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Abstract. We look at a Poisson process in several categories where the arrival rate changes at some unknown integer. For
some of these categories the arrival rates increase, while in other categories the arrival rates decrease. The point at which the
process changes may be different for each category. We develop procedures for detecting when a change has occurred in at
least one of the categories. We provide some numerical results to illustrate the effectiveness of the detection procedures.
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1 Introduction

Detection of changes in the distribution of random variables has become very important in many aspects
of life today. When there is an increase in the arrival rates of patients coming to a hospital, it is important
to detect this change as soon as possible. This could be due to environmental factors or other issues.
This is also important in industry where quality control depends upon being able to detect changes in
the process mean as soon as possible.

Several studies were published recently on detecting changes in the intensity of a homogeneous
ordinary Poisson process. Among these studies, we mention Peskir and Shiryaev (2002), Herberts and
Jensen (2004) and Brown and Zacks (2006a). These papers dealt with a Poisson process which is mon-
itored continuously. Brown and Zacks (2006b) also studied a Poisson process which is monitored only
at discrete time points. In that paper, we look at the sequence of random varigbMwere X; is the
number of arrivals that occur in the time interyal- 1, i]. Thus, we see only the number of arrivals that
happen in each time interval, not exactly where the arrivals occurred within that time interval.

In 2006, Tartakovsky studied the detection of changes in at least one of several categories monitored
simultaneously. Tartakovsky gave many applications to invassions in computer systems. There are sev-
eral instances where we many want to split a Poisson process into several different categories. At some
unknown time point, there may be a change in the arrival rate of one or more categories.

In the present paper, we assume that the arrival rates before and after the change are known but
the change-point is unknown and may or may not be the same for each category. We use a Bayesian
approach, putting Shiryaev (1978) geometric prior on the change-gdimteach category. In Section
2, we discuss the posterior process of calculating the probability that a change has already occurred
by time n for each category. In Section 3, we discuss the optimal stopping rule based on Dynamic
Programming procedures. We generalize the Dynamic Programming procedure used for one sequence
of variables to one that is optimal for several sequences of variables monitored simultaneously. We
assume there is a cost associated with stopping early and a cost associated with late detection. Our goal
is to stop as soon as a change happens in at least one of several categories. We develop optimal stopping
rules that will minimize the expected cost. In Section 4, we give an explicit formulation of the two step
ahead stopping rule. We conclude with a numerical example showing how our method works.

2 The Bayesian Framework

We have a Poisson process in eacl chtegories. We assume théoisson processes are independent.
We monitor each process at fixed discrete time points X;gtbe the number of arrivals in the interval
(7 — 1,1] in category;. At the end of some unknown interval indexed by an integgethe rate of arrivals
changes from\; ; to A, ;. We assume the arrival rates before and after the change, namesndas ;,
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are known in each category, but the change-pgjng unknown. In some of the categories this change
may cause an increase in the arrival rates while in other categories the change may cause a decrease
in arrival rates. It is also important to note that we are allowing the change-point to differ from one
category to another. Our goal is to find a detection procedure that will detect a change in at least one of
the categories as soon as possible. The eignt= 0} represents the case where the change in category

j happened prior to the first observed interval. In this case, all the observations in this category are taken
from a process with the arrival rate & ;. The event{r; = r} means that the change in categgry
happens at time. Define, T, ; = Y., X, ; as the total number of arrivals before timén category
jrandTy_ = >, . X;; as the total number of arrivals after timen category;. Tp ; = 0 and

15 ; = 0for all j. Thus, whenr; = r, T, is Poisson(rA; ;) and7,,_, . is Poisson((n — 1) Az ;). For

each category, the likelihood ofr; is given by

n—1
LT .
L(rj) = g I(rj=r) )\ﬁ?” )\2"_”e_Mlﬂj_(”_T)AQJ + 1 (15 >n) e AL AZ};—’”. Q)
r=0

We put Shiryaev’s (1978) geometric prior distributibon the change-point; for each;.

. T fori =0
h(Tj:Z):{(1—7r)pj(1—pj)i1for¢z1' )

Thus, for each categorjy we obtain the posterior probability that there has been a change by tisne

(1—m) (1 —py)" e ™Mad %

=1 3
wnm] Dn’] ) ( )
where
n—1
: . T* .
D, ;= 7r/\§"’367”>‘2’j +(1—m) ij (1—pj)" /\ff]ﬁ] Ay e~ AL —(n=T) A2,
r=1
(1= m) (L= py) e (4)

Lett, ; = 1 — 1, ; be the probability that there has not been a change bystimesategory;. We are
interested in the probability that at least one of the categories change. By independence, the negation
Gn = H?Zl End- is the probability that the change has not happened in any category.

