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Abstract. Many statistical tests obtain their p-value from a Monte Carlo sample @dlues of the test statistic under the null
hypothesis. The numben of simulations is fixed by the researcher prior to any analysis. In cantressequential Monte
Carlo test does not fix the number of simulations in advance. It keepdaging the test statistics until it decides to stop based
on a certain rule. The final number of simulations is a random nuiVbdthis sequential Monte Carlo procedure can decrease
substantially the execution time in order to reach a decision. This paper basrhs concerning the sequential Monte Carlo
tests: to minimizeV without affecting its power; and to compare its power with that of the fixadge Monte Carlo test. We
show that the power of the sequential Monte Carlo test is constant afestaancnumber of simulations and therefore, that
there is a bound t&v. We also show that the sequential test is always preferable to a firgoleséest. That is, for every test
with a fixed sample size: there is a sequential Monte Carlo test with equal power but with smaller euafilsimulations.
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1 INTRODUCTION

To carry out hypothesis testing one must find the distribution of the test stdfistitder the null hy-
pothesis, from which the p-value is calculated. Either because it is too csambe or it is impossible
to obtain this distribution analytically, Monte Carlo tests are used in many situatitendy(, 2006). In
particular, areas such as spatial statistics (Assoeical., 2007; Diggleet al., 2004; Kulldorff, 2001) and
data mining (Kulldorffet al., 2003; Rolka, 2007) rely heavily on Monte Carlo tests to draw inference.
Other areas have situations in which Monte Carlo tests seems to be the lbest approach such as
the exact tests in categorical data analysis (Booth and Butler, 1999 &aifBooth, 2003), and some
regression problems in econometrics (Khalaf and Kichian, 2005; L2g66).

The conventional Monte Carlo test generates a large number of indamerapies o/ from the
null distribution. Assuming that large values Gflead to the null hypothesis rejection, a Monte Carlo
value is calculated based on the proportion of the simulated values that gee ¢tarequal than the
observed value af/.

As the statistics field evolves to deal with ever more complex models, Monte Catoltecome
costly. The simulation of each independent copyainder the null hypothesis can take a long time.

In many applications, after a few simulations are carried out, it becomes ietyitikear that a large
number of simulations is not necessary. For instance, suppose that@fteimulations, the observed
value is around the median of the generated values. It is not likely that théypothesis will be
eventually rejected even if a much larger number of simulations (such a3 B988rried out. Most
researchers would be confident to stop at this point if a valid p-valulel @euprovided.

Besag and Clifford (1991) introduced the idea of sequential Monte @ests, an alternative way
to obtain p-values without fixing the number of simulations previously. Their oukbthakes a decision
concerning the null hypothesis after each simulated value up to a maximum nahsimaulations. This
approach can substantially shorten the number of simulations requireditie dbout the significance
of the observed test statistic.

Although the proposal of Besag and Clifford (1991) stands as a majtrilmation to the practice
of modern data analysis, it is under utilized and has some unansweredtiteoguestions. One im-
portant aspect of the sequential Monte Carlo tests is the relative compafisis power with that of
the conventional Monte Carlo test. Based on the Besag and Clifford resatsan always obtain a
sequential Monte Carlo with significance levelwhich does not require more simulations than a con-
ventional Monte Carlo test at the same level. However, the relationship &etive power functions of
these tests is not clear. In terms of power, is there a cost when we apglyghential test instead of the
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conventional Monte Carlo test? The answer is no, and the first aim of they mto demonstrate this.
The second objective of this work is to show how we can make the choice ohdximum number of
simulations in the sequential Monte Carlo tests without losing power.

The next section contains a summary of the definitions and notation assoeidtdte conventional
and the sequential Monte Carlo tests. Section 3 discusses the power eftrensal procedure and
Section 4 shows how to establish the parameters of the sequential test suitthds the same power
as a given conventional Monte Carlo test. In Section 5, we develop Bdonthe difference of power
between a conventional and a sequential Monte Carlo tests. Section § ttlegmper with a discussion
of the implications of our results.

2 A SEQUENTIAL MONTE CARLO TEST

Let U be a test statistic with distributioA' under the null hypothesig,. Suppose that large values of
U leads to the rejection of the null hypothesis. Whercan be evaluated explicitly, the p-value of the
upper-tail test based on the observed valyef U is given byp = 1 — F(ug). Let P = 1 — F(U) be the
random variable associated with the p-valud?'lis a continuous function? has a uniform distribution
in (0, 1) under the null hypothesis. When we can not evaldatere need to find other ways to calculate
the p-value. The Monte Carlo test proposed by Dwass (1957) is anatlterif we can simulate samples
from the null hypothesis.

