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Abstract. In all empirical or experimental sciences, it is a standard approach to present results in form of confidence intervals
on the parameters of interest additionally to point estimates. The length of a confidence interval characterizes the accuracy
of the whole findings. Consequently, confidence intervals should be constructed to hold a desired length. Basic ideas go back
to Stein (1945) who proposed a two-stage procedure for hypothesis testing about a normal mean. Tukey (1953) additionally
considered the probability or power a confidence interval should possess to hold its length within a desired boundary. In this
paper, an adaptive multi-stage approach is presented that can be considered as an extension of Stein’s concept. Concrete rules
for sample size updating are provided and a real data example is worked out in detail.
Keywords. Adaptive sample size planning, Group sequential trial, Length of a confidence interval, Multi-stage confidence
interval, Power of a confidence interval.

1 Introduction

Let us consider a normally distributed random variable X with unknown mean µ and unknown variance
σ2. Based on n independent replications, a confidence interval on µ is derived and the length of the
confidence interval, given a predefined confidence coefficient, stands for the accuracy of the whole esti-
mation process. It is an old problem to construct confidence intervals of a desired length. Stein (1945)
provided a two-stage procedure, where the sample size of the second stage is based on the results of the
first stage. A crucial point in studying the overall performance of any statistical inference is the choice
of the sample size of the first stage. Given some prior information on σ2, Seelbinder (1953) showed how
to choose the sample size of the first stage. Moshman (1958) also made some attempts to formulate an
approach to determine the sample size of the first stage. Recently, Mukhopadhyay (2005) introduced an
easy-to-implement criterion through the Fisher information for the determination of a pilot sample size.

The question arises what is the probability to achieve a confidence interval planned for a desired
length. Already Tukey (1953), mentioned in Hsu (1989), proposed to construct confidence intervals of
given confidence level which have the desired length with a certain probability. In the present paper, we
use the dual relation between hypotheses testing and confidence intervals in order to provide confidence
intervals of predefined confidence level which will have a length within some desired boundary with a
required probability or power. Extending the two-stage concept of Stein (1945), we consider a multi-
stage approach based on adaptive group sequential designs, see Hartung (2006). Using all the available
data from previous stages, we perform the sample size planning for the next stage and the computa-
tion of the confidence intervals after each stage. The confidence intervals are determined implicitly by
combining parameterized p-values, see Cox and Hinkley (1974), obtained in the several stages. As com-
bination method for the p-values, we apply the inverse normal method well known in meta-analysis, see
for instance Hartung, Knapp, and Sinha (2008).

The outline of the paper is as follows: In Section 2, one-stage confidence intervals of desired length
and power for a normal mean are presented when a reliable estimate of the variance is known. In Section
3, an adaptive group sequential approach is described which yields multi-stage confidence intervals for a
normal mean of predefined level. In Section 4, adaptive planning is considered with respect to the desired
length and power. We give concrete rules for sample size updating. In Section 5, a real data example,
following an adaptive two-stage design of O’Brien and Fleming (1979) type, is worked out in detail.
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2 A Confidence Interval of Desired Length and Power when a Reliable Estimate of σ2

is Known
Let be X̄ ∼ N (µ, σ2/n) and (n−1)S2/σ2 ∼ χ2

n−1, where X̄ is the sample mean of n independent and
identically distributed normal random variables, S2 the sample variance , and χ2

ν denotes a χ2-distributed
random variable with ν degrees of freedom.

Denote µ0 a comparison value and∆ > 0 an equivalence margin used here as the accuracy parameter
for the length of the confidence interval. The length should be less than 2∆. Let us consider the test
problem for noninferiority with regard to µ0, that is,

H0,L : µ ≤ µ0 −∆ versus H1,L : µ > µ0 −∆, (1)

and for nonsuperiority with regard to µ0, that is,

H0,U : µ ≥ µ0 +∆ versus H1,U : µ < µ0 +∆. (2)

Note that, for the true parameter µ, we have

T0(µ) =
√
n (X̄ − µ)/S ∼ tn−1. (3)

Let tn−1;1−α denote the (1 − α)-quantile of the tn−1-distribution, then the lower (1 − α)-confidence
interval on µ is given as