Lemma 1. For eachn andj, the posterior probabilitieg), ; satisfy the recursive relationship
U1y (X1 -0 Xog1,,T) = V15 (Xnt1,5,Vn) - %)

Proof. Letting p; = ij—; andé; = Ao ; — A1; we can express the probability that a change has not
occurred by timex + 1 in categoryj is

(1—m) (1 —p)"*

7 _ 6
¢n+1,j Dn+1,j ( )
By making the substitutiofl — ) (1 — p;)" = Dy, j4n, j, We obtain
- Pnj (1= pj)
Vi1 = — = : (7)
Yn o) " e+ P pp) e 0+ P (1 - py)
Thusyn 1, (X1, Xny1,5, T) = 15 (X145 Yng)-
Therefore, the posterior distribution of for eachj is given by
, Yn,j fori =0
P(ri=ilX1,,...,Xpn;) =12 =" ; .
(Tj Z’ 1,55 ) TL,]) {wn,jp] (1 _ pj)z—l fori — 1, 2, o (8)
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Lemma 2. For eachn > 1, andj =1, ..., k, the predictive density oX,, ; is

A%:]ei)\z] — )\5]67)\1*3 — )\f]ei)\l"j
fn,j(x) = wn—l,j’T + wn—l,jpjT + wn—l,j (1 - pj) T (9)
Proof. The density ofX,, ;, givent;, is
X5 jem 2 X5 jem Af jem
Jag@ | 7) = 1(r; = )2 — 4 Iy = )2 4 I > D= — (10)

Taking the expected value gf, ; (= | 7) with respect to the posterior distribution of, givenX; ;,i =
1,...,n, we obtain (9).

At each time point, we calculate for each categgryhe probability that a change has not occurred in
that category to be,, ;. We definey,, to be the vector{ ¥,,1, ¢, . .. ,wnk}t.

Lemma 3. The sequencéy,, ¥,,,n > 1} is a supermartingale.

Proof. We calculateZ (g,+1/tr) as follows.

k k k k
E (gui1ltpn) = E (H wn+17i\«,zn> = 1B @nsriln) =TT = p)" P = an [T (0 = ).

=1 =1 =1 =1
(11)
where the conditional expectation in (11) is taken with respect to the predictive distributiop,of;
for all I. Thus the sequendg,,, ¥,,,n > 1} is a supermartingale.

For notational purposes, we I8, = [T5_, (1 — p;). Hence.E (q.+1|%n) = 4nPs-

3 Optimal Stopping Rule

In Section 2, we calculated at each integethe probability that a change has not occurred in category

j to be, ;. Thus we found the probability that the change has not occurred in any éfdategories

to beq, = H;?:l ¥n, ;. We assume there is a cost associated with stopping early and a cost associated
with a delay in stopping. We assume without loss of generality that the cost associated with a false alarm
is 1, and the cost per time unit to stop late-isThus, the risk of stopping at time is ¢,,. The risk of
continuing at timen is given byc (1 — ¢,,) + E (Rn+1|1ﬁn) . Therefore, the risk at time is

R,, = min (Qn, C(l - QH) +FE (Rn+1|1|5n)) . (12)

According to (12) we would opt to stop and declare there is a change whenever thg rislg,. Equa-
tion (12) is equivalent td?, = ¢, + [c — ¢, (c+ 1) + E (Ru41|¥n)] . The stopping rule specifies to
stop sampling and declare a change in at least one category the first tingg tﬁai%. To
find an optimal stopping rule, we first consider a truncated rule. We stop#ftdrservations if we have

not stopped before. LeRﬁf) be the risk at time:, when only;j more observations are allowed. Note that

) = gu andRY = g, + [¢ — g (e + 1) + E (gus1|Pn)] -
Lemma 4.
lim ¢, =0 a.s.. (13)

Proof. Indeed, according to equation (185{q,} = (1 — ) P, n > 1. Thus,limsupE{g,} = 0.

n—oo

Since@f)n,j >0w.p.1lforalln > 0andl < j <k, ¢, > 0. Hence we obtain (13).

The risk looking one step ahead R = gn + [¢ = gn (c+ 1) + Prgn] . Therefore, the one step
ahead procedure is to stop sampling and declare a change in at least one categary whigh where
Q* = c+1c—15k‘ Therefore, the one step ahead stopping variabhi = min {n : ¢, < Q*}.
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Lemma 5. The one step ahead stopping random varialilé) < co with probability 1.

