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Abstract. In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is
considered. LeK;, X5, ... be a discrete-time stochastic process, whose distribution depends on an unknown paraheeter

©. We consider a problem of optimal sequential decision-making in the following frameworku,1(6t d; z1, . .., z») > 0,

0 € ©,d € 2, be aloss function representing losses from making a decisairstagen of a statistical experiment, when

the true parameter value 65 and the data observed up to this stageaare .., z,. Let K (z1,...,z,) be the cost of the
observations whe# is the true value of the parameter. The decision is supposed to be taken through a sequential decision-
making procedurér, §), wherer is a stopping time with respect to the sequence-aigebras%, = o(X1, X2, ..., Xn),
n=1,2,...,andd is an.%,-measurable decision function with valuesgn For any sequential decision proced(res) let

us define the average loss due to incorrect decision

W(0;7,0) = Eow-(0,0; X1,...X:),

and the average cost of observations as
C0;7)=EoKg(X1,...,Xs).

Let, finally, the “risk function” be defined as
R(T,9) /W@T, )dm (0 /CGTde

wherew; andm, are some probability measures 6h The main goal of this article is to give conditions of existence of
sequential decision procedures which minimizér, §) (optimal decision procedures), and characterize their structure. In
particular, whenr; = w2 = = is ana priori distribution of the parameter, we give a characterization of optimal (Bayesisan)
sequential decision procedures minimiziR¢r, §) among all sequential decision procedufesy).

Keywords. Bayes decision, dependent observations, discrete-time stochastic process, optimal decision rule, optimal stopping
rule, randomized stopping time, sequential analysis, statistical decision problem.

1 Introduction

Let X1, Xo,..., X,,... be a discrete-time stochastic process, whose distribution depends on an un-
known "parameter’d, § € ©. In this article, we consider a general problem of sequential statistical
decision making based on the observations of this process.

Let us define @equential statistical procedusss a pair, ), beingy a (randomized$topping rule
Y = (Y1,v¥2,...,%n,...), andé adecision functiony = (61, d2,...,d,,...), supposing that),, =
Yn(z1, 22, . .., x,) NS, = 0y (21, 22, ..., x,) are measurable functions, and(z1, . .., z,) € [0, 1],
on(z1,...,2,) € 2 for any observations vectdt, ..., z,), foranyn = 1,2,... (see, for example,
Wald, 1950, Ferguson, 1967, Ghosh et al., 1997.

For any stage number> 1, ¢, (x1, ..., z,) is interpreted as the conditional probability to stop and
proceed to decision making, given that we did not stop before and that the observations up to this stage
were(zy,...,x,), andd,(z1, ..., x,) as the decision to take when stopping occurs; 1,2, . ...

The stopping rule) generates a random variabig (stopping tim¢whose distribution is given by

Pop(ty =n) = Eg(1 —¢1)(1 —t2) ... (1 = p1)tn, n=12,... (1)

(here, and in what follows, we interchangeably ugg both for ,(x1,21,...,2,) and for
Un(X1,X1,...,X,): it ¥, is under the expectation or probability sign, then it/is( X, ..., X,),
otherwise it iy, (1, . .., zy)).
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Let w,(0,d;x1,...,z,) be a non-negative loss function,= 1,2,... (we suppose thab, is a
measurable function of all its arguments for any- 1). Let w; be any probability measure. We define
the average loss of the sequential statistical procedur&) due to wrong decision as

W(,8) =) / [Bo(1 = 1) ... (1 = Yne1)Wntwn(0, 603 X1, - .., X,)] dri (6). 2)
n=1
LetalsoKj; = Ky (z1,...,x,) be a non-negative (and measurable with respe@,to,, ..., z,))
cost function,n > 1, such thatiy' (z1,...,2,) < Kg“(xl, ..., Tn,Tny1) fOr any observation se-
quencery, zo,...,Tpr1,n > 1,0 € 6.