I0,L(µ) = [µL,∞) , µL = X̄ − S tn−1;1−α/
√
n, (4)

and the upper (1− α)-confidence interval as

I0,U(µ) = (−∞, µU] , µU = X̄ + S tn−1;1−α/
√
n. (5)

We reject H0,L in (1) at level α iff µL > µ0 −∆ and H0,U in (2) at level α iff µU < µ0 +∆.
Assume a reliable estimate of σ2, say s20 > 0, is given and the power of the test at µ = µ0 should be

1− β, 0 < β < 1, in (1) and (2). Then, the sample size n should be chosen in both test problems as

n ≥ n0 = f0(α, β) :=

[
max

{
0, Φ−1(1− α) + Φ−1(1− β)

}]2
∆2/s20

, (6)

where Φ−1 denotes the inverse of the standard normal distribution function Φ.
For n ≥ n0, conditioned on s20 = σ2, both null-hypotheses will be rejected with probability or power

1− 2β, 0 < β < 1/2 if µ = µ0, implying

µ0 −∆ < µL ≤ µU < µ0 +∆. (7)

Consequently, the two-sided (1− 2α)-confidence interval I0(µ) = [µL, µU ] has length µU − µL < 2∆
with power 1− 2β for n ≥ n0.

3 Multi-stage Confidence Intervals
Let us consider a trial which is carried out consecutively in a number of independent stages, say K. In
the i-th stage, i = 1, . . . ,K, let be X̄i the sample mean of ni ≥ 2 independent and identically distributed
normal random variables, and S2

i the sample variance. Consider the pivotal t-quantity

Ti(µ) =
√
ni
X̄i − µ
Si

∼ tni−1. (8)

Let Ftν denote the cumulative distribution function of a t-variable with ν degrees of freedom, then it
holds, for the 1− p-value,

Ftni−1 [Ti(µ)] ∼ U(0, 1), i = 1, . . . ,K, (9)
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where U(0, 1) stands for the uniform distribution in the unit interval. Consequently, we have

Φ−1
[
Ftni−1 (Ti(µ))

]
∼ N (0, 1), i = 1, ...,K. (10)

Since the stages of the trial are independent, we define the combining pivotal quantity

Zj(µ) =
j∑
i=1

Φ−1
[
Ftni−1 (Ti(µ))

]
∼
√
j N (0, 1), j = 1, . . . ,K. (11)

Let us consider critical values cvj such that following probability statements hold

Pµ

(
Zj(µ) ≤ cvj for j = 1, . . . , k ≤ K

){≥ 1− α for k < K,

= 1− α for k = K.
(12)

Since Zj(µ) is a multiple of the standard normal distribution, the critical values cvj can be borrowed
from classical group sequential trials, see Hartung (2006), for j = 1, . . . ,K. Using (12), the lower
confidence sets on µ are then defined as

CIk,L(µ) = {µ̃ | Zj(µ̃) ≤ cvj for j = 1, ..., k} , k = 1, . . . ,K, (13)

and the upper confidence sets as

CIk,U(µ) =
{ ˜̃µ | −cvj ≤ Zj(˜̃µ) for j = 1, . . . , k

}
, k = 1, . . . ,K. (14)

The confidence coefficients of CIk,L(µ) and CIk,U(µ) are at least 1− α and exactly 1− α for k = K.
Since the functions Zj(µ), j = 1, . . . ,K, are monotone decreasing in µ, CIk,L(µ) from (13) can be

represented as an interval, namely,
CIk,L(µ) = [µk,L,∞) (15)

where µk,L = max{µL(1), ..., µL(k)} and

µL(j) solves Zj (µL(j)) = cvj , j = 1, ..., k. (16)

By analogy, CIk,U(µ) from (14) can be represented as an interval, namely,

CIk,U(µ) = (−∞, µk,U] , (17)

where µk,U = min{µU(1), ..., µU(k)} and

µU(j) solves Zj(µU(j)) = −cvj , j = 1, . . . , k. (18)

The two-sided confidence intervals on µ, defined as the intersection of the intervals (15) and (17),
that is,

