes the heavy task of making the relevant desisA standard mathematical formulation
to transmit the raw data is to require that the sensor mesdagjeng to a finite alphabet (possibly
binary).

One of the most important topics in sensor networks is hovake into account complex spatio-
temporal structure and relational interactions amonga@snso which hidden Markov model (HMM)
is a powerful statistical tool. A hidden Markov model is a biyustochastic process with an underlying
stochastic process that is not directly observable (iiddem) but can be observed only through an-
other set of stochastic processes that produces the segakabservations. The application to sensor
networks can be found in Dogandzic and Zhang (2006), and ¢Haad Dey (2006).

The primary goal of this article is to investigate deceliteal quickest change detection problems
in hidden Markov models for sensor networks. It is assumatttie raw sensor observations are char-
acterized by a hidden Markov model with some (possibly v@gtarameteid, and at some unknown
(possiblyo) time v, the parametef changes from one value to another value. Such a change can oc-
cur in either the Markov chain or the conditional densityduon of raw sensor observations or both
(although we do assume that the change is detectable byaringiraw sensor observations, since the
true state of HMM is unobservable). The goal is to detect the thange as soon as possible over all
possible thresholds,’s at the sensors and over all possible detection scheme &igton center, under
a restriction on the frequency of false alarms. A closelgtesl goal of this paper is to report the distri-
bution of the run length to false alarm for HMM in some sceosriThis is useful to clarify whether the
average run length to false alarms are appropriate cniténitiMM models.
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2 Problem formulation

Assume that the sensor observatiofs,’s can be characterized by the hidden Markov models (HMM).
Specifically, letX = {X,,n > 0} be a discrete time Markov chain on a finite state spAce-
{1,---,d}, with transition probability matrix

pg(l,l) p0(17d)
p@(d7 1) p@(d7d)

wherepy (i, j) = Po(Xn11 = i| X, = j),1 < 4,j < d. We also assume that the initial distribution of
the chainX is the stationary distribution aX

T = (779(1)7"' 7779(d))t7 2)

wheret denotes transpose.

At time n, it is assumed that the distribution of the sensor obsemvaltjo, taken at sensof},
is completely determined by the Markov chaky,. That is, we assume that the conditional distri-
bution of Y3 ,, given X1 = z1,---,X,, = x, IS fm(?e(-). Moreover, we also assume that given
X1 =21, -, X, = x,, the sensor observations ,,, - - - , Yr ,, are conditionally independent.

Definition 1. We call a procesgY),,,, n > 0, k = 1,--- , K} a hidden Markov model (HMM) for
sensor networks if there is a Markov chdiX,,,n > 0} satisfies (1), (2), andf;,,, satisfies the above
conditions.

After taking the raw sensor observatiof ,,, we assume that each &f sensorsS; quantizes the
raw sensor observations and sends the quantized data asoa s@ssagé/;, ,, at timen to the fusion
center, due to data compression and limitations of charared\Width. For simplicity, a stationary binary
guantizer is used at each senspr:

_ _ L it Yen >N
Uin = bnllie) = {57 137 23 ®
where the thresholds\y, - - - , \;) are constants that needs to be chosen to optimize the nepedi-

mance. To further reduce communication costs, in pradtige, = 0 can be represented by the situation
when the sensor does not send any sensor messages to thmedesier, i.e., the sensor is silent. The
fusion center then uses the stream of mességes from the sensors as inputs to make a final decision.

To formalize the change point detection problem, ¥ = (Yi,,---,Yx,) and U, =
(Uin, -+ , Uk ), and denote b, the probability measure when there is no change (i.es,00). For
each possible change-point= 1,2,3- - - , suppose there is a (new) post-change probability medsure
on the sample space %f;, Yy, Y3, - - - such that the joint margin®,, -distribution ofY¢,--- ,Y,_qis
equal to the joint margindP .-distribution of Y, --- ,Y,_1. Then the decentralized quickest change
detection problem can be formally stated as sequentiahnigthe null hypothesis

Hy : Py istrue (i.e., no change)
against a composite alternative hypothesis
H, : P, istrue forsome = 1,2,--- (i.e., a change occurs)

In many applications with dependent observations, the idiefinof P, is obvious, but the defini-
tions of P,'s can be non-trivial since they may depend on specific agfitins or assumptions. In this
paper, we adapt the following formulation. For given randaariablesY;, Yo, Y3, - - -, the likelihood
ratio is defined as

