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Abstract

In this article, we will discuss two estimation scenarios, where estimation will follow

the essential principles underlying sequential inference, but the sample size will be fixed in

advance. More specifically, the first scenario is concerned with estimation of the unknown

number of components in a finite mixture model, where our desired objective is to minimize

a model selection criterion based on Hellinger distance. In the second scenario, we are

concerned with estimation of number of sufficient dimensions in the context of time series,

where the desired objective is to maximize Kullback-Leibler type information. Thus, in

each of the two scenarios, the article takes a broader view of sequential inference, focusing

on sequentially achieving the desired objectives.
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1 Introduction

Sequential estimation generally refers to parametric inference based on a random sample

size determined using a sampling scheme. Such a scheme, defined usually via a stopping

rule, collects observations either one-at-a-time or in batches until a pre-specified objective is

achieved. Sequential sampling is not only inherently cost effective, but also leads to procedures

that achieve a desired objective. These features make sequential inference a more attractive

alternative over traditional parametric inference based on a fixed sample size.

In this article, we will discuss two estimation scenarios, where estimation will follow the

essential principles underlying sequential inference, but the sample size will be fixed in advance.

More specifically, the first scenario is concerned with estimation of the unknown number of

components in a finite mixture model, where our desired objective is to minimize a model

selection criterion based on Hellinger distance. In the second scenario, we are concerned with

estimation of number of sufficient dimensions in the context of time series, where the desired

objective is to maximize Kullback-Leibler information. Thus, in each of the two scenarios,

the article takes a broader view of sequential inference, focusing on sequentially achieving the

desired objectives.

2 Finite mixtures

Finite mixture models provide a natural way of modeling unobserved population heterogeneity,

which is often encountered in data sets arising from biological, physical and social sciences. A

complication in many applications is that there is not much a priori information about the

number of mixture components, termed mixture complexity. Estimation of mixture complexity

is a fundamental problem because correct identification of mixture complexity followed by

efficient estimation of all parameters would lead to finding a mixture with fewest possible

components.

Consider a parametric family of density functions Fm = {fθm
: θm ∈ Θm ⊆ Rp} for each

fixed integer 1 ≤ m < ∞ such that fθm
can be represented as a finite mixture of the form

fθm
(x) =

m∑

i=1

πif(x|φi), x ∈ X ⊆ R, (2.1)

where the component densities f(x|φi) ≥ 0,
∫

f(x|φi)dx = 1, φi ∈ Φ ⊆ Rs, the mixing

proportions πi ≥ 0,
m∑

i=1
πi = 1 for i = 1, . . . , m and θm = (π1, . . . , πm−1, φ

T
1 , . . . , φT

m)T . The

class Fm ⊆ Fm+1 for all m and we denote F =
∞⋃

m=1
Fm. Let X1, . . . , Xn be independent and

identically distributed random variables with an unknown density function f0. Define

m0 = m(f0) = min{m : f0 ∈ Fm}. (2.2)
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If indeed f0 is a finite mixture then m0 < ∞ and it denotes the true mixture complexity; oth-

erwise m0 = ∞. Note that m0 represents the most parsimonious mixture model representation

for f0. We now describe an estimation procedure which proceeds sequentially to estimate m0.

Before we propose an estimator of m0, we define an estimator of θm for each fixed m ≥ 1.

To this end, define the Hellinger distance between two densities f and g by H2(f, g) = ||f1/2−
g1/2||22, where || · ||2 is the L2 norm. Let f̂n be a kernel density estimator of f0 of the form

f̂n(x) =
1

ncn

n∑

i=1

K(
x−Xi

cn
) (2.3)

where K is a density on Ω ⊆ R and the bandwidth cn = cn(X1, . . . , Xn) satisfy regularity

conditions given in the Theorem stated below. When m ≥ 1, the minimum Hellinger distance

(MHD) estimator θ̂
MHD

n,m of θm is that value for which H(fˆθ
MHD

n,m

, f̂n) = mintm∈Θm
H(ftm

, f̂n).

