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Abstract. In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is
considered. LetX1, X2, . . . be a discrete-time stochastic process, whose distribution depends on an unknown parameterθ, θ ∈
Θ. We consider a problem of optimal sequential decision-making in the following framework. Letwn(θ, d; x1, . . . , xn) ≥ 0,
θ ∈ Θ, d ∈ D , be a loss function representing losses from making a decisiond at stagen of a statistical experiment, when
the true parameter value isθ, and the data observed up to this stage arex1, . . . , xn. Let Kn

θ (x1, . . . , xn) be the cost of the
observations whenθ is the true value of the parameter. The decision is supposed to be taken through a sequential decision-
making procedure(τ, δ), whereτ is a stopping time with respect to the sequence ofσ-algebrasFn = σ(X1, X2, . . . , Xn),
n = 1, 2, . . . , andδ is anFτ -measurable decision function with values inD . For any sequential decision procedure(τ, δ) let
us define the average loss due to incorrect decision

W (θ; τ, δ) = Eθwτ (θ, δ; X1, . . . Xτ ),

and the average cost of observations as
C(θ; τ) = EθK

τ
θ (X1, . . . , Xτ ).

Let, finally, the “risk function” be defined as

R(τ, δ) =

∫
Θ

W (θ; τ, δ)dπ1(θ) +

∫
Θ

C(θ; τ)dπ2(θ),

whereπ1 andπ2 are some probability measures onΘ. The main goal of this article is to give conditions of existence of
sequential decision procedures which minimizeR(τ, δ) (optimal decision procedures), and characterize their structure. In
particular, whenπ1 = π2 = π is ana priori distribution of the parameter, we give a characterization of optimal (Bayesisan)
sequential decision procedures minimizingR(τ, δ) among all sequential decision procedures(τ, δ).

Keywords. Bayes decision, dependent observations, discrete-time stochastic process, optimal decision rule, optimal stopping
rule, randomized stopping time, sequential analysis, statistical decision problem.

1 Introduction

Let X1, X2, . . . , Xn, . . . be a discrete-time stochastic process, whose distribution depends on an un-
known ”parameter”θ, θ ∈ Θ. In this article, we consider a general problem of sequential statistical
decision making based on the observations of this process.

Let us define asequential statistical procedureas a pair(ψ, δ), beingψ a (randomized)stopping rule,
ψ = (ψ1, ψ2, . . . , ψn, . . . ) , andδ a decision function, δ = (δ1, δ2, . . . , δn, . . . ) , supposing thatψn =
ψn(x1, x2, . . . , xn) andδn = δn(x1, x2, . . . , xn) are measurable functions, andψn(x1, . . . , xn) ∈ [0, 1],
δn(x1, . . . , xn) ∈ D for any observations vector(x1, . . . , xn), for anyn = 1, 2, . . . (see, for example,
Wald, 1950, Ferguson, 1967, Ghosh et al., 1997.

For any stage numbern ≥ 1, ψn(x1, . . . , xn) is interpreted as the conditional probability to stop and
proceed to decision making, given that we did not stop before and that the observations up to this stage
were(x1, . . . , xn), andδn(x1, . . . , xn) as the decision to take when stopping occurs,n = 1, 2, . . . .

The stopping ruleψ generates a random variableτψ (stopping time) whose distribution is given by

Pθ(τψ = n) = Eθ(1− ψ1)(1− ψ2) . . . (1− ψn−1)ψn, n = 1, 2, . . . (1)

(here, and in what follows, we interchangeably useψn both for ψn(x1, x1, . . . , xn) and for
ψn(X1, X1, . . . , Xn): it ψn is under the expectation or probability sign, then it isψn(X1, . . . , Xn),
otherwise it isψn(x1, . . . , xn)).



2 Novikov

Let wn(θ, d;x1, . . . , xn) be a non-negative loss function,n = 1, 2, . . . (we suppose thatwn is a
measurable function of all its arguments for anyn ≥ 1). Let π1 be any probability measure. We define
the average loss of the sequential statistical procedure(ψ, δ) due to wrong decision as

W (ψ, δ) =
∞∑
n=1

∫
[Eθ(1− ψ1) . . . (1− ψn−1)ψnwn(θ, δn;X1, . . . , Xn)] dπ1(θ). (2)

Let alsoKn
θ = Kn

θ (x1, . . . , xn) be a non-negative (and measurable with respect to(θ, x1, . . . , xn))
cost function,n ≥ 1, such thatKn

θ (x1, . . . , xn) ≤ Kn+1
θ (x1, . . . , xn, xn+1) for any observation se-

quencex1, x2, . . . , xn+1,n ≥ 1, θ ∈ Θ.
Let us define theaverage costof the sequential decision procedure(τ, δ) as