Let us define thaverage cosbf the sequential decision procedyred) as
C(Hﬂ/)) = EQK;-U)(XD"'?XTw) (3)

(we suppose thak (0; 1)) = oo if Y7 | Py(1y = n) < 1, see (1)).
Let us also define a “weighted” value of the average cost

/ C(6: ) dma (6 @)

wheremn, is some probability measure giving “weights” to particular valueg.of
Our main goal is minimizing the “weighted risk”

R(¢,0) = C(¢) + W (4, ), (5)

supposing thatr; in (2) andns in (4) are, generally speaking, twdifferent probability measures. If
m = m = m, R(¢,0) is calledBayesian riskof (¢, d) corresponding to tha priori distributionr
(see, for example, Wald and Wolfowitz, 1948, Wald, 1950, Ferguson, 1967, Schmitz, 1993, Ghosh et al.
(1997), among many others).

To guarantee thahf R(¢, ) is finite we suppose thatfs R(y!,§) < oo with ot = (1,...).

We use essentially the same method as in Novikov (2008), where the casg§ ot n and
wp(0,d;z1,...,2,) = w(f,d) foranyd € 6,d € 2, and for any(x4,...,z,), n > 1, was con-
sidered. In turn, the method of Novikov (2008) is an extension of the results of Novikov (2009).

2 Main results

Throughout the paper we suppose that forany 1,2, ..., the vector( Xy, X», ..., X,,) has a proba-
bility “density” function
fgl:fgl(xla‘rZa'-'axn) (6)
(Radon-Nikodym derivative of its distribution) with respect to a product-measure
Pr=pQu®--- &L,
| S ———

n  times

with someo-finite measurg: on the respective space. As usual in the Bayesian context, we suppose that

fo(x1,22,. .., xy,) is measurable with respectt@, 1, ..., z,), foranyn =1,2,....
Let us suppose that for amy> 1 there exists a measuradl§ = 62 (x4, ..., z,) such that for any
de 9

/wn(H,d;xl,...,mn)fgn(xl,...,:rn)dm(Q) > /wn(9,5n,xl,...,xn)fg(xl,...,mn)dm(e) (7)

for all data sequencés, ..., r,). Lets® = (68,68 ... 6B, ...). Itis easy to see that in this case for
any decision function,, = 5 (ml, ey Tp)

/ngn(e,é;Xl,..., n)dmi(0 /ngn , n,Xl,...,Xn)dﬂ'l(@),
e
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i.e. 62 is a Bayesian decision functio(corresponding to the “a priori” distribution;) based om
observations.

Let us denotd,, = I, (x1,...,z,) the right-hand side of (7). From this time on, we suppose that
[ lndpy, < coforanyn =1,2,....

In the same way as in Novikov (2008) we easily get

Theorem 1. For any sequential decision procedure, 9)
W(.0) 2 W o) = Y [(1= 1) (0= boa )™ ®)
n=1

It follows from Theorem 1 thaitnf; W (v, §) = W (v, 67), and the aim of what follows is to mini-
mize
L(y) = C() + W (4, 67)

over all stopping ruleg (see (5)) .
It is easy to see that, by definition 6f()),

L) = f_ojl Ja-va=vu, ( [ i spanso) + ln> e (©)

if [ Py(ry < co)dma() =1, andL(y)) = oo otherwise.
Let us denote

kn = kn(z1,...,2,) = /Kgb(xl, ey Tn) fo (X1, .o, xn)dma(0)

(see (9)), and let for any = 71 or 7 = my P™(A) = [ Py(A)dr(6) for any eventA.
Let also

st =51, xn) = (1 —¥1(z1) .. (1= Vo1 (@1, 1)) (@0, - - T

foranyn = 1,2,... and for any stopping rule.
Thus, by (9),

L) = Y [ s (b 1) du”
n=1

if P™2(7 < o0) =1, andL(1)) = oo otherwise.

