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Abstract. The decentralized quickest change detection problem is studied in sensor networks, where a set of sensors receive
observations from a hidden Markov model (HMM)X and send sensor messages to a central processor, called the fusion center,
which makes a final decision when observations are stopped. It is assumed that the parameterθ in the hidden Markov model
for X changes fromθ0 to θ1 at some unknown time. The primary goal of this paper is to investigate how to choose the best
stationary quantizers in the context of quickest change detection in sensor networks. A closely related goal of this paper is to
report the distribution of the run length to false alarm for HMM in some scenarios.
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1 Introduction

Sensor networks have many important applications including environment monitoring, target detection
and tracking, and security and surveillance systems [cf. Blum et al. (1997), and Viswanathan and Varsh-
ney (1997)]. Since communication costs are usually dominant in sensor networks, especially for wireless
sensor networks, it is crucial to reduce communication costs of sensor networks. One naive approach is
to transmit all raw data from each sensor node to a central processor, called thefusion center, which
then undertakes the heavy task of making the relevant decisions. A standard mathematical formulation
to transmit the raw data is to require that the sensor messages belong to a finite alphabet (possibly
binary).

One of the most important topics in sensor networks is how to take into account complex spatio-
temporal structure and relational interactions among sensors, to which hidden Markov model (HMM)
is a powerful statistical tool. A hidden Markov model is a doubly stochastic process with an underlying
stochastic process that is not directly observable (i.e., hidden) but can be observed only through an-
other set of stochastic processes that produces the sequence of observations. The application to sensor
networks can be found in Dogandzic and Zhang (2006), and Huang and Dey (2006).

The primary goal of this article is to investigate decentralized quickest change detection problems
in hidden Markov models for sensor networks. It is assumed that the raw sensor observations are char-
acterized by a hidden Markov model with some (possibly vector) parameterθ, and at some unknown
(possibly∞) time ν, the parameterθ changes from one value to another value. Such a change can oc-
cur in either the Markov chain or the conditional density function of raw sensor observations or both
(although we do assume that the change is detectable by monitoring raw sensor observations, since the
true state of HMM is unobservable). The goal is to detect the true change as soon as possible over all
possible thresholdsλk’s at the sensors and over all possible detection scheme at the fusion center, under
a restriction on the frequency of false alarms. A closely related goal of this paper is to report the distri-
bution of the run length to false alarm for HMM in some scenarios. This is useful to clarify whether the
average run length to false alarms are appropriate criterion in HMM models.
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2 Problem formulation

Assume that the sensor observationsYk,n’s can be characterized by the hidden Markov models (HMM).
Specifically, letX = {Xn, n ≥ 0} be a discrete time Markov chain on a finite state spaceD =
{1, · · · , d}, with transition probability matrix

Pθ =







pθ(1, 1) · · · pθ(1, d)
...

. . .
...

pθ(d, 1) · · · pθ(d, d)






, (1)

wherepθ(i, j) = Pθ(Xn+1 = i|Xn = j), 1 ≤ i, j ≤ d. We also assume that the initial distribution of
the chainX is the stationary distribution ofX

πθ = (πθ(1), · · · , πθ(d))t, (2)

wheret denotes transpose.
At time n, it is assumed that the distribution of the sensor observation Yk,n taken at sensorSk

is completely determined by the Markov chainXn. That is, we assume that the conditional distri-
bution of Yk,n given X1 = x1, · · · ,Xn = xn is f

(k)
xn,θ(·). Moreover, we also assume that given

X1 = x1, · · · ,Xn = xn, the sensor observationsY1,n, · · · , YK,n are conditionally independent.

Definition 1. We call a process{Yk,n, n ≥ 0, k = 1, · · · ,K} a hidden Markov model (HMM) for
sensor networks if there is a Markov chain{Xn, n ≥ 0} satisfies (1), (2), andYk,n satisfies the above
conditions.