C(θ;ψ) = EθK
τψ
θ (X1, . . . , Xτψ) (3)

(we suppose thatK(θ;ψ) = ∞ if
∑∞

n=1 Pθ(τψ = n) < 1, see (1)).
Let us also define a “weighted” value of the average cost

C(ψ) =
∫
C(θ;ψ)dπ2(θ), (4)

whereπ2 is some probability measure giving “weights” to particular values ofθ.
Our main goal is minimizing the “weighted risk”

R(ψ, δ) = C(ψ) +W (ψ, δ), (5)

supposing thatπ1 in (2) andπ2 in (4) are, generally speaking, twodifferentprobability measures. If
π1 = π2 = π, R(ψ, δ) is calledBayesian riskof (ψ, δ) corresponding to thea priori distributionπ
(see, for example, Wald and Wolfowitz, 1948, Wald, 1950, Ferguson, 1967, Schmitz, 1993, Ghosh et al.
(1997), among many others).

To guarantee thatinf R(ψ, δ) is finite we suppose thatinfδ R(ψ1, δ) <∞ with ψ1 = (1, . . . ).
We use essentially the same method as in Novikov (2008), where the case ofKn

θ ≡ n and
wn(θ, d;x1, . . . , xn) ≡ w(θ, d) for any θ ∈ Θ, d ∈ D , and for any(x1, . . . , xn), n ≥ 1, was con-
sidered. In turn, the method of Novikov (2008) is an extension of the results of Novikov (2009).

2 Main results

Throughout the paper we suppose that for anyn = 1, 2, . . . , the vector(X1, X2, . . . , Xn) has a proba-
bility “density” function

fnθ = fnθ (x1, x2, . . . , xn) (6)

(Radon-Nikodym derivative of its distribution) with respect to a product-measure

µn = µ⊗ µ⊗ · · · ⊗ µ︸ ︷︷ ︸,
n times

with someσ-finite measureµ on the respective space. As usual in the Bayesian context, we suppose that
fnθ (x1, x2, . . . , xn) is measurable with respect to(θ, x1, . . . , xn), for anyn = 1, 2, . . . .

Let us suppose that for anyn ≥ 1 there exists a measurableδBn = δBn (x1, . . . , xn) such that for any
d ∈ D∫

wn(θ, d;x1, . . . , xn)fnθ (x1, . . . , xn)dπ1(θ) ≥
∫
wn(θ, δBn ;x1, . . . , xn)fnθ (x1, . . . , xn)dπ1(θ) (7)

for all data sequences(x1, . . . , xn). Let δB = (δB1 , δ
B
2 , . . . , δ

B
n , . . . ). It is easy to see that in this case for

any decision functionδn = δn(x1, . . . , xn)∫
Θ
Eθwn(θ, δ;X1, . . . , Xn)dπ1(θ) ≥

∫
Θ
Eθwn(θ, δBn ;X1, . . . , Xn)dπ1(θ),
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i.e. δBn is a Bayesian decision function(corresponding to the “a priori” distributionπ1) based onn
observations.

Let us denoteln = ln(x1, . . . , xn) the right-hand side of (7). From this time on, we suppose that∫
lndµn <∞ for anyn = 1, 2, . . . .

In the same way as in Novikov (2008) we easily get

Theorem 1. For any sequential decision procedure(ψ, δ)

W (ψ, δ) ≥W (ψ, δB) =
∞∑
n=1

∫
(1− ψ1) . . . (1− ψn−1)ψnlndµn. (8)

It follows from Theorem 1 thatinfδW (ψ, δ) = W (ψ, δB), and the aim of what follows is to mini-
mize

L(ψ) = C(ψ) +W (ψ, δB)

over all stopping rulesψ (see (5)) .
It is easy to see that, by definition ofC(ψ),

L(ψ) =
∞∑
n=1

∫
(1− ψ1) . . . (1− ψn−1)ψn

(∫
Kn
θ f

n
θ dπ2(θ) + ln

)
dµn (9)

if
∫
Pθ(τψ <∞)dπ2(θ) = 1, andL(ψ) = ∞ otherwise.
Let us denote

kn = kn(x1, . . . , xn) =
∫
Kn
θ (x1, . . . , xn)fnθ (x1, . . . , xn)dπ2(θ)

(see (9)), and let for anyπ = π1 or π = π2 P
π(A) =

∫
Pθ(A)dπ(θ) for any eventA.

