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Abstract. In this note, under certain conditions we prove an a priori estimate and a
uniqueness result for a quadratic FBSDE related to a bidimensional optimal stopping
problem: Find a stopping time τ∗ and a value function Φ(x, y) such that

Φ(x, y) = sup
τ

Ex,y

[
xτ −

∫ τ

0
c(ys)ds−H(yτ )

]
,

where the supremum is taken over all finite stopping times, c(.), H(.) are positive
continuous functions such that H(.) is bounded, and Qt = (xt, yt) is a weakly coupled
geometric Brownian motion. The present result gives a new explicit characterization of
the above value function, as a kind of FBSDE of the quadratic type with a finite stopping
time almost surely. This extends a recent result of the author.

Keywords. forward-backward stochastic differential equation; optimal stopping problems;
quasilinear elliptic equations.

1. Introduction

Nonlinear BSDEs were first introduced in Pardoux and Peng (1990), under Lipschitz con-
ditions on the coefficient and with a square integrable terminal condition. Recently, there
has been some interest in a new class of quadratic BSDEs, see Lepeltier and San Martin
(1998), Kobylanski (2000), Bahlali et al. (2002), Briand and Hu (2006). This class has
several possible applications in mathematical finance, see El Karoui and Rouge (2000), Hu
et al. (2005) and Sekine (2006) . The main motivation in the study of such type of BSDEs
stems from their strong connection with quasilinear equations with quadratic growth in the
gradient, see for instance Boccardo et al. (1982,1988), Donato and Giachetti (1986), Barles
and Murat (1995). In this note, we prove an a priori estimate and a uniqueness result for a
quadratic FBSDE with a finite stopping time almost surely, under non-Lipschitz conditions.
The present result gives a new explicit characterization of a bidimensional optimal stopping
problem described by a weakly coupled, geometric Brownian motion. This extends our
recent result (see Makasu (2008)).
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2. Optimal stopping of a bidimensional diffusion process

In this section, we consider a bidimensional optimal stopping problem described by a weakly
coupled, non-degenerate diffusion process. The present problem generalizes our recent result
(see Makasu (2008)). We shall consider a problem of finding the optimal time to invest in
a given stock under stochastic volatility with the goal of maximizing our expected reward.
Here, we present a new explicit characterization of the value function as a solution of a
quadratic FBSDE with a finite stopping time almost surely.

Let Qt = (xt, yt) be a non-degenerate, bidimensional, weakly coupled, geometric Brownian
motion given by

dxt = µxtdt+ (α
√
yt + σ)xtdB

1
t ; x(0) = x,

dyt = θ(yt)dt+ β(yt)dB2
t ; y(0) = y, (2.1)

initially starting at (x, y) ∈ R2
+, where µ,α and σ are some fixed constants, θ(.), β(.) are

Borel measurable functions, and B1
t , B2

t are independent Brownian motions on a probability
space (Ω,F ,P).

We shall consider the following optimal stopping problem:

PROBLEM 2.1. Find a stopping time τ∗ and a value function Φ(x, y), if they exist, such
that

Φ(x, y) = sup
τ

Ex,y

[
xτ −

∫ τ

0
c(ys)ds−H(yτ )

]
, (2.2)

where the supremum is taken over all finite stopping times, c(.) and H(.) are positive
continuous functions such that H(.) is bounded.

Throughout the note, we shall assume the following:

(H2.1) θ(.) and β(.) are measurable functions on (0,∞) and there exists K > 0 such that
for y, z ∈ R+,

(θ(y)− θ(z)) + (β(y)− β(z)) ≤ K(y − z), θ2(y) + β2(y) ≤ K2(1 + y2).

