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Abstract. We look at a Poisson process in several categories where the arrival rate changes at some unknown integer. For
some of these categories the arrival rates increase, while in other categories the arrival rates decrease. The point at which the
process changes may be different for each category. We develop procedures for detecting when a change has occurred in at
least one of the categories. We provide some numerical results to illustrate the effectiveness of the detection procedures.
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1 Introduction

Detection of changes in the distribution of random variables has become very important in many aspects
of life today. When there is an increase in the arrival rates of patients coming to a hospital, it is important
to detect this change as soon as possible. This could be due to environmental factors or other issues.
This is also important in industry where quality control depends upon being able to detect changes in
the process mean as soon as possible.

Several studies were published recently on detecting changes in the intensity of a homogeneous
ordinary Poisson process. Among these studies, we mention Peskir and Shiryaev (2002), Herberts and
Jensen (2004) and Brown and Zacks (2006a). These papers dealt with a Poisson process which is mon-
itored continuously. Brown and Zacks (2006b) also studied a Poisson process which is monitored only
at discrete time points. In that paper, we look at the sequence of random variablesXi whereXi is the
number of arrivals that occur in the time interval(i− 1, i]. Thus, we see only the number of arrivals that
happen in each time interval, not exactly where the arrivals occurred within that time interval.

In 2006, Tartakovsky studied the detection of changes in at least one of several categories monitored
simultaneously. Tartakovsky gave many applications to invassions in computer systems. There are sev-
eral instances where we many want to split a Poisson process into several different categories. At some
unknown time point, there may be a change in the arrival rate of one or more categories.

In the present paper, we assume that the arrival rates before and after the change are known but
the change-point is unknown and may or may not be the same for each category. We use a Bayesian
approach, putting Shiryaev (1978) geometric prior on the change-pointτj for each categoryj. In Section
2, we discuss the posterior process of calculating the probability that a change has already occurred
by timen for each categoryj. In Section 3, we discuss the optimal stopping rule based on Dynamic
Programming procedures. We generalize the Dynamic Programming procedure used for one sequence
of variables to one that is optimal for several sequences of variables monitored simultaneously. We
assume there is a cost associated with stopping early and a cost associated with late detection. Our goal
is to stop as soon as a change happens in at least one of several categories. We develop optimal stopping
rules that will minimize the expected cost. In Section 4, we give an explicit formulation of the two step
ahead stopping rule. We conclude with a numerical example showing how our method works.

2 The Bayesian Framework

We have a Poisson process in each ofk categories. We assume thek Poisson processes are independent.
We monitor each process at fixed discrete time points. LetXi,j be the number of arrivals in the interval
(i− 1, i] in categoryj. At the end of some unknown interval indexed by an integerτj , the rate of arrivals
changes fromλ1,j toλ2,j . We assume the arrival rates before and after the change, namelyλ1,j andλ2,j ,
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are known in each category, but the change-pointτj is unknown. In some of the categories this change
may cause an increase in the arrival rates while in other categories the change may cause a decrease
in arrival rates. It is also important to note that we are allowing the change-point to differ from one
category to another. Our goal is to find a detection procedure that will detect a change in at least one of
the categories as soon as possible. The event{τj = 0} represents the case where the change in category
j happened prior to the first observed interval. In this case, all the observations in this category are taken
from a process with the arrival rate atλ2,j . The event{τj = r} means that the change in categoryj
happens at timer. Define,Tr,j =

∑r
i=1Xi,j as the total number of arrivals before timer in category

j, andT ∗n−r,j =
∑n

i=r+1Xi,j as the total number of arrivals after timer in categoryj. T0,j = 0 and
T ∗0,j = 0 for all j. Thus, whenτj = r, Trj is Poisson(rλ1,j) andT ∗n−r,j is Poisson((n− r)λ2,j). For
each categoryj, the likelihood ofτj is given by

L (τj) =
n−1∑
r=0

I (τj = r)λTr,j

1,j λ
T ∗n−r,j

2 e−rλ1,j−(n−r)λ2,j + I (τj ≥ n) e−nλ1,jλ
Tn,j

1,j . (1)

We put Shiryaev’s (1978) geometric prior distributionh on the change-pointτj for eachj.

h (τj = i) =
{
π for i = 0
(1− π) pj (1− pj)

i−1 for i ≥ 1
. (2)

Thus, for each categoryj, we obtain the posterior probability that there has been a change by timen is

