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Abstract. Partially sequential or semi-sequential tests have been widely studied over past three decades for location problems
for two or more independent populations. In the present work, we address semi sequential location problem for Bi-variate
population. Let (X, Y ) be the jointly distributed random variables. X denotes the records of the first treatment and Y that of
the second treatment on same individual. Suppose we already observed a set of random samples Xi, (i = 1, , m) of fixed size
m from X population. In order to save time and cost of the experiment, it is decided to collect samples from Y population
sequentially with the restriction that at most q(q << m) samples may be observed from Y population. Therefore, we use
inverse sampling scheme to collect samples from Y population. We design a stopping rule and propose a simple but powerful
technique to test for the difference in location using all the available sample observations from one variable and partially
observed records from other variables. The proposed test is based on ranks. We study the asymptotic performance of the
proposed test. Some numerical findings obtained through Monte-Carlo studies are presented. The proposed test may be used
when one has m observations regarding pre-monsoon contaminated arsenic level in ground water collected from different
tube-wells or bore-holes. While geologists need early and efficient decision regarding post monsoon change in mean arsenic
contamination level based on the data from those same tub wells or bore holes. Another example is, monitoring acid-rain
impact based on pH factor of the water bodies.
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1 Introduction
Wolfe (1977) introduced the partially sequential sampling scheme for two sample location problem.
Costello and Wolfe (1980) extended partially sequential test for more than two populations. Various as-
pects of such a sampling scheme, tests based on them under different assumptions and alternatives are
widely studied by a host of researchers. Orban and Wolfe (1978, 1980, 1982), Chatterjee and Bandy-
opadhyay (1984), Chu et al. (1996), Chattopadhyay (2002), Bandyopadhyay and Mukherjee (2007),
Bandyopadhyay et al. (2007, 2008a, 2008b), Mukherjee (2009), among others, considered different ver-
sions of partially sequential tests. However, in all previous communications partially sequential or semi
sequential tests are designed for two or more independent populations. The present study deals with the
semi sequential test for the difference in locations in a bi-variate population. The problem is motivated
from some geo-statistical issues. However it can be used in several other contexts as well. Suppose we
are interested to study the monsoon effect on Arsenic contamination in ground water or wish to monitor
the level acidic precipitation on water bodies.

It is believed by a section of geologists that during monsoon in the whole aquifer, the capillaries of
soils are filled-up with water through revitalization of the aquifer by rain and river water. As a conse-
quence, the water level raises up 2-3 m and arsenic concentration may somehow get a bit diluted at the
concentrated hot-spots. This may increase the concentration in the nearby area by migration. As as a rea-
son sometimes, level of concentration sometimes changes from pre-monsoon to post monsoon. Suppose
one has collected a huge number of water samples from different wells or bore holes prior to beginning
of monsoon. Now we want to test weather arsenic contamination has increases after monsoon. We ob-
viously need a quick decision in this aspect as an increase in arsenic contamination in groundwater can
cause severe disaster to the human race particularly if such a water is used for drinking purpose. To save
the time and cost of the experiment we would like to employ a sequential sampling in post monsoon
phase. we start collecting samples from the same wells or bore holes used in previous pre monsoon
season using some stopping rule. In this stage, we only observe as many samples as required to reach
a decision at a specified level. This will obviously lead to a inverse sampling scheme under partially
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sequential framework. Only difference is that here a pre monsoon water sample has an obvious depen-
dence with corresponding post monsoon sample when they are collected from same wells or bore holes.
So we realize a bi-variate location problem under semi sequential sampling design.

Similarly if we may think of an experiment related to monitoring the acid snow in winter time. Acid
rain is the common name for many phenomena including acid fog, acid sleet, and acid snow. When
atmospheric pollutants such as sulphur dioxide and nitrogen oxides mix with water vapour in the air,
they are transformed to sulphuric and nitric acids. These acids make the rain acidic, hence the term acid
rain. Rain returns the sulphur and nitrogen acids to Earth. If large quantities of acid rain are deposited
they may have detrimental consequences for wildlife, forests, soils, freshwater and buildings. Acid rain
acidifies the soils and waters where it falls, killing off plants and animals. Surface water acidification
can lead to a decline in, and loss of, fish populations and other aquatic species including frogs, snails
and crayfish. Acid rain affects trees, usually by weakening them through damage to their leaves. Certain
types of building stone can be dissolved in acid rain. Acid precipitation in winter in some areas may
increase the acidity of the water which can be measured by pH level [the cologarithm of the activity
of dissolved hydrogen ions (H+)]. Increase in acidity will reduce the pH factor of the water samples
collected from a specific water bodies. If we have a large number of observation on pH level of water
bodies, say before snow in pre winter, we can quickly make decision in spring whether there is a decline
in pH factor. We just need to employ a sequential stopping rule to collect samples in spring from some
of the water bodies included in the experiment before.