3. Main results

It can be shown (see Makasu (2008)) that the optimal stopping boundary for problem (2.1)
and (2.2) solves the second-order nonlinear ordinary differential equation

1
2
β2(y)ψ′′(y) + θ(y)ψ′(y) +

{
1
2
(α
√
y + σ)2 − µ− c(y)

}
ψ(y) =

1
2
β2(y)

ψ′(y)2

ψ(y)
,

(3.1)

on the open interval (0,∞), subject to the terminal boundary condition

ψ(y) = H(y). (3.2)
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At this point, it is natural and interesting to ask about the probabilistic interpretation (see
also Peng (1991)) of Eqs. (3.1) and (3.2), which is indeed the essence of the next assertion.
The proof is essentially a consequence of using Ito’s formula, Eqs. (3.1) and (3.2). For this
reason, we shall omit the details.

LEMMA 3.1. (Probabilistic interpretation)

Let yt be an arbitrary diffusion process given in (2.1) for all t ≥ 0. Suppose that ψ(.) ∈
C2(0,∞), then ψ(y) admits the probabilistic interpretation

ψ(y) = Eyp0, (3.3)

where (yt, pt, qt) uniquely solves a weakly coupled quadratic FBSDE

yt = y +
∫ t∧τ

0
θ(ys)ds+

∫ t∧τ

0
β(ys)dB2

s ,

pt = H(yτ ) +
∫ τ

t∧τ

{(
1
2
(α
√
ys + σ)2 − µ− c(ys)

)
ps −

1
2
Ips 6=0

q2s
ps

}
ds−

∫ τ

t∧τ
qsdB

2
s ,

(3.4)

with a finite stopping time almost surely.

Our main result is stated in the next assertion:

PROPOSITION 3.1. Let E[H(yτ )]2 <∞ and Qt = (xt, yt) be a non-degenerate, diffusion
process given by (2.1). Then, the optimal stopping problem

Φ(x, y) = sup
τ

Ex,y

[
xτ −

∫ τ

0
c(ys)ds−H(yτ )

]
,

is solved by the value function

Φ(x, y) = log
(

Eyp0

x

)
, (3.5)

and the optimal stopping time

τ∗ = inf{t ≥ 0 : xt ≥ Eyp0}, (3.6)

where (yt, pt, qt) is a unique solution of the quadratic FBSDE in (3.4) with τ∗ given by (3.6).

REMARK 3.1. Notice that in the special case when Qt = (xt, yt) is a bidimensional
geometric Brownian motion and c(y) ≡ c, the results in (3.5) and (3.6) give a new explicit
characterization of the optimal stopping problem treated in the author’s paper (see Makasu
(2008)).

In the next section, we shall now state and prove two lemmas which play a crucial role in
the proof of our main result. We first introduce the following appropriate function spaces.
Denote

U2 =
{
g(t, ω) : g(t, ω) is Ft-adapted real-valued such that E

∫ τ

0
g2(s, ω)ds <∞

}
,
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and similarly V2, and

L2(Ω,Fτ ,P) =
{
ξ : ξ is an Fτ -measurable random variable such that Eξ2 <∞

}
,

where τ is a finite stopping time almost surely.

DEFINITION 3.1. A triple of Ft-adapted processes (y(.), p(.), q(.)) is said to be a solution
of the FBSDE (3.4), iff (y(.), p(.), q(.)) ∈ U2 × U2 × V2 and it satisfies (3.4).

We shall also assume the following:

(H3.2) H(yτ ) ∈ L2(Ω,Fτ ,P) for each y.

4. Proof of the main result

The next assertion concerns an a priori estimate for the solution of (3.4). Such an estimate
allows one to state and prove an existence result for the BSDE in (3.5).

LEMMA 4.1. (A priori estimate.) Assume that (H2.1), (H3.2) hold and E[t ∧ τ ] <∞
for all t ≥ 0. If (yt, pt, qt) ∈ U2 × U2 × V2 is a solution of the FBSDE (3.4), then

E
{
y2

t + p2
t − k1

∫ t∧τ

0
y2

sds+
∫ τ

t∧τ

(
k3y

2
s − k2

)
p2

sds− 2E
∫ τ

t∧τ
q2sds

}
≤ y2(0) + E

{
H2(yτ ) +K2

∫ t∧τ

0
ds

}
,

for all t ≥ 0, where k1 = 1+K2, k2 = (α2/2+σ2 +ασ)− 2c(ys)− 2µ and k3 = α(α/2+σ).