Note that it is possible to view the estimation of mixture complexity m0 as a model selection

problem by defining a criterion based on the Hellinger distance. To this end, first note that in

the context of minimum Hellinger distance estimation, the statistic H2(fˆθ
MHD

n,m

, f̂n) is particu-

larly appropriate for measuring goodness-of-fit of mixture models. Motivated by the classical

Akaike type of criterion for model selection, we may consider a model selection criterion of the

form

HIC = H2(fˆθ
MHD

n,m

, f̂n) + n−1b(n)ν(m) (2.4)

where b(n) depends only on n and ν(m) is the number of parameters in the mixture model.

Here, the value of m yielding the minimum HIC specifies the best model. Since Fm ⊆ Fm+1,

we have H2(fˆθ
MHD

n,m

, f̂n) ≥ H2(fˆθ
MHD

n,m+1

, f̂n). Therefore, in (2.4) we penalize the goodness-of-fit

statistic by a term proportional to the number of parameters in the mixture model. A simple

heuristic to search for the best model from a sequence of nested models is to try successive

models, starting with the smallest, and stop with model m when the HIC value for model m

is lesser than that for model (m + 1). That is, this heuristic stops when

H2(fˆθ
MHD

n,m

, f̂n) + n−1b(n)ν(m) ≤ H2(fˆθ
MHD

n,m+1

, f̂n) + n−1b(n)ν(m + 1)

or, equivalently,

H2(fˆθ
MHD

n,m

, f̂n)−H2(fˆθ
MHD

n,m+1

, f̂n) ≤ n−1b(n)[ν(m + 1)− ν(m)]. (2.5)

Setting αn,m = n−1b(n)[ν(m+1)− ν(m)] in (2.5) naturally leads us to the following estimator

of m0 defined by

m̂n = min{m : H2(fˆθ
MHD

n,m

, f̂n)−H2(fˆθ
MHD

n,m+1

, f̂n) ≤ αn,m} (2.6)

where {αn,j ; j ≥ 1} are positive sequences of threshold values chosen in such a way that they

converge to zero as n →∞. We define m̂n = ∞ if the minimum in (2.6) does not exist.
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Given a data set, computation of m̂n in (2.6) is clearly a sequential process. The procedure

starts by assuming that the data comes from a mixture with a single component (m = 1) whose

form is known except for the parameter values. After fitting a nonparametric density estimator

f̂n, the MHD estimate of the θ1 is computed, which yields the best parametric fit fˆθ
MHD

n,1

and

a goodness-of-fit measure H2(fˆθ
MHD

n,1

, f̂n). Next, another component density is added yielding

a mixture of two components (m = 2). As in the first stage, the best parametric fit fˆθ
MHD

n,2

and

a goodness-of-fit measure H2(fˆθ
MHD

n,2

, f̂n) are computed using the MHD estimate of θ2. The

difference between the two goodness-of-fit measures is then compared with the threshold value

αn,1. The above sequential procedure of adding one more component to the previous mixture is

repeated until the first value m = k for which the difference between goodness-of-fit measures

computed at the k-th and the (k+1)-th stage falls below the corresponding threshold value αn,k.

At this time, the sequential procedure terminates, declaring k as an estimate of the number

of components in the mixture. Note that at this stage our sequential procedure automatically

provides a best parametric fit determined by MHD estimates of mixture parameters in a k-

component mixture. The following theorem shows that sequential procedure m̂n is strongly

consistent as n →∞.

Theorem. Suppose X1, . . . , Xn are independent and identically distributed random vari-

ables with an unknown density function f0. Suppose the bandwidth cn in (2.3) satisfies

cn + (ncn)−1 → 0 a.s. as n → ∞. If f0 is a finite mixture with mixture complexity m0 < ∞,

then for any sequence αn,m → 0 the estimator m̂n defined in (2.6) is strongly consistent, i.e.,

as n →∞
m̂n → m0 a.s.

If f0 is not a finite mixture, then m̂n →∞ a.s.