Let also

sψn = sψn(x1, . . . , xn) = (1− ψ1(x1)) . . . (1− ψn−1(x1, . . . , xn−1))ψn(x1, . . . , xn)

for anyn = 1, 2, . . . and for any stopping ruleψ.
Thus, by (9),

L(ψ) =
∞∑
n=1

∫
sψn (kn + ln) dµn

if P π2(τ <∞) = 1, andL(ψ) = ∞ otherwise.
First, let us solve the problem of minimization ofL(ψ) in the classFN of truncated stopping rules,

that is such thatψ = (ψ1, ψ2, . . . , ψN−1, 1, . . . ),N = 2, 3, . . . (see also Novikov, 2008).
For anyψ ∈ FN let

LN (ψ) =
N∑
n=1

∫
sψn (kn + ln) dµn =

N−1∑
n=1

∫
sψn (kn + ln) dµn +

∫
cψN (kN + lN ) dµN , (10)

where, for anyn ≥ 1 and for any stopping ruleψ

cψn = cψn(x1, . . . , xn) = (1− ψ1(x1)) . . . (1− ψn−1(x1, . . . , xn−1)).

Theorem 2. Letψ ∈ FN be any (truncated) stopping rule,N ≥ 2. Then for any1 ≤ r ≤ N − 1 the
following inequalities hold true

LN (ψ) ≥
r∑

n=1

∫
sψn(kn + ln)dµn +

∫
cψr+1

(
kr+1 + V N

r+1

)
dµr+1 (11)

≥
r−1∑
n=1

∫
sψn(kn + ln)dµn +

∫
cψr

(
kr + V N

r

)
dµr, (12)
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whereV N
N ≡ lN , and recursively form = N − 1, N − 2, . . . 1

V N
m = min{lm, QNm}, (13)

where

QNm =
∫ (

km+1 + V N
m+1

)
dµ(xm+1)− km (14)

(it should be remembered that the function under the integral sign on the right-hand side of (14) is a
function of(x1, . . . , xm+1), and, because of this,QNm = QNm(x1, . . . , xm)).

The lower bound in (12) is attained if and only if

I{lm<QNm} ≤ ψm ≤ I{lm≤QNm} (15)

µm-almost everywhere on

Cψm = {(x1, . . . , xm) : cψm(x1, . . . , xm) > 0},

for anym = r, r + 1, . . . , N − 1.
In particular, (ψ1, ψ2, . . . , ψN−1, 1, . . . ) is an optimal truncated stopping rule inFN , if and only if

(15) is satisfiedµm-almost everywhere onCψm for anym = 1, . . . , N − 1. In addition,

inf
ψ∈FN

L(ψ) =
∫ (

k1(x) + V N
1 (x)

)
dµ(x). (16)

Proof. The proof can be implemented by induction as in the proof of Theorem 3 in Novikov (2008)
using instead of Lemma 2 of Novikov (2008) the following extension of it.

Lemma 1. Let r ≥ 1 be any natural number, and letvr+1 = vr+1(x1, x2, . . . , xr+1) be any non-
negative measurable function, such that

∫
vr+1dµ

r+1 <∞. Then

r∑
n=1

∫
sψn(kn+ ln)dµn+

∫
cψr+1 (kr+1 + vr+1) dµr+1 ≥

r−1∑
n=1

∫
sψn(kn+ ln)dµn+

∫
cψr (kr + vr) dµr,

(17)
wherevr = min{lr, Qr}, with

Qr = Qr(x1, . . . , xr) =
∫

(kr+1(x1, . . . , xr+1) + vr+1(x1, . . . , xr+1)) dµ(xr+1)− kr(x1, . . . , xr).

There is an equality in (17) if and only ifI{lr<Qr} ≤ ψr ≤ I{lr≤Qr} µr-almost everywhere onCψr .

Proof of Lemma 1 can be implemented following the steps of the proof of Lemma 2 in Novikov (2008)
and is omitted here.

Starting with the class of non-truncated stopping rule, let us define for anyψ

LN (ψ) =
N−1∑
n=1

∫
sψn (kn + ln) dµn +

∫
cψN (kN + lN ) dµN .

The idea of construction of optimal stopping rules is to pass to the limit, asN → ∞, in (11), (12),
(13) and (14).

Let F be a class of stopping times such that for everyψ ∈ F

Pψ2(τψ <∞) = 1 and lim
N→∞

LN (ψ) = L(ψ).

In a very similar manner as in Novikov (2008) it can be shown that for anym = 1, 2, . . . y any
N ≥ m V N

m (x1, . . . , xm) ≥ V N+1
m (x1, . . . , xm) for any(x1, . . . , xm), so there exists

Vm = Vm(x1, . . . , xm) = lim
N→∞

V N
m (x1, . . . , xm).
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Thus, passing to the limit, for anyψ ∈ F , in (11), (12), (13) and (14) is justified by the Lebesgue’s
monotone convergence theorem. In particular, let

Qm = Qm(x1, . . . , xm) = lim
N→∞

QNm(x1, . . . , xm).

