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Abstract. Many statistical tests obtain their p-value from a Monte Carlo sample ofm values of the test statistic under the null
hypothesis. The numberm of simulations is fixed by the researcher prior to any analysis. In contrast, the sequential Monte
Carlo test does not fix the number of simulations in advance. It keeps simulating the test statistics until it decides to stop based
on a certain rule. The final number of simulations is a random numberN . This sequential Monte Carlo procedure can decrease
substantially the execution time in order to reach a decision. This paper has two aims concerning the sequential Monte Carlo
tests: to minimizeN without affecting its power; and to compare its power with that of the fixed-sample Monte Carlo test. We
show that the power of the sequential Monte Carlo test is constant after a certain number of simulations and therefore, that
there is a bound toN . We also show that the sequential test is always preferable to a fixed-sample test. That is, for every test
with a fixed sample sizem there is a sequential Monte Carlo test with equal power but with smaller number of simulations.
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1 INTRODUCTION

To carry out hypothesis testing one must find the distribution of the test statisticU under the null hy-
pothesis, from which the p-value is calculated. Either because it is too cumbersome or it is impossible
to obtain this distribution analytically, Monte Carlo tests are used in many situations (Manly, 2006). In
particular, areas such as spatial statistics (Assunçãoet al., 2007; Diggleet al., 2004; Kulldorff, 2001) and
data mining (Kulldorffet al., 2003; Rolka, 2007) rely heavily on Monte Carlo tests to draw inference.
Other areas have situations in which Monte Carlo tests seems to be the best current approach such as
the exact tests in categorical data analysis (Booth and Butler, 1999; Caffo and Booth, 2003), and some
regression problems in econometrics (Khalaf and Kichian, 2005; Luger,2006).

The conventional Monte Carlo test generates a large number of independent copies ofU from the
null distribution. Assuming that large values ofU lead to the null hypothesis rejection, a Monte Carlo
value is calculated based on the proportion of the simulated values that are larger or equal than the
observed value ofU .

As the statistics field evolves to deal with ever more complex models, Monte Carlo tests become
costly. The simulation of each independent copy ofU under the null hypothesis can take a long time.

In many applications, after a few simulations are carried out, it becomes intuitively clear that a large
number of simulations is not necessary. For instance, suppose that after100 simulations, the observed
value is around the median of the generated values. It is not likely that the null hypothesis will be
eventually rejected even if a much larger number of simulations (such as 9999) is carried out. Most
researchers would be confident to stop at this point if a valid p-value could be provided.

Besag and Clifford (1991) introduced the idea of sequential Monte Carlotests, an alternative way
to obtain p-values without fixing the number of simulations previously. Their method makes a decision
concerning the null hypothesis after each simulated value up to a maximum number of simulations. This
approach can substantially shorten the number of simulations required to decide about the significance
of the observed test statistic.

Although the proposal of Besag and Clifford (1991) stands as a major contribution to the practice
of modern data analysis, it is under utilized and has some unanswered theoretical questions. One im-
portant aspect of the sequential Monte Carlo tests is the relative comparison of its power with that of
the conventional Monte Carlo test. Based on the Besag and Clifford results, we can always obtain a
sequential Monte Carlo with significance levelα which does not require more simulations than a con-
ventional Monte Carlo test at the same level. However, the relationship between the power functions of
these tests is not clear. In terms of power, is there a cost when we apply thesequential test instead of the
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conventional Monte Carlo test? The answer is no, and the first aim of this paper is to demonstrate this.
The second objective of this work is to show how we can make the choice of the maximum number of
simulations in the sequential Monte Carlo tests without losing power.

The next section contains a summary of the definitions and notation associatedwith the conventional
and the sequential Monte Carlo tests. Section 3 discusses the power of the sequential procedure and
Section 4 shows how to establish the parameters of the sequential test such that it has the same power
as a given conventional Monte Carlo test. In Section 5, we develop bounds for the difference of power
between a conventional and a sequential Monte Carlo tests. Section 6 closes the paper with a discussion
of the implications of our results.

2 A SEQUENTIAL MONTE CARLO TEST

Let U be a test statistic with distributionF under the null hypothesisH0. Suppose that large values of
U leads to the rejection of the null hypothesis. WhenF can be evaluated explicitly, the p-value of the
upper-tail test based on the observed valueu0 of U is given byp = 1−F (u0). LetP = 1−F (U) be the
random variable associated with the p-value. IfF is a continuous function,P has a uniform distribution
in (0, 1) under the null hypothesis. When we can not evaluateF , we need to find other ways to calculate
the p-value. The Monte Carlo test proposed by Dwass (1957) is an alternative if we can simulate samples
from the null hypothesis.