Proof. Since by Lemma 4im,,_.« ¥, ; = 0 for all 5. Thus, there exists amsuch that),, ; < Q* for
some;j with probability 1. Thereforey,, < Q* with probability 1 for some finite:. Hence, the one step
ahead stopping random variat&!) < co w.p. 1.

Now we look at “j-step look ahead” stopping rules. Define fob 0, M (d)n) recursively as the
expected risk of continuing at the next observation.

MY) () = E [[C st (e 1= B) + MY ()| ran] , (14)

andM” = 0. Therefore the risk looking steps ahead iBY) = g, + [c —qn(c+1—PF)+ Mﬁj)} -
The “j step ahead” procedure is to stop sampling and declare that a change has occurred in at least one
of the categories the first time tha < b9 whereb is defined as the “| step ahead” boundary

G) [~ e M,gjfl)('d_)n) . . izQ
n (Pn) =Q + Ry . To calculate these boundary functions, we first calculdie .

k k -
MY ($n) =Y ][ P (Xnsry =1ij) {C —(c+1-P) H )+ M) (J)n)] . (15)
ij j=1 j=1

The sum in equation (15) is taken over those points for whjch > bﬁf;ll).

Lemma 6. ¢, 11, (¥n, Xny1,) is @ decreasing function ok, 1; when);; < Xo; and increasing
when)\l,l > )\271.

Proof. Consider the functiorf defined byf (X) = ¥n,pXe™ + YnppXe™® + ¢, (1 —p) for X =
0,1,2,.... Taking differencesf (X + 1) — f (X) = (¢n + ¢up) pXe ™ (p—1). Thus, f is positive

for p > 1 and negative fop < 1. Sincey, 1, = W wheres; = Aoy — Ay andp;, = % the
n+1,1l s

result follows.

Thus, there exists a regidhn such that ifg,, 1 (i1, ...,1;) > bff;ll), when(iy, ..., ix) € 1;.

Lemma 7. For the predictive distribution specified above,
1. M) (¥n) < M (%) <Oforalll>1.

2.7, Cc Tyyq foralll > 1.

3.08 < bV sorall i > 1.

Proof. The proof is by induction oh First,Mél) < 0 by the definition. Suppose thMék) < Mflkfl)
forall K <[ — 1. Now let’s look atM,(f) - M,(f_l) Subtracting we obtain.

E [c —qni1 (c+1-B) + M,Slgf)} _E [c —gui1 (c+ 1= B) + M- 2)} <0.  (16)

This is true smceMT(LH) < MSHZ) by the inductive hypothesis. Thus, thar” func-

tions are decreasing id. To prove part 2, letx < T,. Therefore, by equation (3.14),
[c — (41— P) TT5y oy () + MY (@Zn)} < 0. This implies that
(1-1) (1)
M M
Tt (anw) > Q* + n+1 > Q* + n+1 ) (17)
’ c+1—(1-p)F c+1—(1—p)F

1)

Thusz € T;, 1. Similarly we can show that” < !~ by inequality (17).
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Since theb() are monotone decreasing and bounded below bynf), .. by, bV = = bY°. Therefore the
optimal stopping rule is to stop sampling at the fitst 1 such thaty, < b3°.

Lemma 8. We have the following convergence]\dﬁl) andb’.

1. Forafixed > 1, lim,,— M,Sl) =0a.s..

2. For afixed > 2, lim,, o bg) =Q@Q*a.s..
Proof. The proof is by induction oh Whenl = 1, by equation (15),

k

M© () = Y HP% Xpi1j=14;) |c— (c+1— B H@ZJ”] ij)| (18)

Uyl J=1 Jj=1

By Lemma 4,¢7n7j = 0 asn — oo for all j. Suppose there is at least one category where the arrival rate
increases. In that categofywe can findV; suchy,, ; (0) < Q* for all n > N;. Thus,ib, 11 (i) < Q

for all i;. ThusT} is empty, and\/[,(ll) = Oforalln > NN;. Now suppose for all the categories, the arrival
rates decrease. For each categprgiven anye > 0 there exists ad; such thatP (X,,;1,; > i;) < €
forall i; > I; and0 < ¢, ; < 1. Since for all categories),, ; = 0 asn — oo, there exists atV; such
thatiszrl’j (ZJ) < Qj for all ij < Ij andn > Nj. Thus,T; = {(il, e ,Zk) : i]’ > Ij,j =1,... ,k‘},
and]Mff)\ < Hj?:l P(Xpi1; > 1) < €~ ThusM," = 0 asn — oo. Similarily by induction one can
show thatZ\J,(f) =0asn — oo foralll > 1. By (15) itimmediately follows tha&ﬁf) = @Q* asn — oc.