For a proof of the Theorem; see Woo and Sriram (2006). In addition, Woo and Sriram

(2006) also illustrate the performance of m̂n via extensive simulations when the true mixture

components are normal or when they are symmetric departures from postulated component

normality. The latter simulations shows that the sequential procedure m̂n is robust under

model misspecification. Here we present only one simulation for the case when the true com-

ponents are normal; for other simulations on robustness, see Woo and Sriram (2006).

The first simulation demonstrates the performance of (2.6) for the target density given by

f(x) = (1/2)φ(x|(0, 10)) + (1/4)φ(x|(−0.3, 0.05)) + (1/4)φ(x|(0.3, 0.05)), (2.7)

where φ denotes the normal density with mean and variance identified inside the parentheses.

We implemented our sequential procedure for a sample of size n = 1000 drawn from (2.7).

We performed 100 Monte Carlo replications of our sequential algorithm, each yielding an

3



Table 1: Sequential Mixture Complexity Estimation [Mixture in (2.7) has m0 = 3 components]

Estimated number of components

1 2 3 4 5 6 7 8

n = 1000

MHDE 0 26 *74

MKE 0 18 *63 10 2 3 1 3

R&W 0 0 0 1 89 10

Bootstrap 0 79 15 4 2

estimate m̂n of mixture complexity m0. We then tallied the estimated number of components

(out of 100 replications). These counts are reported in Table 1, where MHDE corresponds to

our estimate m̂n given by (2.6), which is compared to MKE, R&W, and Bootstrap methods

proposed by James et al. (2001, see Table 1), Roeder and Wasserman (1997) and McLachlan

(1987), respectively. In this case, the true mixture complexity m0 = 3 and we denote only the

highest percentage of correct identifications by an asterisk in Table 1. The numbers in Table 1

show that our sequential procedure detects the true mixture complexity correctly about 74%

of times, which is more than the percentage of correct detections by the other procedures.

3 Time Series

Time series analysis has been an active area of research for decades. Over the years, the

scientific community has witnessed development of many useful parametric and nonparametric

methods for analyzing time series data. Nevertheless, there is a never-ending quest to build

new and modern methodologies to analyze time series data.

Suppose {xt; t ≥ 1} is a time series. The primary goal of time series analysis is fore-

casting, which requires inference about the conditional distribution of xt|Xt−1, where Xt−1 =

(xt−1, ..., xt−p)T for some suitable lag p ≥ 1. Here, we will assume that such a lag value p exists

and is known. Our goal is to find finitely many linear combinations, ΦT
1 Xt−1, · · · ,ΦT

q Xt−1, with

q ≤ p such that the conditional distribution of xt|Xt−1 is same as the conditional distribution

of xt|(ΦT
1 Xt−1, · · · ,ΦT

q Xt−1). This is equivalent to finding a p× q matrix Φ = (Φ1, ...,Φq) such

that

xt Xt−1|ΦT Xt−1, (3.1)

that is to say, xt is independent of Xt−1 given ΦT Xt−1. If such a Φ exists, then the p×1 vector

Xt−1 can be replaced by the q× 1 vector ΦT Xt−1 (with q much smaller than p) without loss of

information. This would represent a sufficient yet useful reduction in the dimension of Xt−1,

where all the information in Xt−1 about xt is contained in the q-linear combinations.

We define a dimension reduction subspace for xt on Xt−1 as any subspace S(Φ) of Rp
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for which (3.1) holds. Note that (3.1) holds trivially for Φ = Ip (Identity matrix), which

implies that a dimension reduction space always exists. Since our primary aim is to reduce

the dimension, we naturally seek a minimum dimension reduction space for xt on Xt−1. To

this end, we define the intersection of all dimension reduction spaces as a Time Series Central

Subspace (TSCS), denoted by Sxt|Xt−1
(Φd), if the intersection is itself a dimension reduction

space, where dim(Sxt|Xt−1
(Φd)) = d and Φd = (Φ1, ...,Φd). Clearly, TSCS is the minimum

dimension reduction subspace.