ψn,j = 1−
(1− π) (1− pj)

n e−nλ1,jλ
Tn,j

1,j

Dn,j
, (3)

where

Dn,j = πλ
Tn,j

2 e−nλ2,j + (1− π)
n−1∑
r=1

pj (1− pj)
r λ

Tr,j

1,j λ
T ∗n−r,j

2 e−rλ1,j−(n−r)λ2,j

+ (1− π) (1− pj)
n e−nλ1,jλ

Tn,j

1,j . (4)

Let ψ̄n,j = 1− ψn,j be the probability that there has not been a change by timen in categoryj. We are
interested in the probability that at least one of the categories change. By independence, the negation
qn =

∏k
j=1 ψn,j is the probability that the change has not happened in any category.

Lemma 1. For eachn andj, the posterior probabilitiesψn,j satisfy the recursive relationship

ψn+1,j (X1,j , . . . , Xn+1,j , π) = ψ1,j (Xn+1,j , ψn) . (5)

Proof. Letting ρj = λ2,j

λ1,j
andδj = λ2,j − λ1,j we can express the probability that a change has not

occurred by timen+ 1 in categoryj is

ψ̄n+1,j =
(1− π) (1− pj)

n+1

Dn+1,j
(6)

By making the substitution(1− π) (1− pj)
n = Dn,jψ̄n,j , we obtain

ψ̄n+1,j =
ψ̄n,j (1− pj)

ψn,jρ
Xn+1

j e−δj + ψ̄n,jpρ
Xn+1

j e−δj + ψ̄n,j (1− pj)
. (7)

Thusψn+1,j (X1,j , . . . , Xn+1,j , π) = ψ1,j (Xn+1,j , ψn,j).

Therefore, the posterior distribution ofτj for eachj is given by

P (τj = i|X1,j , . . . , Xn,j) =
{
ψn,j for i = 0
ψ̄n,jpj (1− pj)

i−1 for i = 1, 2, . . .
. (8)
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Lemma 2. For eachn ≥ 1, andj = 1, . . . , k, the predictive density ofXn,j is

fn,j(x) = ψn−1,j

λx2,je
−λ2,j

x!
+ ψ̄n−1,jpj

λx2,je
−λ1,j

x!
+ ψ̄n−1,j (1− pj)

λx1,je
−λ1,j

x!
. (9)

Proof. The density ofXn,j , givenτj , is

fn,j(x | τ) = I(τj = 0)
λx2,je

−λ2,j

x!
+ I(τj = 1)

λx2,je
−λ1,j

x!
+ I(τj > 1)

λx1,je
−λ1,j

x!
. (10)

Taking the expected value offn,j(x | τ) with respect to the posterior distribution ofτj , givenXi,j , i =
1, . . . , n, we obtain (9).

At each time point, we calculate for each categoryj, the probability that a change has not occurred in
that category to bēψn,j . We defineψ̄n to be the vector:

{
ψ̄n1, ψ̄n2, . . . , ψ̄nk

}t
.

Lemma 3. The sequence{qn,ψn, n ≥ 1} is a supermartingale.

Proof. We calculateE
(
qn+1|ψ̄n

)
as follows.

E (qn+1|ψn) = E

(
k∏
i=1

ψ̄n+1,i|ψ̄n

)
=

k∏
i=1

E
(
ψ̄n+1,i|ψ̄n

)
=

k∏
i=1

(1− pi)
k ψ̄n = qn

k∏
i=1

(1− pi).

(11)
where the conditional expectation in (11) is taken with respect to the predictive distribution ofXn+1,l

for all l. Thus the sequence{qn,ψn, n ≥ 1} is a supermartingale.

For notational purposes, we let̄Pk =
∏k
i=1 (1− pi). Hence,E

(
qn+1|ψ̄n

)
= qnP̄k.