After taking the raw sensor observationYk,n, we assume that each ofK sensorsSk quantizes the
raw sensor observations and sends the quantized data as a sensor messageUk,n at timen to the fusion
center, due to data compression and limitations of channel bandwidth. For simplicity, a stationary binary
quantizer is used at each sensorSk :

Uk,n = φk,n(Yk,n) =

{

1, if Yk,n ≥ λk

0, if Yk,n < λk
, (3)

where the thresholds(λ1, · · · , λk) are constants that needs to be chosen to optimize the networkperfor-
mance. To further reduce communication costs, in practice,Uk,n = 0 can be represented by the situation
when the sensor does not send any sensor messages to the fusion center, i.e., the sensor is silent. The
fusion center then uses the stream of messagesUk,n’s from the sensors as inputs to make a final decision.

To formalize the change point detection problem, letYn = (Y1,n, · · · , YK,n) and Un =
(U1,n, · · · , UK,n), and denote byP∞ the probability measure when there is no change (i.e.,ν = ∞). For
each possible change-pointν = 1, 2, 3 · · · , suppose there is a (new) post-change probability measurePν

on the sample space ofY1,Y2,Y3, · · · such that the joint marginalPν-distribution ofY1, · · · ,Yν−1 is
equal to the joint marginalP∞-distribution ofY1, · · · ,Yν−1. Then the decentralized quickest change
detection problem can be formally stated as sequentially testing the null hypothesis

H0 : P∞ is true (i.e., no change)

against a composite alternative hypothesis

H1 : Pν is true for someν = 1, 2, · · · (i.e., a change occurs).

In many applications with dependent observations, the definition of P∞ is obvious, but the defini-
tions ofPν ’s can be non-trivial since they may depend on specific applications or assumptions. In this
paper, we adapt the following formulation. For given randomvariablesY1,Y2,Y3, · · · , the likelihood
ratio is defined as

dPν

dP∞

(Y1, · · · ,Yn) =

{

1, if n ≤ ν − 1;
pθ1

(Y1,··· ,Yn)/pθ1
(Y1,··· ,Yν−1)

pθ0
(Y1,··· ,Yn)/pθ0

(Y1,··· ,Yν−1) , if n ≥ ν.
(4)
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for anyn ≥ 1, where, as conventional,Pθ(Y0) = 1 for θ = θ0 or θ1 andI{A} is the indicator function.
Note that the fusion center makes decisions based on the sensor messages (vector observations)

Un. If the sensor quantizers are stationary and pre-determined(i.e., no design issues for the senor mes-
sages), then the fusion center faces a classical (centralized) quickest change detection in HMM. In the
problem of testing the null hypothesisH0 : P∞ is true, against a composite alternative hypothesis
H1 : Pν is true for someν = 1, 2, · · · , it is easy to see that for the firstn sensor message vectors,
(U1, · · · ,Un), the logarithm of the corresponding generalized likelihoodratio (GLR) statistic is

Wn = max
1≤ν<∞

log
dPν

dP∞

(

U1, · · · ,Un

)

= max
(

0, max
1≤i≤n

log
dPi

dP∞

(

U1, · · · ,Un

)

)

, (5)

since in the change-point problemdPν

dP∞

(

U1, · · · ,Un

)

= 1 if ν > n. Hence a natural detection scheme
is to declare that a change occurs if thelog-GLR statisticWn is too large. That is, it is natural to consider
the GLR detection scheme that raises an alarm at the stoppingtime

N := N(cγ) := inf{n : Wn ≥ cγ}, (6)

whereWn is defined in (5) andcγ is chosen such thatE∞N(cγ) = γ.
When the probability measuresPν ’s are those defined in (4), it is easy to see that the statisticWn in

(5) can be written as

Wn = max
0≤i≤n

(log Su

n − log Su

i ), (7)

where the likelihood ratioSu
n := pn(U1,··· ,Un;θ1)

pn(U1,··· ,Un;θ0)
for n ≥ 1, Su

0 = 1 as conventional, and

pn(U1, · · · ,Un; θ) =

d
∑

x0,··· ,xn=1

πθ(x0)

n
∏

i=1

[

pθ(xi−1, xi)