First, let us solve the problem of minimization bfv) in the class#* of truncated stopping rules,
that is such that) = (¢1,v9,...,¥Nn-1,1,...), N =2,3,... (see also Novikov, 2008).

For anyy € .V let

N N-1
() =Y [ st tku by = 37 [ s (b by du® + [ e (o + 1) d, (10)
n=1 n=1

where, for anyn > 1 and for any stopping rul¢

& =cl(xy,. . xn) =1 =1(z1) ... (1= Yp_1(x1,. .., Tn1)).

Theorem 2. Lett) € .# " be any (truncated) stopping rul& > 2. Then foranyl < r < N — 1 the
following inequalities hold true

Ly() > / 5% (kn + L) dp" + / el (krpr + V) dut! (11)
n=1

r—1
>3 / 6k + L) ™ + / ¢ (ke + V) dyr, (12)
n=1
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whereV]{,V = Iy, and recursively forn =N —1,N —2,...1

V.Y = min{ln, QN }, (13)
where
Q% = [ (s + V%) diComin) = o (14)
(it should be remembered that the function under the integral sign on the right-hand side of (14) is a
function of(z1, ..., 2.,11), and, because of thiQY = QN (x1,..., z,)).

The lower bound in (12) is attained if and only if
Hi<eyy < ¥m < Ig, <o) (15)
u"-almost everywhere on
CY ={(x1,...,2m): ¥ (x1,...,2m) >0},

foranym =r,r+1,...,N — 1.

In particular, (¢, s, ...,%N_1,1,...) is an optimal truncated stopping rule i% ", if and only if
(15) is satisfied,-almost everywhere o, for anym =1,...,N — 1. In addition,
Jnf, L) = [ (@) + V¥ () o) (16)

Proof. The proof can be implemented by induction as in the proof of Theorem 3 in Novikov (2008)
using instead of Lemma 2 of Novikov (2008) the following extension of it.

Lemmal. Letr > 1 be any natural number, and let.y; = v,41(z1,22,...,2,4+1) be any non-
negative measurable function, such tat,,1du" ! < co. Then

r r—1
Z/ng(kn"‘ln)dﬂn‘i‘/cﬁ—l (Krg1 + vpgr) ™ > Z/sf(kzn—kln)du"—i—/cg (kr +vr) dp”
n=1 n=1

17)
wherev, = min{l,, @, }, with

Qr = Qular,. .. 1) = / (pa (21, -, Brst) + Oret (12 Tp1)) Ap(rsn) — on (21, 20).

There is an equality in (17) if and only if, -,y < ¢ < I, <@,y p"-almost everywhere oftY .

Proof of Lemma 1 can be implemented following the steps of the proof of Lemma 2 in Novikov (2008)
and is omitted here.

Starting with the class of non-truncated stopping rule, let us define fopany

N—-1
Lyt = 3 [ sttt + [ O+ i) ™,
n=1

The idea of construction of optimal stopping rules is to pass to the limiy as oo, in (11), (12),
(13) and (14).
Let.# be a class of stopping times such that for ewery %
P¥2(ry <o0)=1 and Jim Ly () = L(¥).
In a very similar manner as in Novikov (2008) it can be shown that forrany 1,2,... y any
N>mVN(wy, ... zn) > VT (2, ... 2,,) forany(z1, . .., z,,), SO there exists

Vin = Vin(z1, ... ) = A}i_rgovrflv(xl, ey D).
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Thus, passing to the limit, for any € .%, in (11), (12), (13) and (14) is justified by the Lebesgue’s
monotone convergence theorem. In particular, let

Qm = Qm(z1,...,zpy) = lim Q%(xl,...,xm).
N—oo

In the same way as in Novikov (2008) it can be shownih&te 7 L(v) = [ (ki(z) + Vi(z)) du(z)
(cf. (16)).
Combining all these ideas, we immediately have

Theorem 3. If there exista) € % such that

L) = inf L(y/ 1
() it (") (18)
then
10, <@y < Um < 1(1,<Qm) (19)

u"-almost everywhere ofi,, for anym=1,2,....
On the other hand, if) satisfies (19)-almost everywhere oﬁ?fﬁ, foranym = 1,2,..., and
Y € . then it satisfies (18) as well.