3 Optimal Stopping Rule

In Section 2, we calculated at each integern, the probability that a change has not occurred in category
j to beψ̄n,j . Thus we found the probability that the change has not occurred in any of thek categories
to beqn =

∏k
j=1 ψ̄n,j . We assume there is a cost associated with stopping early and a cost associated

with a delay in stopping. We assume without loss of generality that the cost associated with a false alarm
is 1, and the cost per time unit to stop late isc. Thus, the risk of stopping at timen is qn. The risk of
continuing at timen is given byc (1− qn) + E

(
Rn+1|ψ̄n

)
. Therefore, the risk at timen is

Rn = min
(
qn, c (1− qn) + E

(
Rn+1|ψ̄n

))
. (12)

According to (12) we would opt to stop and declare there is a change whenever the riskRn = qn. Equa-
tion (12) is equivalent toRn = qn +

[
c− qn (c+ 1) + E

(
Rn+1|ψ̄n

)]−
. The stopping rule specifies to

stop sampling and declare a change in at least one category the first time thatqn ≤ c+E(Rn+1|ψn)
c+1 . To

find an optimal stopping rule, we first consider a truncated rule. We stop aftern∗ observations if we have
not stopped before. LetR(j)

n be the risk at timen, when onlyj more observations are allowed. Note that
R

(0)
n = qn, andR(1)

n = qn +
[
c− qn (c+ 1) + E

(
qn+1|ψ̄n

)]−
.

Lemma 4.
lim
n→∞

qn = 0 a.s.. (13)

Proof. Indeed, according to equation (11),E{qn} = (1− π) P̄nk , n ≥ 1. Thus,lim sup
n→∞

E{qn} = 0.

Sinceψ̄n,j ≥ 0 w.p. 1 for alln ≥ 0 and1 ≤ j ≤ k, qn ≥ 0. Hence we obtain (13).

The risk looking one step ahead isR(1)
n = qn +

[
c− qn (c+ 1) + P̄kqn

]−
. Therefore, the one step

ahead procedure is to stop sampling and declare a change in at least one category whenqn < Q∗, where
Q∗ = c

c+1−P̄k
. Therefore, the one step ahead stopping variable isN (1) = min {n : qn < Q∗}.
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Lemma 5. The one step ahead stopping random variableN (1) <∞ with probability 1.

Proof. Since by Lemma 4,limn→∞ ψ̄n,j = 0 for all j. Thus, there exists ann such thatψ̄n,j < Q∗ for
somej with probability 1. Therefore,qn < Q∗ with probability 1 for some finiten. Hence, the one step
ahead stopping random variableN (1) <∞ w.p. 1.

Now we look at “j-step look ahead” stopping rules. Define forj ≥ 0, M (j)
n

(
ψ̄n
)

recursively as the
expected risk of continuing at the next observation.

M (j)
n

(
ψ̄n
)

= E

[[
c− qn+1

(
c+ 1− P̄k

)
+M

(j−1)
n+1

(
ψ̄n+1

)]−
|ψ̄n

]
, (14)

andM (0)
n ≡ 0. Therefore the risk lookingj steps ahead isR(j)

n = qn+
[
c− qn

(
c+ 1− P̄k

)
+M

(j)
n

]−
.

The “j step ahead” procedure is to stop sampling and declare that a change has occurred in at least one
of the categories the first time thatqn < b

(j)
n whereb(j)n is defined as the “j step ahead” boundary

b
(j)
n

(
ψ̄n
)

= Q∗ +
M

(j−1)
n (ψ̄n)
(c+1−P̄k)

. To calculate these boundary functions, we first calculateM
(l)
n .

M (l)
n

(
ψ̄n
)

=
∑
ij

k∏
j=1

P (Xn+1,j = ij)

c− (c+ 1− P̄k
) k∏
j=1

ψ̄n,j (ij) +M
(l−1)
n+1

(
ψ̄n
)− . (15)

The sum in equation (15) is taken over those points for whichqn+1 > b
(l−1)
n+1 .

Lemma 6. ψ̄n+1,l

(
ψ̄n,l, Xn+1,l

)
is a decreasing function ofXn+1,l whenλ1,l < λ2,l and increasing

whenλ1,l > λ2,l.

Proof. Consider the functionf defined byf (X) = ψnρ
Xe−δ + ψ̄npρ

Xe−δ + ψn (1− p) for X =
0, 1, 2, . . .. Taking differences,f (X + 1) − f (X) =

(
ψn + ψ̄np

)
ρXe−δ (ρ− 1) . Thus,f is positive

for ρ > 1 and negative forρ < 1. Sinceψ̄n+1,l = ψ̄n,l(1−pl)

f(Xn+1,l)
whereδl = λ2,l − λ1,l andρl = λ2,l

λ1,l
, the

result follows.

Thus, there exists a regionTl such that ifqn+1 (i1, . . . , ik) > b
(l−1)
n+1 , when(i1, . . . , ik) ∈ Tl.

