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Abstract. We consider the problem of partitioning a set of k exponential populations with respect to a control popu-
lation. For this problem some multistage methodologies are proposed and their theoretical properties are derived. Using
the Monte Carlo simulation techniques, the small and moderate sample size performance of the proposed procedure are studied.
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1 Introduction

The problem of comparisons with a control has been an active research area for over seven decades. The
desire of the experimenter to have the best population to be some “specified amount better” than what is
already in use has motivated the research in this area. This problem has been studied by many and under
different formulations. Tong (1969) formulated the partition problem using Bechhofer’s (1954) indiffer-
ence zone formulation and constructed a two-stage and a purely sequential procedure. Among slightly
different formulations of this problem is the problem of selection of the best treatment relative to a con-
trol population or selecting a subset of the treatments having means greater than that of a control. For
more on such related formulations one is recommended Bechhofer, Santner and Goldsman (1995). For
a general overview of sequential methodology and of the partition problem, the reader is recommended
Ghosh, Mukhopadhyay and Sen (1997), and, Mukhopadhyay and Solanky (1994).

Suppose that we have π0, π1, . . . , πk, independent and exponentially distributed populations, with
density function of πi, i = 0, 1, · · · , k given by fX(x) = σ−1exp{−(x − θi)/σ}I(x > θi). Assume
that the location parameters θi, i = 0, 1, · · · , k and the common scale parameter σ are all unknown.
We refer to π0 as the control population. The goal is to partition the set of treatments Ω = (πi : i =
1, 2, · · · , k), into two disjoint and exhaustive subsets, corresponding to “Good” and “Bad” populations
compared to the control population with a pre specified probability of correct partition. Given arbitrary
but fixed constants δ1 and δ2, δ1 < δ2, we define three subsets ofΩ along the lines of Bechhofer’s (1954)
indifference-zone formulation, as:

ΩL = {πi : θi ≤ θ0 + δ1, i = 1, · · · , k},
ΩM = {πi : θ0 + δ1 < θi < θ0 + δ2, i = 1, · · · , k},
ΩR = {πi : θi ≥ θ0 + δ2, i = 1, · · · , k}.

(1)

We refer to ΩR as the set of “good populations” and ΩL as the set of “bad populations”. The set ΩM
would be referred to as the set of “mediocre populations”. Adopting the Bechhofer’s indifference zone
approach, we are interested in the correct partition of the populations in ΩR and ΩL. And, we will be
indifferent to partition of populations in ΩM . That is, with high accuracy we want to partition the set Ω
into two disjoint subsets PL and PR, such that,ΩL ⊆ PL andΩR ⊆ PR. Such a partition is known in the
literature as a correct decision (CD). In other words, given a pre assigned number P ∗, 2−k < P ∗ < 1,
we seek statistical methodologies ℘ to determine PL and PR, such that

P{CD|θ, σ2, ℘} ≥ P ∗ ∀ θ ∈ Rk+1, σ ∈ R+. (2)
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We will use the following notation in the rest of this paper for convenience:

d = (δ1 + δ2)/2, a = (−δ1 + δ2)/2, λ = σ/a, and,

r =
{
k/2 if k is even;
(k + 1)/2 if k is odd.

(3)

2 Known σ case

We assume that we observe random variables X0j , X1j , · · · , Xkj from π0, π1, · · · , πk, j = 1, · · · , n,
respectively, in a sequential framework, where n is to be determined below. Assuming that σ is known,
we denote

Ti = min1≤j≤n(Xij), i = 0, 1, · · · , n. (4)

Along the lines of Desu et al. (1977), we define a pooled estimator of σ as

σ̂ = Σk
i=0Σ

n
j=1(Xij − Ti)/((k + 1)(n− 1)). (5)

Note that 2(k+1)(n−1)σ̂/σ is independent of Ti and has a chi-squared distribution with 2(k+1)(n−1)
degrees of freedom. Next, we Consider the decision rule ℘ defined as:

PL = {πi : Ti − T0 < d, i = 1, · · · , k},
PR = {πi : Ti − T0 > d, i = 1, · · · , k}. (6)

Next, observe that for a mean vector θ to be a least favorable configuration under ℘, the set ΩM
must be empty, and, all the populations in ΩL and ΩR must have common means θ0 + δ1 and θ0 + δ2,
respectively. Let θ0(r′) be the configuration such that θi = µ0 + δ2 and θj = µ0 + δ1, 0 < i ≤ r′,
r′ < j ≤ k for some r′ such that 0 < r′ ≤ k. Then, we have

P
[
CD|θ0(r′), σ, ℘

]
= P

[
Tj − T0 < d, Ti − T0 > d, 0 < i ≤ r′, r′ < j ≤ k

]
,

= P
[
Tj−θj

σ/n −
T0−θ0
σ/n <

d−θj+θ0
σ/n , Ti−θi

σ/n −
T0−θ0
σ/n > d−θi+θ0

σ/n , 0 < i ≤ r′, r′ < j ≤ k
]
.

Next, we write Yj = Tj−θj

σ/n , r′ < j ≤ k, Yi = Ti−θi
σ/n , 0 < i ≤ r′, Y0 = T0−θ0

σ/n . Note that Yi, Yj
and Y0, 0 < i ≤ r′, r′ < j ≤ k all have standard exponential distributions. Note that for r′ < j ≤ k,
d−θj+θ0
σ/n ≤ d−δ1

σ/n , and for 0 < i ≤ r, d−θi+θ0
σ/n ≥ d−δ2

σ/n . Next using the notations from (3), we have

P
[
CD|θ0(r′), σ, ℘

]
≥ P

[
Yj − Y0 <

an

σ
, Y0 − Yi <

an

σ
, 0 < i ≤ r′, r′ < j ≤ k

]
. (7)

Let the (k × k) covariance matrix Σr′ = (σij) be given by

σij =


1 for i = j,
1 for i 6= j, and, 0 < i, j ≤ r′ or r′ < i, j ≤ k,
−1 for 0 < i ≤ r′, and, r′ < j ≤ k.

(8)

Let us define zj = Yj − Y0 for r′ < j ≤ k and zi = Y0 − Yi for 0 < i ≤ r. Note that the vector
Z ′ = (z1, ..., zk) has a symmetric multivariate Laplace distribution with mean vector zero and the
covariance matrix Σr′ as defined above. For details on Multivariate Laplace Distribution one may look
at Kotz et al. (2001). Note that (7) gives the infimum of the probability of correct decision under ℘ for



Partitioning Exponential Populations 3

the set of all configurations such that there are r′ populations in ΩR and k − r′ in ΩL. Next, along the
lines of Tong (1969), one can derive the Least Favorable Configuration (LFC) under the decision rule ℘
as: µ1 = · · · = µr = µ0 + δ2, and, µr+1 = · · · = µk = µ0 + δ1, where r is defined in (3). We will refer
to the LFC as θ0. Next, along the lines of (8) with r in place of r′, we define the covariance matrix Σ as:

Σ =



1 1 −1 · · · −1
. . .

...
. . .

...
1 1 −1 · · · −1
−1 · · · −1 1 1

...
. . .

...
. . .

−1 · · · −1 1 1


. (9)

Next, let b = b(P ∗, k) be the solution of the equation

P ∗ =

b∫
−∞

· · ·
b∫

−∞

2(2π)−
k
2 |Σ|−

1
2 (Y ′Σ−1Y ′/2)ν/2Kν(

√
2Y ′Σ−1Y ′)

k∏
i=1

dyi, (10)

where ν = (2 − k)/2 and Kν(.) is the modified Bessel function of the third kind given by Kν(u) =
1
2
u
2
ν
∞∫
0

t−ν−1exp(−t− u2

4t dt, u > 0. Then, one can immediately note that

P
[
CD|θ, σ, ℘

]
≥ P ∗,

provided n satisfies

n ≥ bσ

a
(= n∗, say). (11)

In other words, if σ is known, and one collects a sample of size n∗ from each of π0, π1, . . . , πk,
and, uses the decision rule ℘ given by (6) to partition the k populations, then the probability requirement
(2) is achieved. However, if σ is unknown, then there does not exist a single-stage procedure which can
achieve the probability requirement (2). For general details on non-existence of a single-stage procedure,
one may refer to Dudewicz (1971).