1, , Xpn) = po; (Y1, Yn)/po, (Y1,-, Y1) )
Poc pe(l)(Ylv“‘vYn)/pe(l) (Y1, Y1) ifn>wv.
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for anyn > 1, where, as conventionaP(Y,) = 1 for § = 6, or 6, andI{ A} is the indicator function.
Note that the fusion center makes decisions based on therseressages (vector observations)
U,,. If the sensor quantizers are stationary and pre-deternfireedno design issues for the senor mes-
sages), then the fusion center faces a classical (ceetlplguickest change detection in HMM. In the
problem of testing the null hypothesid, : P, istrue against a composite alternative hypothesis
H, : P, istrue forsomer =1,2,---, it is easy to see that for the firat sensor message vectors,
(Uy,---,Uy,), the logarithm of the corresponding generalized likelihoatib (GLR) statistic is

v o sz

(Ulv T 7Un) = Inax (07 11;1%}% 10g dPoo (Ulv T >Un)>> (5)
since in the change-point problef§- (U, ,--- ,U,) = 1if v > n. Hence a natural detection scheme
is to declare that a change occurs if the-GLR statisticlV,, is too large. That is, it is natural to consider
the GLR detection scheme that raises an alarm at the stofipiag

N := N(cy) :=inf{n : W, > ¢, }, (6)

whereW,, is defined in (5) and, is chosen such th&.. N (c,) = 7.
When the probability measur®y,’s are those defined in (4), it is easy to see that the statigtian
(5) can be written as

dP
W, = 1
1555 8 P,

W, = max (log S} —log S}'), (7)

0<i<n

(Ui, Un;01)

where the likelihood ratid;; := 7 (U1 Unifo)

forn > 1, S§ = 1 as conventional, and

d n
k,U)
pa(Ury Uni0) = S molao) [T [po(wi, ) Hf< (U] ®)
o, ,Tn=1 i=1 k=1
represents the joint distribution of the firssensor message vectoftl;, - - - , U,,), when the parameter

of the HMM is § and there are no changes. Hg{[ﬁé’;ﬂ(Um) is the induced probability mass function
of Up; = I(Yy; > A\;) whenY} ; has a distributiorﬁf’)@(-).

From (7), it is obvious that when the probability measuPgss are defined in (4), theil/,, enjoys
the recursive formula of the form

W, = max (Wn_1 + (log S — log S¥._,), o) forn > 1, 9)

which is similar to that of the classical CUSUM procedurentts in the following we just call the
GLR-based detection schemein (6) as the CUSUM procedure.

In this paper, we are interested in determining the asyngalbt optimal fusion center schemes
when the stationary binary quantizers in (3) are given. is ¢thse, the fusion center faces the classical
change-point detection problems in hidden Markov modetetan the quantized binary vecioy, =

(Ui, - ,Uk ). A natural question is how to choose good stationary threlsh@\ simple approach
is based on the asymptotic properties [cf. Fuh (2003)] as oo, E1(7) = (1 + o(1)) [é‘;g(’y) where the

K"()\) is the Kullback-Leibler information number induced &R, when the stationary thresholds are
A= (A1,...,Ak). Thus, the Kullback-Leibler information number (or relatientropy)K™ () plays an
essential role in our setting. By Fuh (2003), and Fuh and R1208) based ofJ,,, an asymptotic optimal
rule at the fusion center is the CUSUM scheme with the thidshaf selecting\;, which maximize the
Kullback-Leibler information numbekK™ ().

Given the difficulty of calculating the Kullback-Leibler formation number for HMM, it is in-
tractable to find\ that maximizeg<"(\), locally or globally (except some degenerate scenariogs Th
may not satisfy practitioners or researchers who want tgoeena reasonable (not necessarily the best)
numerical value o to provide a benchmark in their specific application. A natapproach is then to
find \ to optimize amapproximation of K"(\) that can besolved in the sense of generating numerical
values. One such idea is presented in Fuh and Mei (2008). Arrttajust of this paper is to develop a
feasible computational method to simulate the optimalsthoé \.
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3 Simulation studies

Motivated by the Gilbert-Elliot model for burst errors indeommunication, we may assume that there
are two stated) (a “good” state) and (a “bad” state), with the transition probability matrix

(1 —a o )
B 1-5)
Conditional on the hidden staf€, = xz,, (= 0 or 1), the sensor observatioks,, can be modeled as

Yin = tay + Oz €hns 1<k<K,

where thee; ,,’s are i.i.d. N(0,1). Denote byl = («, 3, 1o, pt1, 00, 01), and we are interested in de-
tecting a change id from 6, to 6,. Assume that the parameters values before a change occurs are
a = 001,86 = 01,u0 = 1 = 0,00 = 1 ando; = 5, i.e., the pre-change parameter tbis

6o = (0.01,0.1,0,0,1,5). In our simulations, we consider the change

e Change in Markov chain: only (a, 3) changes from(0.01,0.1) to (0.5,0.5), i.e., the post-change
parametef; = (0.5,0.5,0,0,1,5).