K
∏

k=1

f
(k,U)
xi,θ

(Uk,i)
]

(8)

represents the joint distribution of the firstn sensor message vectors,(U1, · · · ,Un), when the parameter

of the HMM is θ and there are no changes. Heref
(k,U)
xi,θ

(Uk,i) is the induced probability mass function

of Uk,i = I(Yk,i ≥ λi) whenYk,i has a distributionf (k)
xi,θ

(·).
From (7), it is obvious that when the probability measuresPν ’s are defined in (4), thenWn enjoys

the recursive formula of the form

Wn = max
(

Wn−1 + (log Su

n − log Su

n−1), 0
)

for n ≥ 1, (9)

which is similar to that of the classical CUSUM procedure. Hence, in the following we just call the
GLR-based detection schemeN in (6) as the CUSUM procedure.

In this paper, we are interested in determining the asymptotically optimal fusion center schemes
when the stationary binary quantizers in (3) are given. In this case, the fusion center faces the classical
change-point detection problems in hidden Markov models based on the quantized binary vectorUn =
(U1,n, · · · , UK,n). A natural question is how to choose good stationary thresholds. A simple approach
is based on the asymptotic properties [cf. Fuh (2003)] asγ → ∞, E1(τ) = (1 + o(1)) log γ

Ku(λ) , where the
Ku(λ) is the Kullback-Leibler information number induced onUn when the stationary thresholds are
λ = (λ1, . . . , λK). Thus, the Kullback-Leibler information number (or relative entropy)Ku(λ) plays an
essential role in our setting. By Fuh (2003), and Fuh and Mei (2008) based onUn, an asymptotic optimal
rule at the fusion center is the CUSUM scheme with the thresholds of selectingλk which maximize the
Kullback-Leibler information numberKu(λ).

Given the difficulty of calculating the Kullback-Leibler information number for HMM, it is in-
tractable to findλ that maximizesKu(λ), locally or globally (except some degenerate scenarios). This
may not satisfy practitioners or researchers who want to compute a reasonable (not necessarily the best)
numerical value ofλ to provide a benchmark in their specific application. A natural approach is then to
find λ to optimize anapproximation of Ku(λ) that can besolved in the sense of generating numerical
values. One such idea is presented in Fuh and Mei (2008). A major thrust of this paper is to develop a
feasible computational method to simulate the optimal thresholdλ.
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3 Simulation studies

Motivated by the Gilbert-Elliot model for burst errors in telecommunication, we may assume that there
are two states:0 (a “good” state) and1 (a “bad” state), with the transition probability matrix

(

1 − α α

β 1 − β

)

.

Conditional on the hidden stateXn = xn (= 0 or 1), the sensor observationsYk,n can be modeled as

Yk,n = µxn + σxnǫk,n, 1 ≤ k ≤ K,

where theǫk,n’s are i.i.d.N(0, 1). Denote byθ = (α, β, µ0, µ1, σ0, σ1), and we are interested in de-
tecting a change inθ from θ0 to θ1. Assume that the parameters values before a change occurs are
α = 0.01, β = 0.1, µ0 = µ1 = 0, σ0 = 1 and σ1 = 5, i.e., the pre-change parameter ofθ is
θ0 = (0.01, 0.1, 0, 0, 1, 5). In our simulations, we consider the change

• Change in Markov chain: only (α, β) changes from(0.01, 0.1) to (0.5, 0.5), i.e., the post-change
parameterθ1 = (0.5, 0.5, 0, 0, 1, 5).

The remainder of this section is as follows. In Subsection 3.1, we summarize our simulations results
on the Kullback-Leibler information in HMM for the above change. In Subsection 3.2, we report our
simulation results in the context of quickest change detection. Subsection 3.3 then reports the distribution
of run length to false alarms under this scenario.

