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Abstract. This work considers the problem of quickest detection with N distributed sensors that receive sequential observa-
tions either in continuous or in discrete time from the environment. These sensors employ cumulative sum (CUSUM) strategies
and communicate to a central fusion center by one shot schemes. One shot schemes are schemes in which the sensors com-
municate with the fusion center only once, via which they signal a detection. The communication is clearly asynchronous and
the case is considered in which the fusion center employs a minimal strategy, which means that it declares an alarm when
the first communication takes place. It is assumed that the observations received at the sensors are independent and that the
time points at which the appearance of a signal can take place are different. Both the cases of the same and different signal
distributions across sensors are considered. It is shown that there is no loss of performance of one shot schemes as compared
to the centralized case in an extended Lorden min-max sense, since the minimum of N CUSUMs is asymptotically optimal as
the mean-time to the first false alarm increases without bound. The asymptotic optimality of the minimum of N CUSUMs is
stronger in the case of different signal distributions for an appropriate choice of threshold parameters.
Keywords. One shot schemes, CUSUM, quickest detection, Optimal sensor threshold selection.

1 Description

In this work we examine the problem of quickest detection in an N -sensor network in which the infor-
mation available is distributed and decentralized, a problem introduced in Veeravalli (2001) and studied
by numerous authors, for example Mei (2006). We consider the situation in which the onset of a signal
can occur at different times in the N sensors; that is the change points can be different for each of the
N sensors. The objective is to detect the minimum of the change points. We consider both continuous
Brownian motion and discrete i.i.d observations model in each sensor and assume that each sensor runs a
CUSUM test. Each sensor then communicates with the central fusion center through a one shot scheme.
We assume that the N sensors receive independent observations, which constitutes an assumption con-
sistent with the fact that the N change points can be different. What we derive is asymptotic optimality
of the minimum of the N CUSUMs, otherwise known as the N -CUSUM stopping rule, with respect to
an appropriately selected optimality criterion.

This set-up has numerous applications especially in systems that can be captured by linear dynamic
state-space models, as is typically the case in models of structural integrity (see for example Basseville
et al., (2000)). Structural damage is characterized by a change in the modal parameter vector related
to the eigenvalues of the state transition matrix. A key characteristic of this problem is that changes
in each element of the modal parameter vector behave in a reasonably decoupled manner as seen in
Basseville et al. (2007). Thus the minimum of the change points corresponding to each element in the
modal parameter vector corresponds to the first time a structural damage is detected.

The paper is structured in the following way: main results are presented in section 2. In section 3, we
discuss the implication of the main results to decentralized sequential detection. Finally, we conclude
with some closing remarks in section 4.
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2 Main results

We sequentially observe the independent processes {ξ(i)t ; t ≥ 0} in a continuous model or a discrete
model using sensors Si for all i = 1, . . . , N . Our continuous model is the Brownian motion model,
which is a good approximation for data sampled at a high rate. In particular, we assume that each sensor
Si receives sequential observations {ξ(i)t ; t ≥ 0} with dξ(i)t = µi1{t≥τi}dt + dW

(i)
t , where µi > 0 and

{W (i)
t } are independent standard Brownian motions. In our discrete-time observation model, we assume

that before the change the {ξ(i)j ; j = 1, 2, . . .} are i.i.d with an in-control distribution g0(x), and after the

change they are i.i.d. with an out-of-control distribution g(i)
1 (x). The assumptions satisfied are a finite

Kullback-Leibler divergence and non-arithmetic log-likelihood ratios (see Tartakovsky, (2005)).
An appropriate measurable space isΩ = C[0,∞)×C[0,∞)×. . .×C[0,∞) in the Brownian motion

model and Ω = R∞ × R∞ × . . . × R∞ in the discrete observation model, with F = ∪t≥0Ft, where
{Ft} is the filtration of the observation with Ft = σ{(ξ(1)

s , . . . , ξ
(N)
s ); s ≤ t}. On the space we have

the following family of probability measures {Pτ1,...,τN }, where Pτ1,...,τN corresponds to the measure
generated on Ω by the process (ξ(1)

t , . . . , ξ
(N)
t ) when the change in the N -tuple process occurs at time

point τi, i = 1, . . . , N . We will also consider the projection of the Pτ1,...,τN on the i-th component of Ω,
with special attention to P (i)

0 and P∞, for all i = 1, . . . , N .
Our objective is to find a stopping rule T that balance the trade-off between a small detection

delay subject to a lower bound on the mean-time to the first false alarm and will ultimately detect
min{τ1, . . . , τN}.