For normal populations case, Tong (1969) gave a single-stage procedure for the partition prob-
lem when the common variance known. The single-stage procedure provided above is an extension
of Tong’s (1969) single-stage procedure. For normal populations case when the common variance is un-
known, Tong (1969) constructed a two-stage and a purely sequential procedure. Datta and Mukhopad-
hyay (1998) studied this problem further and constructed a fine-tuned purely sequential procedure and
some other multistage methodologies, emphasizing the second-order asymptotics. Solanky (2001) has
constructed an elimination type procedure for the normal populations partition problem which takes
samples of unequal sizes. The reader is also recommended to look at Chen and Rollin (2004), Aoshima
and Takada (2000), and Solanky (2006), who have studied various aspects of the partition problem.
Many other additional references to the partition problem are available in the articles mentioned in this
paragraph. Next, We construct a purely sequential procedure for this problem. The theoretical properties

of the proposed procedures are derived and verified using Monte Carlo simulation studies.

3 Purely sequential procedure
The purely sequential procedure starts with observations X0j , X1j , · · · , Xkj , j = 1, · · · ,m, where
m (≥2) is the starting sample size from π0, π1, · · · , πk. After this, the sampling continues with one
observation from π0, π1, · · · , πk, at each step, according to the stopping rule

N = inf{n ≥ m : n ≥ bσ̂

a
}, (12)

where σ̂ is an estimator of σ based on a sample of size n along the lines of (5).
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Theorem 1. For the purely sequential procedure (12) and using the decision rule (6) based on a sample
of size N from π0, π1, · · · , πk, we have as a→ 0:

(i) N/n∗c → 1 w.p. 1;
(ii) E(N/n∗c)→ 1;
(iii) lim inf P (CD)] ≥ P ∗ for all µ ∈ Rk+1;

where n∗c = bσ
a and b comes from (10).

Proof: The proof follows along the lines of the proof of the Theorem 4.4.1 of Mukhopadhyay and
Solanky (1994). The details are omitted for brevity.

4 Monte carlo simulations

In this section, we will study the performance of the purely sequential procedure (12) via Monte Carlo
simulation studies. The purely sequential procedure (12) was simulated for m = 10, k = 10 and
P ∗ = .95, under a LFC. Without loss of generality we took σ = 1 for the purpose of generating
populations. We took δ1 = −δ2, giving a = δ2(= δ, say). Next, using n∗ = bσ

a , we computed the values
of δ corresponding to n∗ = 25, 50, 75, and 100. Then, each procedure was independently repeated 1000
times. The performance of the purely sequential procedure (12) is summarized in the Figure 1 via ploting
the average value of the observed P(CS) against the optimal sample sizes. The Figure 1 shows that even
for small sample sizes, the purely sequential procedure achieves the target value 0.95 quite precisely.

Fig. 1. Performance of the purely sequential procedure (12)
for: k=10, m=10, P ∗=.95
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Mukhopadhyay, N. and Solanky, T. K. S. (1994). Multistage selection and ranking procedures, Marcel Dekker, New York.
Solanky, T.K.S. (2001). A sequential procedure with elimination for partitioning a set of normal populations having a common

unknown variance. Sequential Analysis, 20, No. 4, 279-292.
Solanky, T.K.S. (2006). A two-stage procedure with elimination for partitioning a set of normal populations with respect to a

control. Sequential Analysis, 25, No. 3, 297-310.
Tong, Y. L. (1969). On partitioning a set of normal populations by their locations with respect to a control. Annals of Mathe-

matical Statistics, 40, 1300-1324.