3.1 Kullback-Leibler information number

Under the above scenario, we present the Kullback-Leibler information numberK(θ1, θ0) of the raw
observations(Y1,n, · · · , YK,n)’s and of the quantized observations(U1,n, · · · , UK,n)’s, whereUk,n =
{

1, if Yk,n ≥ λ

0, if Yk,n < λ
, for different choices of threshold valueλ (we assume all sensors use the same thresh-

old λ).
To derive some candidates of quantized thresholdλ, besides some equal-distributed values in the

interval of either[0, 1] or [1, 10], we will consider three special values ofλ. The first two special values
correspond to thoseλ’s that maximize the K-L information numbers of the marginaldistributions of
Yk,n’s with K = 1 and2 sensors, respectively. The third special valueλ is motivated from the fact the
marginal distribution may be a very poor approximation whenα + β 6= 1 and whenf0,θ andf1,θ are
significantly different. Thus, to derive “better” value ofλ, we may simply pretend thatα = β = 0.5 by
ignoring the actual exact values ofα andβ, and then findλ that maximizes the K-L information numbers
of the marginal distributions ofYk,n’s whenα = β = 0.5. This gives us the third special values ofλ.

SinceK(θ1, θ0) can be approximated by1n log Sn for large value ofn. In our calculation, we sim-
ulatedm = 103 values of 1

n log Sn with n = 105, and then we reported the mean of thesem = 103

repetitions as the estimate ofK(θ1, θ0) (the median of these repetitions is the same as, or very closeto,
the mean in our examples).

Suppose we are interested in detecting a change in(α, β), the parameters in the transition probability
matrix of Markov chain, from(0.01, 0.1) to (0.5, 0.5). Note that when the quantized thresholdλ = 0,
then the conditional densities ofU = I(Y > λ) givenX = 0 or 1 are identical, and thus it is impossible
to detect a change in(α, β) based onUk,n’s. Also, by symmetric, it is sufficient to consider when the
thresholdλ > 0.

Using the K-L information number of the marginal distributions to approximate the K-L information
for HMM, we have three special choices ofλ under this scenario:λ = 2.6375 (one sensor), 2.7354 (two
sensors), and2.3284 (by pretendingα = β = 0.5).

Table 1 summarizes the estimated values ofK(θ1, θ0) for the raw observationsYk,n’s and the quan-
tized observationsUk,n’s with different choices of threshold valueλ’s. In Table 1, the values in paren-
thesis are the standard deviations ofm = 103 repetitions. From Table 1, in the scenario when only
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Table 1.Estimated Kullback-Leibler information numberK(θ1, θ0) when(α, β) changes from(0.01, 0.1) to (0.5, 0.5)

K(θ1, θ0)
λ K = 1 K = 2 K = 5 K = 10

Raw 0.2509 0.5411 1.3193 1.6870
(0.0014)(0.0022)(0.0039)(0.0048)

1 0.0268 0.0511 0.1325 0.2885
(0.0006)(0.0008)(0.0012)(0.0019)

2 0.0721 0.1351 0.3594 0.7646
(0.0008)(0.0010)(0.0018)(0.0028)

2.3284 0.0786 0.1449 0.3819 0.8192
(0.0008)(0.0010)(0.0017)(0.0028)

2.6375 0.0802 0.1458 0.3790 0.8222
(0.0008)(0.0010)(0.0016)(0.0026)

2.7354 0.0800 0.1448 0.3746 0.8153
(0.0008)(0.0010)(0.0016)(0.0026)

3 0.0781 0.1401 0.3573 0.7836
(0.0008)(0.0010)(0.0015)(0.0024)

4 0.0641 0.1120 0.2683 0.5909
(0.0008)(0.0009)(0.0014)(0.0020)

5 0.0501 0.0860 0.1931 0.4076
(0.0008)(0.0008)(0.0011)(0.0017)

(α, β) changes to(0.5, 0.5), among those choices ofλ’s, the Kullback-Leibler information number of
the quantized observationUk,n = I(Yk,n ≥ λ) is maximized nearλ = 2.6375, the value that maximizes
the K-L information number of the marginal distribution ofUk,n with a single-sensor.