As a performance measure we consider the following generalization of Lorden’s performance index

J (N)(T ) = sup
τ1,...,τN

mini τi<∞

essupEτ1,...,τN
{
(T − τ1 ∧ . . . ∧ τN )+|Fτ1∧...∧τN

}
, (1)

The performance index presented in (1) results in the corresponding stochastic optimization problem of
the form

infT J (N)(T )
subject to E∞,...,∞{T} ≥ γ.

(2)

The first observation, whose proof is rigorously derived, is that the optimal stopping rule to problem (2)
must be an equalizer rule, i.e., it must have the same detection delay regardless of the location of the first
change point (see Hadjiliadis et al., (2008)).

In the case that N = 1, it is shown in Moustakides (1986) in discrete model, and in Beibel (1996)
and Shiryaev (1996) in continuous model that the optimal stopping rule to (2) is the CUSUM stopping
rule. The CUSUM stopping rule is defined as

Tν = inf

{
t ≥ 0; sup

0≤τ≤t
log

dPτ
dP∞

∣∣∣∣
Ft

≥ ν

}
, (3)

where ν > 0 is chosen so that E∞{Tν} = γ. The optimality of the CUSUM stopping rule in the case
N = 1 suggests T~ = T 1

h1
∧ T 2

h2
∧ . . . ∧ TNhN

with E∞,...,∞{T~} as a solution to (2).
Although the optimal threshold selection hi in each sensor CUSUM is obviously the same in the

case that µi and g(i)
1 (x) are the same across i, decoupling the optimal threshold selection based on the

equalizer rule property is far from trivial. Our first two results concern the optimal threshold selection in
the non-trivial cases of different µi and g(i)

1 (x)’s, which are summarized in the following lemma.

Lemma 1. Choose thresholds ~ = (h1, h2, . . . , hN ) so that

Brownian Motion:
1
µ2
i

(hi − 1) = constant, Discrete Model:
1

I
(i)
g0

(hi + βi + κi) = constant, (4)
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where κi is related to the overshoot over the threshold which occurs in discrete time and βi is the expec-
tation under the measure corresponding to the out-of-control distribution of the asymptotic minimum,

βi = E
(i)
0 min

n≥1

{
n∑
k=1

log
g
(i)
0 (ξ(i)k )

g∞(ξ(i)k )

}
. (5)

The constant I(i)
g0 is the Kullback-Leibler divergence, namely,

I(i)
g0 = E

(i)
0

{
log

g
(i)
0 (ξ(i)1 )

g∞(ξ(i)1 )

}
> 0. (6)

Then the N -CUSUM stopping rule is an equalizer rule asymptotically (hence is the best N -CUSUM
stopping rule), and as h1 →∞,

Brownian: J (N)(T~) = E0,∞,...,∞{T~} = . . . = E∞,∞,...,0{T~} =
1
µ2

1

(h1 − 1) + o(1), (7)

Discrete: J (N)(T~) = E0,∞,...,∞{T~} = . . . = E∞,∞,...,0{T~} =
1

I
(1)
g0

(h1 + β1 + κ1) + o(1). (8)

Proof. Without loss of generality, we will only prove the lemma in the case N = 2. Let us denote by
T ihi

, i = 1, 2 the CUSUM stopping rules with thresholds h1, h2 and by T~ = T 1
h1
∧ T 2

h2
the 2-CUSUM

stopping rule. Then it suffices to show that under (4),

E0,∞{T~} = E
(1)
0 {T

(1)
h1
}+ o(1) = E∞,0{T~}+ o(1) = E

(1)
0 {T

(2)
h2
}+ o(1), (9)

as h1, h2 →∞ (see Hadjiliadis et al., (2008)). Now we observe that1

E0,∞{T~} = eh2E0,∞{e−h2T 1
h1
∧ e−h2T 2

h2
} = eh2

∫ ∞
0

P
(1)
0 (e−h2T 1

h1
≥ t)P∞(e−h2T 2

h2
≥ t)dt

= eh2

∫ ∞
0

P
(1)
0 (e−h2T 1

h1
≥ t)dt− eh2

∫ ∞
0

P
(1)
0 (e−h2T 1

h1
≥ t)[1− P∞(e−h2T 2

h2
≥ t)]dt

=
∫ ∞

0
P

(1)
0 (T 1

h1
≥ u)du− eh2

∫ ∞
0

P
(1)
0 (e−h2T 1

h1
≥ t)[1− P∞(e−h2T 2

h2
≥ t)]dt

= E
(1)
0 {T

1
h1
} − I(h1, h2),

so we only need to show I(h1, h2)→ 0 as h1, h2 →∞ under (4). In both the Brownian model and the
discrete model, it is known that for large h2, (see Taylor, (1975) and Tartakovsky, (2005))

P∞(e−h2T 2
h2
≥ t) = [1 + o(1)]e−t, (10)

so we can estimate I(h1, h2) by

eh2

∫ ∞
0

P
(1)
0 (e−h2T 1

h1
≥ t)

[
1− [1 + o(1)]e−t

]
dt = [1 + o(1)]

∫ ∞
0

P
(1)
0 (T 1

h1
≥ u)(1− e−ue−h2 )du.