The proposed technique may be very useful in clinical trial if one wish study the level of improve-
ment with the second dose of a specific drug. Suppose one already have some data on the effect of
the drug after the treatment with first dose. For ethical reason we might not be interested to administer
second dose to all of them but only a few of them chosen sequentially as per requirement to reach a
conclusion. Obviously a inverse sampling scheme under partially sequential framework revisits in this
case with a bi-variate location problem.

2 Statistical framework
Let us consider an experiment with two states. As for example, pre-medication state and post medication
state in a clinical trial experiment or pre-monsoon Arsenic contamination and post monsoon arsenic
contamination level in groundwater. Let X be random variable denting the records corresponding to
initial state, say, State A. Further suppose Y be the random variable denoting the post treatment records
or the records or final state, say, State B. Then we may assume that (X,Y) are jointly distributed as
FX,Y (x, y), where FX,Y (x, y) is a bivariate probability distribution function. Let µX and µY be the
median corresponding to the random variable X and Y respectively. Our problem is to test

H0 : µX = µY

against one-sided alternative
H1 : µX < µY .

For the present treatise, our working assumptions are X and Y are continuous and are homoscedastic.
Let Xm = (X1, ..., Xm) be a random sample of size m from X . That is, Xm corresponds to a

random sample from the initial state or State A. Observations from State B are to be observed one by
one sequentially as per requirement following a simple rhythm. First observation Y1 will be the record
related to final state corresponding to X1, Second observation Y2 similarly corresponds to X2 and so
on. However, for some reason, out of those m individual samples, we may at most observe q (q < m)
random samples from the State B or from Y population. That is, we may say that in the best possible
scenario, we have q proper paired samples as (X1, Y1), ..., (Xq, Yq). Besides this we (m − q) random
samples from the X population only, say Xm−q+1, ..., Xm. For this (m−q) samples Y observations are
either missing or not recorded because of induced censoring. Necessarily, a sequential inverse sampling
scheme comes into operation. Thus, if we think of usual nonparametric tests for paired sample location
problems like sign test, Wilcoxon signed rank test etc, we can only make use of q samples for which
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records related to both the variables are available. As a result, atleast (m − q) additional information
related to State A will be under utilized. In the present context, we aim at designing a test procedure
where we can optimally utilize all the available m samples related to State A. Even we like to make use
of all the q available resources corresponding to State B, particularly when null hypothesis is true. If there
are sufficient evidence against the null hypothesis at a given level we do not mind if some information
related to State B are overlooked. For this, we consider a fixed set ofm observation from State A a priori
and consider samples from State B one by one sequentially, with j − th samples from State B, i.e. Yj
represents the final state records of Xj , the j − th sample from State A for j = 1, ..., q.

Now, for j = 1, ..., q, let us define,

Ψj = Rank of Xj among X1, X2, ...., Xj−1, Xj , Xj+1, ..., Xm

and
Φj = Rank of Yj among X1, X2, ...., Xj−1, Yj , Xj+1, ..., Xm.

Note that both Ψ ′js and Φ′js assume positive integer values between 1 and m. Further Suppose, for
j = 1, ..., q,

∆∗j = Φj − Ψj .
Obviously, ∆∗j ’s may be negative and assume integral values between (1-m) to (m-1). It is easy to note
that that under null hypothesis, most of the ∆∗j ’s are expected to be smaller and take values around 0.
While under alternative hypothesis of right shift of the median of Y population, majority of the ∆∗j ’s are
expected to be larger and positive. We Consider

∆j =
m+∆∗j
2m− 1

,

and for any positive integer n, define the partial sums

Sn =
n∑
j=1

∆j .

Now, we introduce a stopping variable N depending on the sequence of partial sums Sn. We define,

N = min
n≥n0

{n : Sn >
r

2
},

where r is a prefixed positive number depending on q and n0.
Obviously ∆j’s are positive random variables lying in the half open interval (0, 1]. For, moderately

large m ∆j’s are expected to take more and more values around 0.5 and under alternative of right shift
in median, it is expected to be larger. Therefore, for any given n, the partial sums are are expected to be
stochastically larger under the alternative than under the null hypothesis. As a consequence, a left tailed
test based on N will be appropriate in the present scenario.