3.2 Quickest change detection

To further confirm the above calculations of the Kullback-Leibler information numbers in HMM, in the
above scenario, we now run simulations in the context of the quickest change detection problems for the
single-sensor system, i.e.,K = 1 for simplicity. Specifically, letWn be the CUSUM statistics (i.e., the
generalized log-likelihood statistics for HMM) for eitherraw or quantized observations, and the fusion
center uses the CUSUM procedure

N(a) = inf{n : Wn ≥ a}.

We will compare the CUSUM procedure with raw data with three CUSUM procedures with quantized
thresholdλ’s (the specific thresholds depend on the specific kinds of changes).

For these CUSUM procedures, the threshold value was first determined from the criterion on the
average run length to false alarm:E∞(N(a)) ≈ γ. A 103-repetition Monte Carlo simulation was per-
formed to determine the appropriate values ofa to yield the desired average run length to false alarm
γ to within the range of sampling error. To speed up the simulation, one efficient algorithm is to run
one simulation to return the record values of the CUSUM statistics and the corresponding values of run
lengths, and then to estimateE∞(N(a)) for differenta based on these record values.

Next, we simulate the detection delayE1(N(a)) based on Monte Carlo experiments with103 repe-
titions, and then report corresponding results of detection delays.

Table 2 summarizes the simulated detection delays of these CUSUM procedures under the above-
mentioned change, based on103 repetitions, subject to the constraintE∞(T (a)) ≈ γ, with the values
of a in parentheses.

From Table 1, among all quantized observations, the CUSUM procedure with quantized threshold
λ = 2.6375 has the smallest detection delay, which is consistent with the fact thatλ = 2.6375 leads to
the largest Kullback-Leibler information number.

3.3 Run lengths to false alarms

Fig. 1 illustrates the histogram and exponential QQ-plots of run lengths to false alarm in the above
example. From this plot, the run lengths to false alarm are approximately exponentially distributed.
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Table 2.Detection Delays of CUSUM proceduresT with E∞(T ) ≈ γ when(α, β) changes from(0.01, 0.1) to (0.5, 0.5)

γ Raw λ = 1 λ = 2.6375 λ = 5

200 (2.91) (1.88) (2.02) (2.04)
9.6 ± 0.2 45.1 ± 0.8 17.5 ± 0.3 24.8 ± 0.5

400 (3.49) (2.40) (2.90) (2.13)
12.5 ± 0.2 64.1 ± 1.1 24.8 ± 0.4 32.1 ± 0.6

600 (3.90) (2.73) (3.23) (2.71)
14.1 ± 0.2 76.2 ± 1.3 30.2 ± 0.5 38.8 ± 0.7

800 (4.23) (2.94) (3.40) (3.04)
15.4 ± 0.2 84.4 ± 1.3 33.3 ± 0.5 43.6 ± 0.8

1000 (4.43) (3.14) (3.62) (3.24)
16.3 ± 0.2 92.1 ± 1.4 35.7 ± 0.6 47.3 ± 0.8

Theoretical log γ

0.2509

log γ

0.0268

log γ

0.0802

log γ

0.0501
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Fig. 1. Example A (change in Markov chain): Histogram and exponential QQ-Plot of Run Lengths to False Alarms with
E∞(N) ≈ 1000.

4 Conclusions

In this article, we examined the decentralized quickest change detection problem in sensor networks.
In the detection scheme we considered, each sensor simply compared its current sensor observation to
a stationary threshold, and the fusion center used a CUSUM-type scheme based on binary vectors. We
also introduced the global and local maximization methods for choosing the “optimal” stationary local
thresholds at the sensor level. While the classical quickest change detection problems have been studied
for several decades, the decentralized quickest change detection, particularly in HMM models, is still in
its infancy. Clearly, there is a lot of research ahead to improve the theory, algorithms and methodology.
Hopefully this article can stimulate further research.
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