Proof. The proof can be conducted following the steps of the proof of Theorem 4 in Novikov (2008),
using Lemma 1 instead of Lemma 2 of Novikov (2008).

Very much like in Novikov (2008), we can give some conditions, under which the structure of (19)
is necessary and sufficient for optimality in the class of all stopping rules.

Let us call the problem of minimizing (6) truncatableif for any ¢» such thatP™ (7, < co) = 1it
holds Ly () — L(), asN — oc.

Theorem 4. Let the problem of minimizing(¢) be truncatable, and let for any> 0

/PQ(KQ(Xl, o, Xp) <c)dme(f) -0 as n— oo. (20)
Then
L(y) = inf L(y") (21)
if and only if
Him<Qm} = ¥m = Lt <Qum} (22)

u"-almost everywhere oY), for anym=1,2,....

Proof. The “if"-part can be proved analogously to the proof of Theorem 4 in Novikov (2008), using
Lemma 1 instead of Lemma 2 in Novikov (2008).

To prove the “only if”-part we suppose thgtsatisfies (19)."-almost everywhere 0@, for any
m=1,2,....Itfollows from Lemma 1 that for any fixech = 1,2, ...

m—1
§Y(kn + Ln)du™ + | ¥ (kp + Vi)du™ = [ (k1 (z) + Vi(z))dp(z) =1 < co.  (23)
nz_:l / 1 / 1 / ] 1(@))du

In particular, this implies thaf b kmdu™ < 1, or

/ Egc¥ KJ'dma(0) < 1T, (24)
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wherech, = ¢ (X1, ..., Xm) and K} = KJY(X1, ..., Xm).
Let C be any positive constant. Then (24) implies

C/EQC%I{K(T>C}d7T2(9) <I, m=12.... (25)

Because
/ Eyc? dma(0) = / Egch Icmscydma(6) + / By I cm<cydma(6) (26)

and the second summand by virtue of (20) tends to @; as oo, we have that the difference between
the first summand on the right-hand side of (26) and the left-hand side of it, goes i 8-asc. Thus,
from (25), we have that

tim [ Byctdma(6) = tim_ / Po(ry = m)dma(8) = / Py(ry = o0)dma(8) < I/C,  (27)

m—00

and, because of arbitrariness@f P™ (17 = oco) = 0, or

P™ (1 < o0)=1. (28)
Now, from (23) we get that
m—1
lim > / §¥(kp + Lp)du™ = L() < I. (29)
n=1

Because the problem is truncatable, it follows from (28) that«) — L(), asN — oo. Now, passing
to the limit in (16), we getL(¢)) > I. From this and (29) it follows that () = I = inf,/ L(¢).

Very much like in Novikov (2008) (see Corollary 1 therein), there are simple conditions which
guarantee that the problem is truncatable.

Proposition 1. The problem of minimization df(v) is truncatable if any of the following two condi-
tions is fulfilled.

(i) ThereisM,0 < M < oo such thatw,(0,d;z1,...,x,) < M forany6,d, z1,...,z,, and for any
n > 1, and fromL(y)) < oo it follows that

P™ (1) < 00) = 1.
(ii)
/lndu" — 0, as n— oo.

Proposition 1 can be proved in the same way as Corollary 1 in Novikov (2008).

Combining Theorem 1 with Theorem 2 or Theorem 3 or Theorem 4, we have, under respective
conditions, sequential decision procedufe¢ss”) minimizing R(v, §) in the corresponding class of
sequential decision procedures, and the respective necessary conditions under which the minimum is
attained.
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