Lemma 7. For the predictive distribution specified above,
1.M (l)

n

(
ψ̄n
)
≤M

(l−1)
n

(
ψ̄n
)
≤ 0 for all l ≥ 1.

2.Tl ⊂ Tl+1 for all l ≥ 1.

3. b(l)n ≤ b
(l−1)
n for all l ≥ 1.

Proof. The proof is by induction onl. First,M (1)
n ≤ 0 by the definition. Suppose thatM (k)

n ≤ M
(k−1)
n

for all k ≤ l − 1. Now let’s look atM (l)
n −M

(l−1)
n Subtracting we obtain.

E
[
c− qn+1

(
c+ 1− P̄k

)
+M

(l−1)
n+1

]−
− E

[
c− qn+1

(
c+ 1− P̄k

)
+M

(l−2)
n+1

]−
≤ 0. (16)

This is true sinceM (l−1)
n+1 < M

(l−2)
n+1 by the inductive hypothesis. Thus, theM (l)

n func-
tions are decreasing inl. To prove part 2, letx ∈ Tl. Therefore, by equation (3.14),[
c−

(
c+ 1− P̄k

)∏k
i=1 ψ̄n,l (ii) +M

(l−1)
n+1

(
ψ̄n
)]
≤ 0. This implies that

qn+1 (Xn, x) > Q∗ +
M

(l−1)
n+1

c+ 1− (1− p)k
> Q∗ +

M
(l)
n+1

c+ 1− (1− p)k
. (17)

Thusx ∈ Tl+1. Similarly we can show thatb(l)n < b
(l−1)
n by inequality (17).
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Since theb(l)n are monotone decreasing and bounded below by 0,liml→∞ b
(l)
n = b∞n . Therefore the

optimal stopping rule is to stop sampling at the firstn ≥ 1 such thatqn < b∞n .

Lemma 8. We have the following convergence ofM
(l)
n andb(l)n .

1. For a fixedl ≥ 1, limn→∞M
(l)
n = 0 a. s..

2. For a fixedl ≥ 2, limn→∞ b
(l)
n = Q∗ a. s..

Proof. The proof is by induction onl. Whenl = 1, by equation (15),

M (1)
n

(
ψ̄n
)

=
∑
i1,...,ik

k∏
j=1

Pψj
(Xn+1,j = ij)

c− (c+ 1− P̄k
) k∏
j=1

ψn,j (ij)

− . (18)

By Lemma 4,ψ̄n,j = 0 asn→∞ for all j. Suppose there is at least one category where the arrival rate
increases. In that categoryj, we can findNj suchψ̄n,j (0) < Q∗ for all n > Nj . Thus,ψ̄n+1,j (ij) < Q

for all ij . ThusT1 is empty, andM (1)
n = 0 for all n > Nj . Now suppose for all the categories, the arrival

rates decrease. For each categoryj, given anyε > 0 there exists anIj such thatP (Xn+1,j > ij) < ε
for all ij > Ij and0 ≤ ψn,j ≤ 1. Since for all categories,̄ψn,j = 0 asn → ∞, there exists anNj such
that ψ̄n+1,j (ij) < Qj for all ij < Ij andn > Nj . Thus,T1 = {(i1, . . . , ik) : ij > Ij , j = 1, . . . , k},
and|M (1)

n | <
∏k
j=1 P (Xn+1,j > Ij) < εk. ThusM (1)

n = 0 asn→∞. Similarily by induction one can

show thatM (l)
n = 0 asn→∞ for all l > 1. By (15) it immediately follows thatb(j)n = Q∗ asn→∞.

4 Explicit Formulation of the two step Boundary

In this section we provide an algorithm for calculating the two step ahead boundary. To calculate the two
step ahead procedure, we first calculateM

(1)
n . The expectation is taking with respective to the predictive

distribution wherePψj
(Xn+1,j = ij) is the predictive probability that the(n+ 1)st observation in cate-

goryj will be ij . Since the Poisson processes in each category are independent,
∏k
i=1 Pψj

(Xn+1,j = ij)
is the predictive probability thatXn+1 = (i1, . . . , ik). We only sum over(i1, . . . , ik) for which
qn+1 > Q∗. By Lemma 6, we conclude there exists a regionT1, where

∏k
j=1 ψ̄n,j (ij) > Q∗, when

(i1, . . . , ik) ∈ T1 . Hence, the sum in (1) is taking overT1. In this section, we find an algorithm for
finding the regionT1 which is needed to calculate the two step ahead boundary.