CIk(µ) = CIk,L(µ) ∩ CIk,U(µ) = [µk,L, µk,U] , (19)

are nested, that is,
CIk+1(µ) ⊂ CIk(µ), k = 1, ...,K − 1. (20)

The confidence coefficient of each interval CIk(µ) is at least 1 − 2α, 0 < α < 1/2. Moreover, if both
null-hypotheses in (1) and (2) are rejected at some stages j1, j2 ≤ k ≤ K and µk,L ≤ µk,U, it holds

µ0 −∆ < µk,L ≤ µk,U < µ0 +∆. (21)

Consequently, the length of the two-sided interval CIk(µ) is µk,U − µk,L < 2∆.
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4 Adaptive Sample Size Planning to Attain the Desired Power

Let fj(α, β) denote the sample size spending function from (6) at stage j, 1 ≤ j ≤ K − 1, when s20 is
replaced by some estimate S(j)2 of σ2. The estimate S(j)2 is based on information from all the previous
stages 0, 1, . . . , j, where stage 0 stands for prior information. A possible choice of S(j)2 is the pooled
variance estimate up to stage j given by

σ̂2
Pool(j) =

1∑j
h=1(nh − i)

j∑
i=1

(ni − 1) S2
i .

Assume that we decide after stage (j− 1) that the interim analyses j up to K− 1 should be omitted.
Then, we can assign the remaining weight

√
K − (j − 1) to the next and final stage and build the test

statistic according to (11) as

Zj,K(µ0 −∆) = Zj−1(µ0 −∆) +
√

(K − j + 1) Φ−1
[
Ftnj−1 (Tj(µ0 −∆))

]
, (22)

where Zj,K(µ0 −∆) ∼
√
K N (0, 1) under H0,L from (1), j = 1, ...,K, and Z0 = 0. The test statistic

Zj,K(µ0 −∆) has to be compared with the K-th critical value cvK in testing H0,L from (1). Note that
the p-value of testing H0,L at stage i by use of Ti(µ0 −∆) is given as

pi = pi(µ0 −∆) = 1− Ftni−1 (Ti(µ0 −∆)) , i = 1, ...,K. (23)

Assume that in the next and final stage, the final test statistic

Ẑj,K(µ0 −∆) = Zj−1(µ0 −∆) +
√

(K − j + 1) Φ−1 (1− p̂j,K(µ0 −∆)) , (24)

coincides with the critical value cvK , then the projected p-value p̂j,K(µ0−∆) of the final stage must be

p̂j,K(µ0 −∆) = 1− Φ
[
(cvK − Zj−1(µ0 −∆)) /

√
(K − j + 1)

]
. (25)

Conditioned an S(j − 1)2, a power of 1 − β in testing H0,L from (1) is attained at µ = µ0 when the
sample size of the next and final stage is chosen at least as

Mj,L(µ0 −∆) := fj−1 (p̂j,K(µ0 −∆), β) , (26)

where fj−1 (p̂j,K(µ0 −∆), β) is the sample size from (6) with α replaced by the projected p-value
p̂j,K(µ0 −∆).

Similarly, the projected p-value for testing H0,U from (2) is

p̂∗j,K(µ0 +∆) = 1− Φ
[
(−cvK − Zj−1(µ0 +∆)) /

√
(K − j + 1)

]
. (27)

Whereas H0,L from (1) will be rejected when the α-level of the next final stage, say αj,K , satisfies
αj,K ≤ p̂j,K(µ0−∆), the null-hypothesisH0,U from (2) will be rejected when αj,K ≤ 1−p̂∗j,K(µ0+∆).
So conditioned on S(j − 1)2, a power of 1 − β in testing H0,U from (2) is reached at µ = µ0 when the
sample size of the next and final stage is chosen at least as

Mj,U(µ0 +∆) := fj−1

(
1− p̂∗j,K(µ0 +∆), β

)
. (28)

Consequently, both null-hypotheses in (1) and (2) will be rejected with (conditional) power of at
least 1− 2β, 0 < β < 1/2, for µ = µ0 if the sample size of the next final stage is chosen at least as