Let Nα, depending on r, be the lower 100α percent point of the distribution of N . Then, we reject
H0 in favour of the alternative at the level α, if observed

N < Nα.

Note that if
SNα <

r

2
,

we can accept the null hypothesis at the level α even without considering any further samples from Y -
population. This is an advantage of inverse sampling scheme considered here. Capitalizing this feature,
we set Nα = q and choose a suitable r accordingly. This will ensure that we can reach at a conclusion
at a given level with the at most available q records from Y -population.

If alternative is of the type H2 : µX > µY , then just use ∆∗∗j = Ψj − Φj , instead of ∆∗j and
proceed as before. In the subsequent sections we discuss asymptotic normality of the stopping variable
and obtain numerical results through simulation study. We provide a small data study to illustrate the
proposed procedure before presenting the concluding remarks.
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3 Some asymptotic results
Result 3.1. There exists a positive integer ν such that, for large m, the asymptotic distribution of r−N

2
√
r

is equivalent to that of Sν− ν
2√
ν
.

Proof. Note that, for any x,

Prob (N > x) = Prob ( max
n=n0,...,[x]

Sn <
r

2
)

= Prob (S[x] <
r

2
), (1)

since, ∆j’s being positive, partial sums {Sn} forms a strictly monotonic increasing sequence. Here [·]
stands for largest integer contained in it. This implies

Prob (
N − r
2
√
r
>
x− r
2
√
r

) = Prob (
S[x] − x

2√
r

< −x− r
2
√
r

). (2)

Let ξ = x−r
2
√
r
, so that x = r + 2ξ

√
r. Define ν to be the largest integer contained in x. Therefore for

every r and finite ξ, Assuming as m is sufficiently large, r is also very large and thus, we get a ν such
that as r tends to∞, ν also tends to∞, but νr tends to 1. Hence (3.2) immediately gives

Prob (
N − r
2
√
r
> ξ) = Prob (

r −N
2
√
r
< −ξ) = Prob (

Sν − ν
2√

ν
< −ξ).

Hence the result follows.

Result 3.2. Under null hypothesis, for any j = 1, 2, ..., E[∆∗j ] equals 0. Also, for any j = 1, 2, ..., and
j′(6= j) = 1, 2, ..., E[∆∗j∆

∗
j′] equals 0 when null hypothesis is true.

Proof. Proof is trivial and hence is omitted.

Result 3.3. For large m, and consequently a large ν, the asymptotic null distribution of Sν− ν
2√
ν

can be

approximated by normal with mean 0 and variance 1−3τ
6 , where τ = Prob (Xj > Xi, Yj > Xi′) with

i 6= i′ = 1, ...m, and j 6= i 6= i′ = 1, ....

Proof. Using Result 3.2 and some algebric computation, the result follows straightway from the
classical central limit theorem.

As a consequence of the above results, we may say that asymptotic null distribution of N can be
approximated by normal with mean r and variance 2r

3 (1 − 3τ). Therefore, it is legitimate to think that
we reject H0 against H1 if observed N is less than r − [2r3 (1− 3τ)]

1
2 τα, where τα is the upper 100α

percent point of the standard normal distribution. Note that, τ is, in general, not known. So we need
to estimate it from the observed data. Suppose, c(A) = 1 or 0 according as A or Ac occurs. Then

3
m∑
i=1

m∑
i′(6=i)=1

n0∑
j(6=i i′)=1

c(Xj > Xi, Yj > Xi′)/[(m(m−1)(m−2)−(m−n0)(m−n0−1)(m−n0−2)]

may be considered to be the basic estimator of τ.
One may further think of improving this based on incoming observations sequentially, but for most