Lemma 9. If ψ̄n+1,j

(
0, ψ̄n,j

)
< Q∗ andλ1,j < λ2,j for somej, thenM (1)

n = 0 and the one step ahead
boundaryQ∗ is optimal.

Proof. Sinceλ1,j < λ2,j , by Lemma 6, the posterior probabilities that a change has not occurred in
categoryj, ψ̄n+1,j

(
ij , ψ̄n,j

)
are decreasing for allij . Thus,ψ̄n+1,j < Q∗. Hence for allij , qn+1 <

ψ̄n+1,j < Q∗. Therefore,T1 is empty, andMn = 0. This makes the one step ahead boundaryQ∗

optimal in this case.

In the next theorem, we develop an algorithm for findingT1.

Theorem 41 The following algorithm findsT1.
1. For category 1, findI1 such thatψ̄n,1 (i1) > Q∗ for all i1 ≤ I1 if λ1,1 < λ2,1, or for i1 ≥ I1 if
λ1,1 > λ2,1.
2. For eachi1 in the range above, we can calculate thei1 subset ofT1 usingQi1 = Q∗

ψ̄n,i(i1)
.

Proof. We prove this by induction onk. If k = 1, we are only looking at one category. By Lemma 6, we
find the 1 dimensional region that satisfies the condition. Ifk > 1, we find ak − 1 dimensional region
T

(k−1)
1 such that

∏k−1
j=1 ψ̄n+1,j (ij) > Q∗ for all {i1, . . . , ik−1} ∈ T

(k−1)
1 . For each memberx ∈ T (k−1)

1 ,

one can calculateQ∗ (x) = Q∗

ψ̄n+1,j(ij)
. Then find a regionAx ∈ Z such thatψ̄n+1,k (ij) > Q∗ (x) for all

ik ∈ Ax. Thus the k dimensional regionT1 is
⋃
x∈T (k−1)

1

(x ∩Ax).
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5 Appendix

We provide a numerical example demonstrating how this method works. In this example, we have two
categories both with a change happening at time 10. In category one, the arrival rates before and after the
change increases from an arrival rate of 1 to 2, whereas in category two, the arrival rates decreases from
an arrival rate of 2 to 1. Assuming the cost for stopping late isc = 0.06, and the prior probability that
there is a change at the next trial isp1 = p2 = 0.01, the one step boundary is calculated asQ∗ = 0.7509.
For eachn, we calculate the probability that a change has not occurred in each category and the two step
boundaryb2n.

Table 6.1
n X1,n X2,n ψ̄n,1 ψ̄n,2 qn b

(2)
n

1 1 1 0.98530.97310.95880.5806
2 1 1 0.98180.95090.93360.6045
3 1 2 0.97920.95940.93950.5988
4 1 1 0.97730.93300.91190.6247
5 0 0 0.98780.81660.80670.6891
6 3 4 0.93770.96130.90150.6309
7 0 0 0.97240.87870.85450.6660
8 1 5 0.97230.98750.96010.5789
9 1 0 0.97220.94130.91510.6214

10 1 1 0.97210.90970.88430.6473
11 2 1 0.94560.86950.82220.6862
12 4 4 0.71350.97330.69440.7305

From looking at the Table 6.1, both the one step and the two step ahead stopping rule stops after
observation 12. This shows that the detection is quick. The table also shows the convergence of the
two step ahead boundary toQ∗. We have provided 3 runs of simulations both using the 1 and 2 step
procedure. In each of the simulations, category 1 increased fromλ1,1 = 1 to λ1,2 = 2, which category
2 decreased fromλ2,1 = 2 toλ2,2 = 1. Doing 1000 simulations for each of various cases of arrival rates
before and after the change, we obtain the following results for probability of false alarms and expected
delay.

Table 6.2
1 Step Ahead 2 step ahead

τ1 τ2 AlarmsDelay CostAlarm Delay Cost
1010 0.278 2.970.456 0.227 3.150.4157
1015 0.254 4.140.502 0.237 4.330.4968
1510 0.253 4.380.516 0.207 4.850.4980

In the above table we have provided examples where the change happens at the same spot (τ = 10)
for both categories, and where it happens at different spots for each category. The best results happen
when the change happens at the same time for both categories. The procedure seems to stop quicker for
increases in the arrival rate than for decreases.
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