The fixed-size or conventional Monte Carlo test generates a sampleof sizl of the test statistic
U under the null hypothesifly. Denote each simulated value by, : = 1,...,m — 1. The Monte
Carlo p-valuep,,. is equal tor /m if the observed value, is ther-th largest value among the values
ug, u1,. - -, Um_1. In this conventional Monte Carlo procedure, if the rankigfs among thexm larger
ranks ofug,uq,...,un_1, We reject the null hypothesis at thesignificance level. We denote this
procedure by, C'conv(m, ).

Let P, be the corresponding random variable associated with the realized Marlte gzvalue
Pme- Under the null hypothesis, we ha®¢P,,. < a) = a if a is one of the values/m,2/m,...;1.In
addition to that, irrespective of the validity of the null hypothegis,, — P almost everywhere as
goes to infinity.

However, when early on there is little evidence against the null hypothesisyasteful to run the
procedure for large values @f such as, for examplep = 10000. This is the main motivation for
Besag and Clifford to develop the sequential Monte Carlo test. In brie§ahaential version of the test
selects a small integér, such ash = 10 or h = 20. It keeps simulating by Monte Carlo from the null
hypothesis distribution untit of the simulated values are larger than the observed waju&here is
also an upper limit: — 1 for the total number of simulations. The p-value is based on the proportion of
simulated values larger than at the stopping time.

In other words, simulate independently and sequentially the random VEly€ds,, ..., Uy from
the same distribution a& under the null hypothesis. The random variabléas possible values,
h+1,...,n—1and its value is determined in the following walyis the first time when there are
simulated values larger thar. If this has not occurred at step— 1, then letL. = n — 1. Let g be the
number of simulated/;’s larger thanuy at termination. If we denote bythe realized number of Monte
Carlo withdrawals, then the sequential p-value is given by

_fm o itg=h,
b= { (g+1)/n,if g <h (2.1)

For example, if up tm — 1 = 999 Monte Carlo withdrawals are considered and the sampling scheme
stops as soon ds= 10 exceeding values df occurs, then the possible values of the sequential p-value
are10/10, 10/11, 10/12,...,10/1000, 9/1000, 8,/1000, . . ., 1/1000.

The most important random variable in our papet jghe total number of simulations carried out,
which has distribution under the null hypothesis given by
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0, sel<h-—1
P(L<Il)=<1—-h/(l+1),sel=h,h+1,....,n—1
1, ifl=mn

Its expected value was found by Besag and Clifford(1991):

n—1 n—1

1 n—0.5

E(L)=) P(L>l)= Y I 1:h+h10g<h+0.5) (2.2)
=1 I=h+1

To reach a decision with the sequential Monte Carlo test, it is necessaryttefialues of three
tuning parameters, the significance lexelh e a, and hence we denote the test b§C'seq(n, h, «).
Typically, n is taken equal to the number of simulations one would run if carrying out the conventional
Monte Carlo test. If this typical choice is really necessary is one of thessstudied in this paper.

3 POWER OF THE SEQUENTIAL MONTE CARLO TEST

In this section we study the power of the sequential Monte Carlo procéddreeq(n, h, ). Its behav-
ior depends on the value efwith respect toh /o + 1. We deal initially with the case > h/a + 1.

31 MCseq(n,h,a)withn > h/a+1

This constraint implies that > h/(n — 1). That is,« is not smaller thark divided by the maximum
number of simulations. A typical choice found in practical analysis-is1 = 999 anda = 0.05. Then,
the conditiom > h/a+1is valid if h < 49. This is likely to cover most of the choices one would make
for h in practice.

The power of the procedut®/ C'seq(n, h, «) is constant for alh > h/a + 1 and hence, taking
larger tham /o + 1 is not worth in terms of power. In other words= | h/«] + 1 is optimal in terms of
number of simulations for a test with error type | probabitityThe notationz | represents the ceiling
of x, the smallest integer greater or equakto

To see this result, label the evelif; > ug] as a success. Sindé has c.d.fF', the probability
P(U; > uy) is the observed p-valye= 1 — F(ug). The probability of carrying out. simulations until
h successes is a probability function from a truncated multinomial variable, ent 1, ..., then, we
rejectH, if, and only if, h /o < L < n—1. This means that, i/« — 1 simulations we obtain at most
h — 1 successes. Therefore, for an observed valyehe probability of rejectingd, in the sequential
test is given by

h—1
P(L > (hfa) | P=p)=Y (h/ o= 1) p*(1 — pyifes=t (3.1)

x
=0

Since the last expression does not invalyéhe power of the sequential Monte Carlo test is constant
aslong as > (h/«a) + 1. Since the error type | is fixed at |h/«| + 1 is an upper bound fot.