Proof. Applying Ito’s formula to y2
t , it follows that

y2
t = y2(0) +

∫ t∧τ

0
2ysθ(ys)ds+

∫ t∧τ

0
2ysβ(ys)dB2

s +
∫ t∧τ

0
β2(ys)ds.

Now taking the expectation and using (H2.1) and Young’s inequality, we have

Ey2
t ≤ y2(0) +K2E

∫ t∧τ

0
ds+ (1 +K2)E

∫ t∧τ

0
y2

sds. (4.1)

Similarly, applying Ito’s formula to p2
t and using Young’s inequality, it follows that

Ep2
t ≤ E

{
H2(yτ ) +

∫ τ

t∧τ

(
2c(ys) + 2µ− (

α2

2
+ σ2 + ασ)− α

(α
2

+ σ
)
y2

s

)
p2

sds

}
+2E

∫ τ

t∧τ
q2sds. (4.2)

The desired result now follows immediately from inequalities (4.1) and (4.2). �

In the next assertion, we state and prove:
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LEMMA 4.2. (Uniqueness of solution.) Assume that (H2.1) and (H3.2) hold, then
the FBSDE (3.4) has at most one solution in U2 × U2 × V2.

Proof. Let (yi
t, p

i
t, q

i
t), i = 1, 2, be two solutions of (3.4). Denote Ŷt = y1

t −y2
t , P̂t = p1

t −p2
t ,

Q̂t = q1t − q2t , θ(Ŷt) = θ(y1
t )− θ(y2

t ) and β(Ŷt) = β(y1
t )− β(y2

t ). Assume that (H2.1) holds.
Applying Ito’s formula to Ŷse

λ bP 2
s , it follows that

E
(
Ŷτe

λ bH2(bYτ )
)

= Ŷ (0)eλ bP 2(0) + E
{∫ τ

0

(
θ(Ŷt) + 2λP̂tQ̂tβ(Ŷt) + 2λŶtQ̂

2
t

)
eλ

bP 2
t dt

}
+E

{∫ τ

0

(
λ[2µ− σ2]ŶtP̂

2
t + 2λ2ŶtQ̂

2
t P̂

2
t + 2λc(Ŷt)ŶtP̂

2
t

)
eλ

bP 2
t dt

}
−E

{∫ τ

0

(
λα2Ŷ 2

t P̂
2
t + 2λασŶ 3/2

t P̂ 2
t

)
eλ

bP 2
t dt

}
≤ Ŷ (0)eλ bP 2(0) + E

{∫ τ

0

(
KŶt + 2λKP̂tQ̂tŶt + 2λŶtQ̂

2
t

)
eλ

bP 2
t dt

}
+E

{∫ τ

0

(
λ[2µ− σ2]ŶtP̂

2
t + 2λ2ŶtQ̂

2
t P̂

2
t + 2λŶtc(Ŷt)P̂ 2

t

)
eλ

bP 2
t dt

}
−E

{∫ τ

0

(
λα2Ŷ 2

t P̂
2
t + 2λασŶ 3/2

t P̂ 2
t

)
eλ

bP 2
t dt

}
≤ Ŷ (0)eλ bP 2(0) +

K

2
E

∫ τ

0
eλ

bP 2
t dt+ E

{∫ τ

0

(
λQ̂2

t + λγ0P̂
2
t Q̂

2
t + λ

γ1

2
P̂ 2

t

)
eλ

bP 2
t dt

}
+E

{∫ τ

0

(
K

(
1
2

+ λ

)
+ λγ2P̂

2
t + λQ̂2

t + λ2Q̂2
t P̂

2
t

)
Ŷ 2

t e
λ bP 2

t dt

}
, (4.3)

where the last inequality follows from using Young’s inequality, γ0 = K+λ, γ1 = 2µ−σ2−
ασ > 0 and γ2 = µ− σ2/2− α2 − (3/2)ασ + 2.