The remainder of this section is as follows. In Subsectidn\®e summarize our simulations results
on the Kullback-Leibler information in HMM for the above aige. In Subsection 3.2, we report our
simulation results in the context of quickest change dietecEubsection 3.3 then reports the distribution
of run length to false alarms under this scenario.

3.1 Kullback-Leibler information number
Under the above scenario, we present the Kullback-Leiliarination numbets (61, 6y) of the raw

observationgY1 ,,,--- , Yk ,)'s and of the quantized observatio(is; ,,, - - ,Uk,)'s, whereUy, ,, =
i > : .
{ (1)’ :; g’“” 2 i , for different choices of threshold value(we assume all sensors use the same thresh-
) k,n
old ).

To derive some candidates of quantized threshgldesides some equal-distributed values in the
interval of either{0, 1] or [1, 10], we will consider three special values bfThe first two special values
correspond to thosa’s that maximize the K-L information numbers of the margidadtributions of
Y. »'s with K = 1 and2 sensors, respectively. The third special valus motivated from the fact the
marginal distribution may be a very poor approximation whes 3 # 1 and whenf, ¢ and f; y are
significantly different. Thus, to derive “better” value df we may simply pretend that = 5 = 0.5 by
ignoring the actual exact values@fand3, and then find\ that maximizes the K-L information numbers
of the marginal distributions df}, ,,'s whena = 8 = 0.5. This gives us the third special values of

Since K (64, 6y) can be approximated bglog S, for large value ofr. In our calculation, we sim-
ulatedm = 10% values of log S, with n = 10°, and then we reported the mean of these= 103
repetitions as the estimate &f(6;, 6y) (the median of these repetitions is the same as, or very tiose
the mean in our examples).

Suppose we are interested in detecting a change, ifi), the parameters in the transition probability
matrix of Markov chain, from(0.01,0.1) to (0.5,0.5). Note that when the quantized threshold= 0,
then the conditional densities bf = I(Y > \) givenX = 0 or 1 are identical, and thus it is impossible
to detect a change ifw, 5) based orlj, ,,’s. Also, by symmetric, it is sufficient to consider when the
threshold\ > 0.

Using the K-L information number of the marginal distrilmrts to approximate the K-L information
for HMM, we have three special choicesdtinder this scenariok = 2.6375 (one sensor), 2.7354 (two
sensors), ant.3284 (by pretendingy = 6 = 0.5).

Table 1 summarizes the estimated value&¢#, , 6,) for the raw observations;, ,,’'s and the quan-
tized observationg/;, ,,'s with different choices of threshold valués. In Table 1, the values in paren-
thesis are the standard deviationsmef= 103 repetitions. From Table 1, in the scenario when only
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Table 1. Estimated Kullback-Leibler information numbéf(6., 6) when(«, 3) changes fron{0.01,0.1) to (0.5, 0.5)

K (01,00)

N [K=1|K=2]K=5|K=10
Raw | 0.2509] 0.5411| 1.3193| 1.6870
(0.0014}(0.0022)(0.0039)(0.0048

1 |0.0268] 0.0511] 0.1325] 0.2885
(0.0006}(0.0008)(0.0012)(0.0019
2 | 0.0721] 0.1351| 0.3594| 0.7646
(0.0008}(0.0010)(0.0018)(0.0028
2.3284 0.0786] 0.1449] 0.3819] 0.8192
(0.0008}(0.0010)(0.0017}(0.0028
2.6375 0.0802| 0.1458| 0.3790| 0.8222
(0.0008}(0.0010)(0.0016)(0.0026
2.7354 0.0800| 0.1448| 0.3746| 0.8153
(0.0008}(0.0010)(0.0016)(0.0026
3 | 0.0781| 0.1401] 0.3573| 0.7836
(0.0008}(0.0010)(0.0015)(0.0024
4 | 0.0641] 0.1120] 0.2683| 0.5909
(0.0008}(0.0009)(0.0014}(0.0020
5 | 0.0501| 0.0860| 0.1931| 0.4076
(0.0008}(0.0008)(0.0011(0.0017

(o, B) changes tq0.5,0.5), among those choices ofs, the Kullback-Leibler information number of
the quantized observatid, , = 1(Y} , > A) is maximized neak = 2.6375, the value that maximizes

the K-L information number of the marginal distribution ©@f ,, with a single-sensor.