In the same way as in Novikov (2008) it can be shown thatinfψ∈F L(ψ) =
∫

(k1(x) + V1(x)) dµ(x)
(cf. (16)).

Combining all these ideas, we immediately have

Theorem 3. If there existsψ ∈ F such that

L(ψ) = inf
ψ′∈F

L(ψ′) (18)

then

I{lm<Qm} ≤ ψm ≤ I{lm≤Qm} (19)

µm-almost everywhere onCψm, for anym = 1, 2, . . . .
On the other hand, ifψ satisfies (19)µm-almost everywhere onCψm, for anym = 1, 2, . . . , and

ψ ∈ F then it satisfies (18) as well.

Proof. The proof can be conducted following the steps of the proof of Theorem 4 in Novikov (2008),
using Lemma 1 instead of Lemma 2 of Novikov (2008).

Very much like in Novikov (2008), we can give some conditions, under which the structure of (19)
is necessary and sufficient for optimality in the class of all stopping rules.

Let us call the problem of minimizingL(θ) truncatableif for any ψ such thatP π2(τψ <∞) = 1 it
holdsLN (ψ) → L(ψ), asN →∞.

Theorem 4. Let the problem of minimizingL(θ) be truncatable, and let for anyc > 0∫
Pθ(Kn

θ (X1, . . . , Xn) < c)dπ2(θ) → 0 as n→∞. (20)

Then
L(ψ) = inf

ψ′
L(ψ′) (21)

if and only if

I{lm<Qm} ≤ ψm ≤ I{lm≤Qm} (22)

µm-almost everywhere onCψm, for anym = 1, 2, . . . .

Proof. The “if”-part can be proved analogously to the proof of Theorem 4 in Novikov (2008), using
Lemma 1 instead of Lemma 2 in Novikov (2008).

To prove the “only if”-part we suppose thatψ satisfies (19)µm-almost everywhere onCψm, for any
m = 1, 2, . . . . It follows from Lemma 1 that for any fixedm = 1, 2, . . .

m−1∑
n=1

∫
sψn(kn + ln)dµn +

∫
cψm(km + Vm)dµm =

∫
(k1(x) + V1(x))dµ(x) = I <∞. (23)

In particular, this implies that
∫
cψmkmdµ

m ≤ I, or∫
Eθc

ψ
mK

m
θ dπ2(θ) ≤ I, (24)
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wherecψm = cψm(X1, . . . , Xm) andKm
θ = Km

θ (X1, . . . , Xm).
LetC be any positive constant. Then (24) implies

C

∫
Eθc

ψ
mI{Km

θ >C}dπ2(θ) < I, m = 1, 2, . . . . (25)

Because ∫
Eθc

ψ
mdπ2(θ) =

∫
Eθc

ψ
mI{Km

θ >C}dπ2(θ) +
∫
Eθc

ψ
mI{Km

θ ≤C}dπ2(θ) (26)

and the second summand by virtue of (20) tends to 0, asm → ∞, we have that the difference between
the first summand on the right-hand side of (26) and the left-hand side of it, goes to 0 asm→∞. Thus,
from (25), we have that

lim
m→∞

∫
Eθc

ψ
mdπ2(θ) = lim

m→∞

∫
Pθ(τψ ≥ m)dπ2(θ) =

∫
Pθ(τψ = ∞)dπ2(θ) < I/C, (27)

and, because of arbitrariness ofC, P π2(τ = ∞) = 0, or

P π2(τ <∞) = 1. (28)

Now, from (23) we get that

lim
m→∞

m−1∑
n=1

∫
sψn(kn + ln)dµn = L(ψ) ≤ I. (29)

Because the problem is truncatable, it follows from (28) thatLN (ψ) → L(ψ), asN →∞. Now, passing
to the limit in (16), we getL(ψ) ≥ I. From this and (29) it follows thatL(ψ) = I = infψ′ L(ψ′).

Very much like in Novikov (2008) (see Corollary 1 therein), there are simple conditions which
guarantee that the problem is truncatable.

Proposition 1. The problem of minimization ofL(ψ) is truncatable if any of the following two condi-
tions is fulfilled.

(i) There isM , 0 < M <∞ such thatwn(θ, d;x1, . . . , xn) ≤M for anyθ, d, x1, . . . , xn, and for any
n ≥ 1, and fromL(ψ) <∞ it follows that

P π1(τψ <∞) = 1.

(ii) ∫
lndµ

n → 0, as n→∞.

Proposition 1 can be proved in the same way as Corollary 1 in Novikov (2008).
Combining Theorem 1 with Theorem 2 or Theorem 3 or Theorem 4, we have, under respective

conditions, sequential decision procedures(ψ, δB) minimizing R(ψ, δ) in the corresponding class of
sequential decision procedures, and the respective necessary conditions under which the minimum is
attained.
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