the practical situations this basic estimator serves the purposes quite well. One should note that when
X and Y are perfectly positively associated with Xj = Yj for all j, we have τ = 1/3, while in case
of perfect negative association with Xj = −Yj for all j, we have τ = 1/6. In case X and Y are
independent, it is see to see that τ = 1/4. Nevertheless, while estimating τ from data, one may find that
the estimate is more than 1/3 and consequently encounter a negative estimate of variance. To avoid this
hazard and also degeneracy, we suggest to take the minimum of 0.33 and basic estimate as the working
estimate of τ.
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4 Numerical results
Extensive simulation studies have been carried out to verify the asymptotic results. Findings based on
10000 replicates of Monte Carlo experiments are extremely encouraging. Data are generates from bi-
variate normal as well as bi-variate Cauchy distributions using R-packages ( MASS and fMultivar re-
spectively). We draw a sample of sizem fromX population withm equals 25, 50 and 100. We study two
situations when r = 0.6m,n0 = 0.4m and when r = 0.4m,n0 = 0.2m. For sake of brevity, we omit the
details and just note few points. We see that the type I error or level actually attained based on asymptotic
cut off points at 5% level are pretty satisfactory in most of the situations. Actual type I error is bit low
when there is a high order of positive association between two variables. At the same time, remaining
other things fixed, if we consider power under right shift in second population, it slowly increase as cor-
relation increases from -1 to +1. For example, if we consider bivariate normal with (0, 0, 1, 1, ρ) as null
distribution and bivariate normal with (0, 1, 1, 1, ρ) as the alternative, we see that with m = 25, r = 15,
and n0 = 10, power increases from 0.6 tot 0.9 when correlation coefficient (ρ) is increases from -0.8 to
0.8. Further as desired, power increases with r for fixed m as well with m for fixed r. Power is close to
unity with even small shift of order 0.5 with unit variances, if m is about 50, r = 0.6m,n0 = 0.4m and
there is a good positive association. But for large m and r there are chances that level actually attained
may be 1-1.5% more than desired when association between the two variables is less. It might be a
because of over estimation of τ in presence of spurious correlation. However the test is indeed a great
choice when there is high order of positive association and we are looking for a right shift in second
population. Same may be said when there is high order of negative association and we are looking for a
left shift in second population.

5 Data study
The objective of present data study is to show the gain in sample size through proposed sequential test
while reaching a valid decision. The gain is sample size from the second population invariably mini-
mizes cost of the experiment and also save considerable time. The data is taken from Massachusetts
Water Resources Research Center at UMASS/Amherst Acid Rain Monitoring Project carried out with
funding from Massachusetts Division of Fisheries, Wildlife, Massachusetts Department of Environmen-
tal Protection, Trout Unlimited and the U.S. Geological Surveys Water Resources Institute Program.
156 observations corresponding to X populations from various water bodies in Cape cod watershed (A
drainage basin is an extent of land where water from rain or snow melt drains downhill into a body of
water, such as a river, lake, reservoir, estuary, wetland, sea or ocean) are collected prior to snowfall in
the mid of October in 1984. Second samples corresponding to Y population are collected after snow
melt in mid April of 1985. See website (http://umatei.resuo.ads.umass.edu/armproject1/bsearch.cfm)
for the details of data. data shows that correlation between two variable is as high as 0.779 while the
variability in both the samples are amazingly similar up to 4 places of decimal and is 0.5443. Thus
homogeneity in variance assumption is not all problem. However assumption of normality is not so
justified as a Kolmogorov-Smirnov test based on 156 first sample observations returns a low p-value
0.04367. Non-normality and dependence structure rules out various possibilities of two sample location
test. A Wilcoxon signed rank test returns a very high p-value ( 0.9977) indicating there is no right shift
of location in second sample.

Now let us set r = 100, n0 = 60 and carry out the proposed test. We see basic estimate of τ is
0.3392. As it marginally exceeds 0.33 we take estimated τ = 0.33 and at 5% level we have cut off
points as 98.65686. We may reach at the same conclusion of no right shift in second population saving
57 sample observations and using only 99 second sample observations as the sequential drawing does
not terminate early on or before 98 observations. If we set r = 65, n0 = 35 the basic estimate of τ
becomes 0.3025(< 0.33). So we take τ = 0.3025 and at 5% level we find cut off points as 61.70833. In
this case also, we reach at the same conclusion saving 94 sample observations and using only 62 second
sample observations as the sequential drawing does not terminate before the cut off. Choice of r may be
made depending on the available resource, time and cost with of course amount of precision required.
This is left to the statistician’s choice. Nevertheless, we advise to take r < (m−

√
3m).
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6 Concluding remarks

One should note that even though the propose test is based on ranks, it is not truly nonparametric in
nature. This is because τ is model dependent. One may refer this test as near nonparametric. However,
if there is a high order of positive association between the two variables and that is known a priori
one should set a prefixed value of τ to achieve a purely nonparametric test. Interesting fact is that the
asymptotic results are applicable to a class of bi-variate populations starting from thin tailed Normal
to heavy tailed Cauchy for testing difference in location. Future researches on partially sequential
framework assuming various dependent set-up are highly warranted. An immediate consequence of the
present work should be to extend the test in case of heterogeneous variance of the two populations.
Improved estimation of τ is also a worth considering problem.
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