Mj(µ0) = max {Mj,L(µ0 −∆),Mj,U(µ0 +∆)} . (29)
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In case we do not want to finish the trial in this way and have in mind the originally planned K− (j−1)
further stages, the sample size of stage j is then proportionally chosen as

nj = nj(µ0) =
Mj(µ0)
K − j + 1

, j = 1, ...,K. (30)

Especially for j = 1, the projected p-values are p̂1,K = 1 − Φ(cvj/
√
K) and 1 − p̂∗1,K =

Φ(−cvj/
√
K) = p̂1,K . Consequently, the starting sample size of the trial is chosen as

n1 = M1/K (31)

where, see (6),

M1 =
(
cvK√
K

+ Φ−1(1− β)
)2

s20/∆
2,

with 0 < β < 1/2 and s20 > 0 is a prior guess of σ2.
In applications, we use the following algorithm in a trial planned for at most K stages: We start with

n1 observations, n1 from (31), and compute the first confidence interval CI1. When the length of CI1
is below 2∆, we finish the trial. Otherwise, we apply the above proceeding for the stages j ≥ 2 until
that stage k when the length of CIk is the first time below 2∆. Then we can finish the trial because all
confidence intervals computed so far possess a confidence coefficient of at least 1 − 2α, see Section 3.
Not later than stage k = K, we will receive a two-sided confidence interval CIk(µ) with confidence
coefficient of at least 1 − 2α, see (19), which will have the desired length below 2∆, see (21), with
(conditional) probability or power of at least 1− 2β, 0 < β < 1/2.

Note that we also use estimates of the mean µ based on all data from previous stages to determine
the sample size for the next stage, see the example in the next section.

5 A Real Data Example
Let us consider an application one of the authors was concerned with. The effect of a drug for treating
patients with asthma bronchiale is analysed with respect to a lung function parameter called FEV1, that
is, forced expiratory volume in 1 second, measured in liter (`), and an underlying approximate normal
distribution of the outcome can be assumed.

A small pre-study yielded the rough estimates of 2.5` for the mean and s0 = 0.6` for the standard
deviation. The study was planned ’to determine, with a safety of 90%, the mean with a reliability of
95% within an accuracy of ±0.2`.’ This means in our setting: α = 0.025, β = 0.05, and ∆ = 0.2`. An
adaptive two-stage plan of O’Brien and Fleming (1979) type was planned, see Hartung (2006). Using
(11), the constant critical values are cv1 = cv2 = 2.797 satisfying (12).

By (31), the starting sample size of the trial is n1 = 60 using the prior guess s0 = 0.6. In the first
stage, we observed the mean x̄1 = 2.67` and the standard deviation s1 = 0.87`. Equating

Z1(µ) = Φ−1

[
Ft59

(√
60

2.67− µ
0.87

)]
(32)

to 2.797 and to −2.797 and solving for µ yields the confidence interval on the mean as

CI1 = [2.3437`, 2.9963`]. (33)

Replacing µ0 through x̄1, we compute

Z1(µ0 −∆) = Z1(x̄1 − 0.2) = Φ−1

[
Ft59

(√
60

0.2
0.87

)]
= 1.7500 (34)

and thus the projected p-values

p̂2,2(µ0 −∆) = 1− Φ(2.797− 1.7500) = 0.1476, (35)
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and
p̂∗2,2(µ0 +∆) = 1− Φ(−2.797 + 1.7500) = 0.8524, (36)

with Z1(µ0 +∆) = −1.7500.
Since p̂2,2(µ0 −∆) = 1− p̂∗2,2(µ0 +∆), the sample size of the second and final stage should be at

least

n2 = n2(µ0) = f1(0.1476, 0.05) =

[
Φ−1(1− 0.1476) + Φ−1(1− 0.05)

]2
∆2/s21

= 137.111. (37)

With n2 = 138 patients in the second stage, we observed the estimates x̄2 = 2.70` and s2 = 0.81`.
Equating

Z2(µ) = Z1(µ) + Φ−1

[
Ft137

(√
138

2.7− µ
0.81

)]
(38)

to 2.797 and to −2.797 and solving for µ yields the final confidence interval on the mean as

CI2 = [2.5681`, 2.8081`], (39)

whose actual length is below the desired accuracy or length of 2∆ = 0.4`.
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