By using the fact that 1− e−x ≤ x we further have

0 ≤ I(h1, h2) ≤ [1 + o(1)]
∫ ∞

0
P

(1)
0 (T 1

h1
≥ u)ue−h2du =

1 + o(1)
2

e−h2E
(1)
0 {(T

1
h1

)2}.

However, it can be easily shown that E(1)
0 {(T 1

h1
)2} = O((h1)2) (see Taylor, (1975) and Tartakovsky,

(2005)), thus I(h1, h2)→ 0 as h1, h2 →∞. This shows the first equality in (9), and a similar argument
shows the last equality in (9). The second equality follows immediately from (4) and the asymptotic
expansion of the expectation of the CUSUM stopping rule. ut

1 The integral representation is used for convenience. However, it should be realized that every integral is actually a summa-
tion.
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In our related paper, Hadjiliadis et al. (2008), it is seen that with the above threshold selection, if k-out-
of-N of the constants µi are smallest and equal to each other, without loss of generality, let µ1 = mini µi,
then the difference in detection delay of the unknown optimal stopping rule and N -CUSUM is bounded
above by the constant 2

µ2
1
log k as γ → ∞. One of the main implications of this fact is that when all of

the µi’s are different this difference is bounded above by 0 as γ →∞.
Similarly, in the discrete-time model, if we let I(1)

g0 < mini>1{I(i)
g0 }, the difference in detection delay

of the N -CUSUM stopping rule and the unknown optimal stopping scheme tends to 0 as γ →∞. Now,
consider the more general case in which

I(1)
g0 = I(2)

g0 = . . . = I(k)
g0 < min

i>k
{I(i)
g0 }. (11)

Without loss of generality, we also assume that

(R1)2eβ1+κ1 = max
1≤i≤k

{(Ri)2eβi+κi}, (12)

whereRi are also constants related to the overshoot of the threshold under the out-of-control distribution.
In this case we have

Theorem 1. The difference in detection delay of theN -CUSUM stopping rule and the unknown optimal
stopping rule is bounded above, as γ →∞, by the constant2

1

I
(1)
g0

log

[
k∑
i=1

(
Ri
R1

)2

ri

]
≤ 1

I
(1)
g0

log k, with ri = e(βi−β1)+(κi−κ1). (13)

To prove Theorem 1, we need the asymptotic expansion of the mean-time to the first false alarm
for the N -CUSUM stopping rule as thresholds (h1, . . . , hN ) are chosen so that (4) holds. And this is
presented in the next lemma.

Lemma 2. Under condition (4), we have

E∞,...,∞{T~} =

(
N∑
i=1

I(i)
g0 (Ri)2e−hi

)−1

[1 + o(1)] =
eh1

I
(1)
g0

∑k
i (Ri)2ri

[1 + o(1)], (14)

as hi →∞.

Proof. By using Lemma 1 of Tartakovsky (2005), the first equality follows. To see the last equality, note
that under (4),(

N∑
i=1

I(i)
g0 (Ri)2e−hi

)−1

=

(
k∑
i=1

I(i)
g0 (Ri)2e−hi +

N∑
i=k+1

I(i)
g0 (Ri)2e−hi

)−1

=

(
k∑
i=1

I(i)
g0 (Ri)2e−hi

)−1

[1 + o(1)] =
eh1

I
(1)
g0

∑k
i=1(Ri)2e(βi−β1)+(κi−κ1)

[1 + o(1)]

=
eh1

I
(1)
g0

∑k
i=1(Ri)2ri

[1 + o(1)],

as hi →∞. ut

Let us proceed to the proof of Theorem 1.

2 It shows that we have a sharper upper bound in the discrete model than that in the Brownian model.
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Proof (of Theorem 1). First we observe that, for our particularly chosen N -CUSUM stopping rule, we
have

J (N)(T~) > J (N)(T ∗) > max
1≤i≤N

{E(i)
0 {T

i
νi
}}, (15)

where T ∗ is the unknown optimal stopping rule to problem (2), and {νi}Ni=1 are chosen so that
E∞{T iνi

} = γ. By our assumptions (11) and (12), the asymptotic lower bound in (15) is (see Tar-
takovsky, (2005))

E
(1)
0 {T

1
ν1} =

1

I
(1)
g0

[
log γ + log

(
I(1)
g0 (R1)2

)
+ β1 + κ1

]
+ o(1). (16)

However, Lemma 1 and Lemma 2 imply that, as γ →∞,

J (N)(T~) =
1

I
(1)
g0

[
log γ + log

(
I(1)
g0

k∑
i=1

(Ri)2ri

)
+ β1 + κ1

]
+ o(1). (17)

Thus,

J (N)(T~)− J (N)(T ∗) ≤ J (N)(T~)− E
(1)
0 {T

1
ν1} =

1

I
(1)
g0

log

[
k∑
i=1

(
Ri
R1

)2

ri

]
+ o(1), (18)

as γ →∞. ut

For the equivalent of Theorem 1 and Lemma 2 in Brownian motion model, please refer to see Had-
jiliadis et al. (2008).