3.2 Quickest change detection

To further confirm the above calculations of the KullbackHler information numbers in HMM, in the
above scenario, we now run simulations in the context of thekgst change detection problems for the
single-sensor system, i.ds; = 1 for simplicity. Specifically, leiV,, be the CUSUM statistics (i.e., the
generalized log-likelihood statistics for HMM) for eitheaw or quantized observations, and the fusion
center uses the CUSUM procedure

N(a) = inf{n : W,, > a}.

We will compare the CUSUM procedure with raw data with thré¢STM procedures with quantized
threshold)’s (the specific thresholds depend on the specific kinds aligbs).

For these CUSUM procedures, the threshold value was firstrdé@ied from the criterion on the
average run length to false alari.. (N (a)) ~ ~. A 103-repetition Monte Carlo simulation was per-
formed to determine the appropriate values:dd yield the desired average run length to false alarm
~ to within the range of sampling error. To speed up the siraratone efficient algorithm is to run
one simulation to return the record values of the CUSUM statsséind the corresponding values of run
lengths, and then to estimake,, (N (a)) for differenta based on these record values.

Next, we simulate the detection delBy (N (a)) based on Monte Carlo experiments with? repe-
titions, and then report corresponding results of detadielays.

Table 2 summarizes the simulated detection delays of the® procedures under the above-
mentioned change, based oi® repetitions, subject to the constrait, (7'(a)) = -, with the values
of a in parentheses.

From Table 1, among all quantized observations, the CUSUMequture with quantized threshold
A = 2.6375 has the smallest detection delay, which is consistent WiHfadct that\ = 2.6375 leads to
the largest Kullback-Leibler information number.

3.3 Runlengths to false alarms

Fig. 1 illustrates the histogram and exponential QQ-pldtsua lengths to false alarm in the above
example. From this plot, the run lengths to false alarm apeagimately exponentially distributed.
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Table 2. Detection Delays of CUSUM procedur@swith E (T") =~ v when(«, 3) changes fron0.01, 0.1) to (0.5, 0.5)

~ Raw | A=1 [~=26375] A=5
200 291) | (1.88) | (202) | (2.09
9.6 +0.2 |45.1 £0.8/17.5£0.3|24.8 £0.5
400 349) | (240) | (290) | 213
12.5+0.2|164.1 £1.1124.8 0.4 |32.1 = 0.6
600 @90) | @73 | (323 | @71
14.1 £ 0.2|76.2 £ 1.3| 30.2 = 0.5 |38.8 = 0.7
800 @23) | 294 | (340) | (3.09)
15.4 +0.2|184.4 +1.3| 33.3 = 0.5 |43.6 = 0.8
1000 | (4.43) | 314 | (362 | 324
16.3 +£0.2|192.1 +1.4| 35.7 = 0.6 |47.3 = 0.8
Theoreticdl (%% | A% | %% | %
Large~y
350
300 ,
250 ,
200 ,
150 ,
100 ,
50 ,
% 1 2 3 — 4 s B 7 8
Histogram
8 T
§ Sr boo T
3 P
% 4r #—r#f%jﬁrt* L |

4 5 6 7

0 1 2 3
Standard Exponential Quantiles

Fig. 1. Example A (change in Markov chain): Histogram and expomér@Q-Plot of Run Lengths to False Alarms with
Eo (N) = 1000.

4 Conclusions

In this article, we examined the decentralized quickeshghadetection problem in sensor networks.
In the detection scheme we considered, each sensor simplyaced its current sensor observation to
a stationary threshold, and the fusion center used a CUSipldcheme based on binary vectors. We
also introduced the global and local maximization methadschoosing the “optimal” stationary local
thresholds at the sensor level. While the classical quiakteenge detection problems have been studied
for several decades, the decentralized quickest changetidet, particularly in HMM models, is still in

its infancy. Clearly, there is a lot of research ahead to owgithe theory, algorithms and methodology.
Hopefully this article can stimulate further research.
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