From the uniqueness of the FSDE in (3.4) and by choice of λ ≤ −K, we deduce that the
third term in the right hand side of the last inequality is negative. Hence, p1

t = p2
t and

q1t = q2t for all t ∈ [0, τ ]. This completes the proof. �

REMARK 4.1. Notice that in the above proof we apply Ito’s formula to eλ bP 2
t Ŷt not ŶtP̂t.

This is one of the main differences between the known uniqueness results on FBSDEs with
stopping time and ours.

REMARK 4.2. Finally, it would be interesting to extend the present results to a general
class of FBSDEs with jumps (see Yin and Situ (2003), for instance), under our assumptions.
The details will be treated elsewhere.

5. Conclusion

In this note, under certain conditions, we have proved an a priori estimate and a uniqueness
result for a quadratic FBSDE with a stopping time associated with a bidimensional optimal
stopping problem. The present result gives a new explicit characterization of the value
function in form of a solution of the quadratic FBSDE with stopping time. This extends a
recent result of the author.
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certaines équations quasi-linéaires. Portugaliae Mathematica. 41: 507-534.

Boccardo, L., Murat, F. and Puel, J.P. (1988). Existence results for some quasilinear
parabolic equations. Nonlinear Analysis 13: 373-392.

Briand, P., Hu, Y. (2006). BSDE with quadratic growth and unbounded terminal value.
Probability Theory and Related Fields 136: 604-618.

Darling, R.W.R., Pardoux, E. (1997). Backwards stochastic differential equation with ran-
dom terminal time and applications to semilinear elliptic partial differential equations. An-
nals of Probability 25: 1135-1159.

Donato, P., Giachetti, D. (1986). Quasilinear elliptic equations with quadratic growth in
unbounded domains. Nonlinear Analysis 10: 791-804.

El Karoui, N., Rouge, R. (2000). Contingent claim pricing via utility maximization. Math-
ematical Finance 10(2): 259-276.

Hu, Y., Imkeller, P. and Müller, M. (2005). Utility maximization in incomplete markets.
Annals of Applied Probability 15: 1691-1712.

Hu, Y., Peng, S. (1995). Solution of forward-backward stochastic differential equations.
Probability Theory and Related Fields 103: 273-283.

6



Hu, Y., Øksendal, B. (1998). Optimal time to invest when price processes are geometric
Brownian motions. Finance and Stochastics 2: 295-310.

Kobylanski, M. (2000). Backward stochastic differential equations and partial differential
equations with quadratic growth. Annals of Probability 28: 558-602.

Lepeltier, J.P., San Martin, J. (1998). Existence for BSDE with superlinear-quadratic
coefficient. Stochastics and Stochastics Reports 63: 227-240.

Makasu, C. (2008). On Wald optimal stopping of geometric Brownian motions. Sequential
Analysis 27: 435-440.

Pardoux, P., Peng, S. (1990). Adapted solution of backward stochastic differential equation.
Systems and Control Letters 14: 55-61.

Peng, S., Wu, Z. (1999). Fully coupled forward-backward stochastic differential equations
and applications to optimal control. Siam Journal of Control and Optimization 37: 825-843.

Peng, S. (1991). Probabilistic interpretation for systems of quasilinear parabolic partial
differential equations. Stochastics and Stochastics Reports 32: 61-74.

Salminen, P. (1985). Optimal stopping of one-dimensional diffusions. Mathematische
Nachrichten 124: 85-101.

Sekine, J. (2006). On exponential hedging and related quadratic backward stochastic dif-
ferential equations. Applied Mathematics and Optimization 54: 131-158.

Shiryaev, A. (1978). Optimal Stopping Rules. Springer:Berlin.

Van Moerbeke, P. (1976). On optimal stopping and free boundary problems. Archive for
Rational Mechanics and Analysis 60: 101-148.

Yin, J. (2008). On solutions of a class of infinite horizon FBSDEs. Statistics and Probability
Letters 78, 2412-2419.

Yin, J., Situ, R. (2003). On solutions of forward-backward stochastic differential equation
with Poisson jumps. Stochastic Analysis and Applications 23: 1419-1448.

7