The fixed-size or conventional Monte Carlo test generates a sample of sizem− 1 of the test statistic
U under the null hypothesisH0. Denote each simulated value byui, i = 1, . . . , m − 1. The Monte
Carlo p-valuepmc is equal tor/m if the observed valueu0 is ther-th largest value among them values
u0, u1, . . . , um−1. In this conventional Monte Carlo procedure, if the rank ofu0 is among theαm larger
ranks ofu0, u1, . . . , um−1, we reject the null hypothesis at theα significance level. We denote this
procedure byMCconv(m, α).

Let Pmc be the corresponding random variable associated with the realized Monte Carlo p-value
pmc. Under the null hypothesis, we haveP(Pmc ≤ a) = a if a is one of the values1/m, 2/m, . . . , 1. In
addition to that, irrespective of the validity of the null hypothesis,Pmc → P almost everywhere asm
goes to infinity.

However, when early on there is little evidence against the null hypothesis,it is wasteful to run the
procedure for large values ofm such as, for example,m = 10000. This is the main motivation for
Besag and Clifford to develop the sequential Monte Carlo test. In brief, thesequential version of the test
selects a small integerh, such ash = 10 or h = 20. It keeps simulating by Monte Carlo from the null
hypothesis distribution untilh of the simulated values are larger than the observed valueu0. There is
also an upper limitn − 1 for the total number of simulations. The p-value is based on the proportion of
simulated values larger thanu0 at the stopping time.

In other words, simulate independently and sequentially the random valuesU1, U2, . . . , UL from
the same distribution asU under the null hypothesis. The random variableL has possible valuesh,
h + 1, . . . , n − 1 and its value is determined in the following way:L is the first time when there areh
simulated values larger thanu0. If this has not occurred at stepn − 1, then letL = n − 1. Let g be the
number of simulatedUi’s larger thanu0 at termination. If we denote byl the realized number of Monte
Carlo withdrawals, then the sequential p-value is given by

ps =

{

h/l, if g = h,
(g + 1)/n, if g < h

(2.1)

For example, if up ton−1 = 999 Monte Carlo withdrawals are considered and the sampling scheme
stops as soon ash = 10 exceeding values ofU occurs, then the possible values of the sequential p-value
are10/10, 10/11, 10/12, . . . , 10/1000, 9/1000, 8/1000, . . . , 1/1000.

The most important random variable in our paper isL, the total number of simulations carried out,
which has distribution under the null hypothesis given by
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P(L ≤ l) =







0, sel ≤ h − 1
1 − h/(l + 1), sel = h, h + 1, ..., n − 1
1, if l = n

Its expected value was found by Besag and Clifford(1991):

E(L) =
n−1
∑

l=1

P (L ≥ l) =
n−1
∑

l=h+1

l−1 ∼= h + h log

(

n − 0.5

h + 0.5

)

(2.2)

To reach a decision with the sequential Monte Carlo test, it is necessary to fixthe values of three
tuning parameters, the significance leveln, h e α, and hence we denote the test byMCseq(n, h, α).
Typically,n is taken equal to the numberm of simulations one would run if carrying out the conventional
Monte Carlo test. If this typical choice is really necessary is one of the issues studied in this paper.

3 POWER OF THE SEQUENTIAL MONTE CARLO TEST

In this section we study the power of the sequential Monte Carlo procedureMCseq(n, h, α). Its behav-
ior depends on the value ofn with respect toh/α + 1. We deal initially with the casen ≥ h/α + 1.

3.1 MCseq(n, h, α) with n ≥ h/α + 1

This constraint implies thatα ≥ h/(n − 1). That is,α is not smaller thanh divided by the maximum
number of simulations. A typical choice found in practical analysis isn− 1 = 999 andα = 0.05. Then,
the conditionn ≥ h/α+1 is valid if h ≤ 49. This is likely to cover most of the choices one would make
for h in practice.

The power of the procedureMCseq(n, h, α) is constant for alln ≥ h/α + 1 and hence, takingn
larger thanh/α+1 is not worth in terms of power. In other words,n = ⌊h/α⌋+1 is optimal in terms of
number of simulations for a test with error type I probabilityα. The notation⌊x⌋ represents the ceiling
of x, the smallest integer greater or equal tox.