4 Explicit Formulation of the two step Boundary

In this section we provide an algorithm for calculating the two step ahead boundary. To calculate the two
step ahead procedure, we first calcuIMél). The expectation is taking with respective to the predictive
distribution whereP,; (X,,+1,; = 4;) is the predictive probability that the: + 1)* observation in cate-

gory j will be i;. Since the Poisson processes in each category are indepeﬂégprj (Xn+1,j =)

is the predictive probability tha¥,, .1 = (i1,...,7). We only sum over(zl,.. i) for which

gnr1 > Q*. By Lemma 6, we conclude there exists a regign WhereH] 1z/zw (zj) > Q*, when
(i1,...,1x) € T1 . Hence, the sum in (1) is taking ov&}. In this section, we find an algorithm for
finding the regioriy which is needed to calculate the two step ahead boundary.

Lemma 9. If 115 (0,%,;) < Q* andA,; < Ao ; for somej, thenM\") = 0 and the one step ahead
boundary@* is optimal.

Proof. Since); ; < Ag,;, by Lemma 6, the posterior probabilities that a change has not occurred in
categorysj, ¥n+1, (zj,wn]) are decreasing for aiy Thus,¥,41,; < Q*. Hence for alli;, ¢n+1 <
wnﬂj < @Q*. Therefore, T} is empty, andM,, = 0. This makes the one step ahead boundaty
optimal in this case.

In the next theorem, we develop an algorithm for findirig

Theorem 41 The following algorithm findg? .

1. For category 1, find; such thatqul (1) > Q* forall iy < I if A1 < Ao, or foriy > Iy if
A1 > A2t )

2. For eachi; in the range above, we can calculate thesubset off} using@;, = %Qi(“)

Proof. We prove this by induction oh. If k = 1, we are only looking at one category. By Lemma 6, we
find the 1 dimensional region that satisfies the conditio&. ¥ 1, we find ak — 1 dimensional region
Tl(kfl) such thai]'[?;l1 V1, (i]) > Q* forall {iy,...,ip_1} €T} (*~1) For each member ¢ Tl(kfl),
one can calculat®* (z) = m Then find a regiom,, € Z such that),, .1 x (i;) > Q* () for all

i € Ag. Thus the k dimensional regidh is | er(k-D) (xNA,).
Ty
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5 Appendix

We provide a numerical example demonstrating how this method works. In this example, we have two
categories both with a change happening at time 10. In category one, the arrival rates before and after the
change increases from an arrival rate of 1 to 2, whereas in category two, the arrival rates decreases from
an arrival rate of 2 to 1. Assuming the cost for stopping laie-s 0.06, and the prior probability that

there is a change at the next triapis= p, = 0.01, the one step boundary is calculated}s= 0.75009.

For eachn, we calculate the probability that a change has not occurred in each category and the two step
boundaryb?.

Table 6.1

77[171,1 wn 2 dn bg?)
0.98530.97310.95880.580
0.98180.95090.93360.6045
0.97920.95940.93950.5988§
0.97730.93300.91190.6247
0.98780.81660.80670.6891
0.93770.96130.90150.6309
0.97240.87870.85450.6660
0.97230.98750.96010.5789
0.97220.94130.91510.6214
0.97210.90970.88430.6473
0.94560.86950.82220.6862
0.71350.97330.69440.7305

From looking at the Table 6.1, both the one step and the two step ahead stopping rule stops after
observation 12. This shows that the detection is quick. The table also shows the convergence of the
two step ahead boundary €@*. We have provided 3 runs of simulations both using the 1 and 2 step
procedure. In each of the simulations, category 1 increasedXiom= 1to \; o = 2, which category
2 decreased fromy; = 2t0 A2 2 = 1. Doing 1000 simulations for each of various cases of arrival rates
before and after the change, we obtain the following results for probability of false alarms and expected
delay.

PRPPRPOUORPORLNERES

OCo~NoOOUAWNRHS

ANRPRPRPOWORRE RS

Table 6.2
1 Step Ahead 2 step ahead
71| 2| AlarmgDelay CostAlarm|Delay Cost
1010 0.278 2.970.456 0.227 3.150.415
1015 0.254 4.140.502 0.237 4.330.4968§
1510 0.253 4.380.516 0.207 4.850.498(

In the above table we have provided examples where the change happens at the same-siiit (
for both categories, and where it happens at different spots for each category. The best results happen
when the change happens at the same time for both categories. The procedure seems to stop quicker for
increases in the arrival rate than for decreases.
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