Our definition of TSCS is general enough to include many well known linear and nonlinear

time series. It is possible to identify the basis for TSCS corresponding to autoregressive

model of order p, threshold autoregressive model of order p, and autoregressive conditionally

heteroskedastic models; see Park et al.(2009) for details. In view of the large class of examples,

we will henceforth assume that TSCS exists. We will focus on simultaneous estimation of

minimum dimension d of Sxt|Xt−1
(Φd) and Φd. From a time series data analysis point of view,

a simultaneous estimation of d and Φd would provide minimum linear combinations of Xt−1,

which would provide an initial phase when an adequate parsimoniously parameterized time

series model is not yet available.

Suppose for a moment d and p are known. Park et al.(2009) motivated estimation of Φd

by Φ̂n = arg maxh Ψ̂n(h) based on a Kullback-Leibler type information, where

Ψ̂n(h) =
1
n

n∑

t=1

log
pn(hT Xt−1, xt)

pn(xt)pn(hT Xt−1)
,

pn’s are product or univariate Gaussian kernel density estimators and the maximization is over

all p × d matrices h satisfying the constraint hTh = Id. They also show that, under certain

regularity conditions, Φ̂n converges almost surely to Φd; see Park et al.(2009).

In practice, however, minimum dimension d is seldom known; hence has to be estimated

from sample. Motivated by the sequential approach described in section 2, we now propose a

sequential estimation procedure which would simultaneously yield an estimator of d and Φd,

when p is known. Note that if p = 1, then d = 1, and therefore there is no need for dimension

reduction. Thus, our estimation procedure starts by fixing a value of p (≥ 2) and determines

d̂ = min{k(≤ (p− 1)) : Ψ̂n(ĥ(k+1))− Ψ̂n(ĥk) ≤ τp,n}, (3.2)

where ĥk = arg maxhk
Ψ̂n(hk) and the maximization is over all p×k matrices hk, and {τp,n;n ≥

1} is a sequence of non-negative threshold values chosen in such a way that it converges to

zero as n →∞.

As in section 2, for a data set, the computation of (3.2) is a sequential process. The

procedure in (3.2) successively compares the difference D̂k = Ψ̂n(ĥ(k+1))− Ψ̂n(ĥk) (this is > 0

because of a result in Park et al., 2009) with the threshold value τp,n starting with k = 1,
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and stops at the first value of k = l for which D̂l is at or below the threshold. This yields an

estimate d̂ of d for a given value of p, which in turn yields an estimate Φ̂n,d̂ of Φd. Obviously,

if D̂k never falls below the threshold τp,n, then d̂ = p. Park et al. (2009) also show that d̂ is

strongly consistent for d; see their article for details. We now present a small simulation study

for a nonlinear time series model to illustrate the performance of our sequential procedure d̂

in (3.2).

Model: Let xt = −1 − cos((π/2)(xt−1)) − cos((π/2)(1/
√

5)(xt−3 + 2xt−6)) + 0.2εt, where

true p = 6 and d = 2, and {εt} is a sequence of independent N(0, 1) random variables. We

assess the performance of our sequential estimate d̂ in (3.2). The sample size for this study is

n = 300. Table 2 reports fi, the frequency of d̂ = i, based on 200 Monte Carlo replications

using threshold values τp,n = χ2
p(0.05)/(2n) (0.05-threshold) and τp,n = χ2

p(0.01)/(2n) (0.01-

threshold), where χ2
p(α) is the 100(1− α) percentile of Chi-square distribution with p degrees

of freedom. Here, fi+ denotes the frequency of d̂ ≥ i. Table 2 shows that d̂ with 0.05-threshold

and 0.01-threshold correctly estimate the true dimension, d = 2, about 78% to 80% of the

times when the lag p is 6.

Table 2: Frequency of estimated dimension for 0.05-threshold and 0.01-threshold, based on

200 Monte Carlo replications. The true dimension is d = 2.

n lag p 0.05-threshold 0.01-threshold

300 6 f1=21 f2=156∗ f1=21 f2=159∗

f3+=23 f3+=20
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