To see this result, label the event[Ui ≥ u0] as a success. SinceUi has c.d.fF , the probability
P(Ui ≥ u0) is the observed p-valuep = 1 − F (u0). The probability of carrying outL simulations until
h successes is a probability function from a truncated multinomial variable onn, n + 1, ..., then, we
rejectH0 if, and only if,h/α ≤ L ≤ n−1. This means that, in⌊h/α⌋−1 simulations we obtain at most
h − 1 successes. Therefore, for an observed valueu0, the probability of rejectingH0 in the sequential
test is given by

P(L ≥ (h/α) | P = p) =
h−1
∑

x=0

(

h/α − 1
x

)

px(1 − p)h/α−x−1 (3.1)

Since the last expression does not involven, the power of the sequential Monte Carlo test is constant
as long asn ≥ (h/α) + 1. Since the error type I is fixed atα, ⌊h/α⌋ + 1 is an upper bound forn.

For example, ifh = 5 andα = 0.05, thenn = 101 minimize the sampling effort while holding
constant the test power. It is not worth to select a larger sample size suchas, for examplen = 1000, ex-
pecting to have a better test. Using (2.2), we know thatE(L) ≈ 19 if n = 101 under the null hypothesis.
If one decides to usen = 1000 thenE(L) ≈ 31, 50% larger compared with that associated with optimal
n. However, the more substantial gain of using the optimaln is when the null hypothesis is false. In this
situation, it is more probable that we need to run the sequential test up to the maximum numbern − 1
of simulations and then choosingn = 101 will save many simulations compared with the larger sample
sizen = 1000, which does not increase the power.
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3.2 MCseq(n, h, α) with n < h/α + 1

The power of the procedureMCseq(n, h, α) do not have a monotone behavior with the increase ofn
when it is in the rangeh + 1 < n < h/α + 1. In fact, at least in principle, the power can have a non-
monotone behavior asn increases fromh + 1 towards theh/α + 1. However, the most usual behavior
is that the power is an increasing function ofn, for n in that range.

To understand this limitation of the analysis, let us assume thatn < h/α + 1. We have two possible
evaluations of the sequential p-value depending on the value ofg, according to (2.1). Hence, we reject the
null hypothesis either when estimating the p-value byg/l or when estimating the p-value by(g + 1)/n.

However, we can never reject the null hypothesis if the p-valueps is of the formg/l. The reason is
that, if ps = g/l, then we obtainedh values exceedingu. The smallest value forg/l is h/(n− 1). Since
n < h/α + 1, we have thatps ≥ h/(n − 1) > α and we can not reject the null hypothesis.

Therefore, the only other possibility to reject the null hypothesis whenn < h/α + 1 is whenps is
of the form(g + 1)/n. In this case, we need(g + 1)/n ≤ α, or g ≤ nα − 1. Given thatP = p, the
probability of rejectingH0 is equal to

P(G ≤ nα − 1 | P = p) =

⌊nα⌋−1
∑

x=0

(

n − 1
x

)

px(1 − p)n−1−x (3.2)

The power forn < h/α + 1 is given by integrating out (3.2) with respect to the p-value probability
distributionFP :

π(n, h, α, FP ) =

∫

1

0

⌊nα⌋−1
∑

x=0

(

n − 1
x

)

px(1 − p)n−1−xFP (dp) (3.3)

Denote byπ(n, h, α, FP ) the power function of teh sequential procedure. Depending onFP , the
power curve can be non-monotone. Therefore, forn < h/α + 1, the sequential power behavior depends
heavily on the shape of the P-value density.

4 A SEQUENTIAL MC TEST EQUIVALENT TO A FIXED-SIZE MC TEST

From now on, we consider only the casen ≥ h/α + 1. Given a conventional Monte Carlo test
MCconv(m, α), we find in this section a sequential testMCseq(n, h, α) with the same power as the
conventional one. For the fixed-size Monte Carlo test, letG be the random count ofUis that are greater
or equal tou0 among them− 1 generated. The null hypothesis is rejected if(G + 1)/m ≤ α or, equiv-
alently, if G ≤ αm − 1. The random variableG has a binomial distribution with parametersm − 1 and
success probability equal to the p-valuep. Therefore,MCconv(m, α) rejects the null hypothesis with
probabilityP (G ≤ ⌊αm⌋ − 1 | P = p):