3 Decentralized detection
Let us now suppose that each of the observation processes {ξ(i)t } become sequentially available at its
corresponding sensor Si, which then employs an asynchronous communication scheme to the central
fusion center. In particular, sensor Si communicates to the central fusion center only when it wants to
signal an alarm, which is elicited according to a CUSUM rule T ihi

. Once again the observations received
at the N sensors are independent and can change dynamics at distinct unknown points τi. An exam-
ple of such a case is described in Basseville et al. (2007) where the motivation suggested arises in the
health-monitoring of mechanical, civil and aeronautic structures. In this treatment the vibration-based
and health monitoring problems translate into the identification and monitoring of the eigenstructure of
a state transition matrix of a linear dynamical state-space system excited by noise (see Basseville et al.,
(2000) and (2007)). This is achieved in practice by detecting a change in the canonical modal parameter
vector associated with the eigenstructure. In Basseville et al. (2007) it is characteristically pointed out
that the individual subspace-based tests, monitoring each parameter-vector component, appear to behave
in a reasonably decoupled manner and to perform a correct isolation of the components of the vector
parameter that has changed. Thus each in this set-up the distinct change points τi correspond to the
change points of the value of each parameter-vector component. The decoupled manner in which each
parameter-vector component behaves corresponds to the fact that there is absence of across-sensor cor-
relations. The fusion center, whose objective is to detect the first time when there is a change in at least
one of the parameter-vector components, devises a minimal strategy; that is, it declares that a change
has occurred at the first instance when one of the sensors communicates an alarm. The implication of
Theorem 1 is that in fact this strategy is the best, at least asymptotically, that the fusion center can devise
and that there is no loss in performance, between the case in which the fusion center receives the raw
data (ξ(1)

t , . . . ξ
(N)
t ) directly and the case in which the communication that takes place only when any

sensor signals an alarm. To see this, consider the general case in which the first k out of N sensors
receive the same signal strength after the onset of a signal or equivalently in discrete time the case in
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which k out of the N out-of-control distributions are the same . Then the rule suggested by Theorem 1
is T~ = T 1

h ∧ . . . ∧ T kh ∧ . . . ∧ T
k+1
hk+1

∧ . . . ∧ TNhN
with ~ = (h, . . . , h, hk+1, . . . , hN ) so that, at least

asymptotically, the N -CUSUM stopping rule is an equalizer rule. Thus the detection delay of T~ is the
same, at least asymptotically, regardless of which of the sensors Si draws the alarm of detection first.
The mean-time to the first false alarm for the fusion center that uses the rule T~ is thus E∞,...,∞ {T~}.
But Theorem 1 asserts that this rule, namely T~, is asymptotically optimal as the mean-time to the first
false alarm tends to∞ in the centralized case for any finiteN . In other words, the CUSUM stopping rule
T~ is a sufficient statistic (at least asymptotically) of the minimum N possibly distinct change points.
That is, the stopping rule T~ is an asymptotically optimal solution to the problems of quickest detection
presented in (2).

4 Conlusion

The main contribution of this paper is that it shows that one can distribute most of the work of change
detection in sensor network to the sensors without any loss of performance at least asymptotically both
in the case of continuous-time models and in the case of discrete-time models. The applications of
this set-up are numerous and rely on the detection of the individual components in a vector parameter
corresponding to the eigenstructure of linear dynamical state-space models. Such models have been
extensively used to describe for monitoring the health of mechanical, civil and aeronautical structures
(see Basseville et al., (2000) and (2007)). The assumption of across-sensor independence is realistic at
least in the particular examples which are described in detail in Basseville et al. (2007). Moreover, the
set-up treated in this paper is also relevant to the case in which the change points propagate in a sensor
array in Raghavan and Veeravalli (2008). This is because even in this configuration the propagation of
the change points depends on the unknown identity of the first sensor affected. In our paper we give
explicit formulas for the optimal sensor threshold selection which becomes particularly relevant in the
general case in which the observation out-of-control distributions or the signal strengths are different
across sensors.
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