P(RejectH0 | P = p) =

⌊αm⌋−1
∑

y=0

(

m − 1
y

)

py(1 − p)m−y−1 (4.1)

Then, theMCconv(m, α) power is

π(m, α, FP ) =

∫

1

0

⌊αm⌋−1
∑

y=0

(

m − 1
y

)

py(1 − p)m−y−1 FP (p) dp (4.2)

while theMCseq(n, h, α) power forn > h/α + 1 is given by integrating out (3.1) with respect toFP :

π(n, h, α, FP ) =

∫

1

0

h−1
∑

x=0

(

h/α − 1
x

)

px(1 − p)h/α−x−1 FP (p) dp (4.3)
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As a result, the power (4.3) ofMCseq(n, h, α) and the power (4.2) ofMCconv(m, α) are equal
if we takeh = αm. That is, given a conventional MC procedureMCconv(m, α), we have sequential
MC procedure inMCseq(n, αm, α) with equal power. This is valid for alln > h/α + 1 and hence we
take the minimum possible valuen = ⌊h/α⌋+1 to have the equivalent proceduresMCconv(m, α) and
MCseq(m + 1, αm, α).

Under the null hypothesis or under an alternative not too far from the null, there will be considerable
reduction in the number of simulations required to reach a decision if the sequential test is adopted
holding fixed the main statistical characteristic (size and power) of the fixed-size MC tests. Therefore,
we can have large gains if the sequential procedure is adopted.

We showed that, given a conventional MC test, there is a simple rule to find a sequential MC test
with the same power but typically requiring a smaller number of simulations. However, one can trade
a slight power loss in exchange for a smaller number of Monte Carlo simulations. If we want to adopt
a general sequential MC test rather than the fixed-size MC test, it is importantto have control over the
power loss we are subjected. The next section establishes bounds for this loss.

5 BOUNDS ON THE POWER DIFFERENCES

Equations (3.1) and (4.1) give the null hypothesis rejection probability forMCseq(n, h, α) and
MCconv(m, α) for a fixed realized p-valueP = p. Since it is wasteful to taken larger thanh/α + 1,
we assume thatn is equal to⌊h/α⌋ + 1. To obtain the power, we need to integrate (3.1) and (4.1) with
respect to the probability densityfP (p) of P . Under the null hypothesis,fP (p) is the density of an uni-
form distribution in(0, 1). Under an alternative hypothesis,fP (p) is concentrated towards the lower half
of the interval(0, 1).

Let D(P ) be the random variable

D(P ) =
αm−1
∑

y=0

(

m − 1
y

)

P y(1 − P )m−y−1 −
h−1
∑

x=0

(

⌊h/α2⌋ − 1
x

)

P x(1 − P )⌊h/α2⌋−x−1 (5.1)

The power difference betweenMCconv(m, α) andMCseq(⌊h/α⌋ + 1, h, α) is given by

E [D(P )] =

∫

1

0

D(P ) fP (p) dp (5.2)

A crude bound for the difference in power is obtained by finding real numbersa andb such thata ≤
D(P ) ≤ b. Let b(m, α; h, α2) be the upper bound for the power difference betweenMCconv(m, α)
andMCseq(⌊h/α2⌋ + 1, h, α2), respectively. Note that we can obtain crude bounds forα 6= α2.

For example, The power difference betweenMCconv(1000, 0.05) andMCseq(801 = 40/0.05 +
1, 40, 0.05) is approximately 0.0296.

For smallh, the crude bound is too large. However, this bound decreases quickly with h until reach
zero inh/α + 1.

6 DISCUSSION AND CONCLUSIONS

The sequential Monte Carlo test is a feasible and more economical way to reach decisions in a hypothesis
testing under Monte Carlo sampling. We have shown that, for each conventional Monte Carlo test with
m simulations, there is a sequential Monte Carlo procedure with the same significance level, power and
execution time. The number of simulations is generally much smaller thanm when the null hypothesis
is true.

If execution time is crucial, the user can trade a small amount of power in the sequential test by
a large decrease in number of simulations. To guide this trade-off choice, we develop bounds for the
difference in power between theMCconv e MCseq tests. Forn ≥ h/α + 1, an usual situation, the
sequential MC test has a constant power and this leads to the suggestion ofadoptingn = h/α + 1.
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