For example, ifb = 5 anda = 0.05, thenn = 101 minimize the sampling effort while holding
constant the test power. It is not worth to select a larger sample sizeasufdr example: = 1000, ex-
pecting to have a better test. Using (2.2), we know B{dt) ~ 19 if n = 101 under the null hypothesis.

If one decides to use = 1000 thenE(L) ~ 31, 50% larger compared with that associated with optimal
n. However, the more substantial gain of using the optimiglwhen the null hypothesis is false. In this
situation, it is more probable that we need to run the sequential test up to thmunmaxumbem — 1

of simulations and then choosimg= 101 will save many simulations compared with the larger sample
sizen = 1000, which does not increase the power.
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32 MCseq(n,h,a)withn < h/a+1

The power of the procedur®/ C'seq(n, h, o) do not have a monotone behavior with the increase of
when itisin the rangé + 1 < n < h/a + 1. In fact, at least in principle, the power can have a non-
monotone behavior asincreases fronk + 1 towards theh/« + 1. However, the most usual behavior
is that the power is an increasing functiongffor n in that range.

To understand this limitation of the analysis, let us assumeitkati/« + 1. We have two possible
evaluations of the sequential p-value depending on the valgeastording to (2.1). Hence, we reject the
null hypothesis either when estimating the p-valug/ppyor when estimating the p-value oy + 1) /n.

However, we can never reject the null hypothesis if the p-valus of the formg/l. The reason is
that, if ps = g/I, then we obtained values exceeding. The smallest value fay/l ish/(n — 1). Since
n < h/a+ 1, we have thap; > h/(n — 1) > « and we can not reject the null hypothesis.

Therefore, the only other possibility to reject the null hypothesis when h/« + 1 is whenp; is
of the form (g + 1)/n. In this case, we nee@ + 1)/n < «, org < na — 1. Given thatP = p, the
probability of rejectingH is equal to

[na)—1

P(G<na—1|P=p)= Z <”;1>pw(1—p)"‘1‘1’ (3.2)

=0

The power fom < h/a + 1 is given by integrating out (3.2) with respect to the p-value probability
distribution F'p:

1 Lnaj 1
w(n by, Fp) = / (”‘ 1)pw<1 ) Fp(dp) (3.3)

Denote byr(n, h, «, Fp) the power function of teh sequential procedure. Depending enthe
power curve can be non-monotone. Thereforenfer h/a + 1, the sequential power behavior depends
heavily on the shape of the P-value density.

4 A SEQUENTIAL MC TEST EQUIVALENT TO A FIXED-SIZE MC TEST

From now on, we consider only the cagse> h/a + 1. Given a conventional Monte Carlo test
MCconv(m, «), we find in this section a sequential tédiC'seq(n, h, «) with the same power as the
conventional one. For the fixed-size Monte Carlo test(ddte the random count df;s that are greater
or equal toug among then — 1 generated. The null hypothesis is rejecte@if+ 1)/m < « or, equiv-
alently, if G < am — 1. The random variabl&’ has a binomial distribution with parameters— 1 and
success probability equal to the p-valueTherefore M C'conv(m, «) rejects the null hypothesis with
probability P(G < |am]| — 1| P = p):

lam|—1

P(RejectHy | P =p) = Z <my_ 1) pY(1—p)mv-l (4.1)
y=0

Then, theM C'conv(m, o) power is

m(m, o, Fp) :/0

while the M C'seq(n, h, o) power forn > h/a + 1 is given by integrating out (3.1) with respect&p:

1 lam]|-1

( " 1) (1= p)™ ¥ Fp(p) dp 4.2)
y=0

h 1
(n. by, Fp) = / 1 <h/ o= 1) PE(1— )M Fa(p) dp “.3)
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As a result, the power (4.3) dffC'seq(n, h,«) and the power (4.2) oM C'conv(m, «) are equal
if we takeh = am. That is, given a conventional MC proceduvéC'conv(m, «), we have sequential
MC procedure iV C'seq(n, am, o) with equal power. This is valid for ah > h/«a + 1 and hence we
take the minimum possible value= |h/«| + 1 to have the equivalent procedu®8 ' conv(m, o) and
MCseq(m + 1, am, ).

Under the null hypothesis or under an alternative not too far from thethere will be considerable
reduction in the number of simulations required to reach a decision if the sgmjuest is adopted
holding fixed the main statistical characteristic (size and power) of the fimdMC tests. Therefore,
we can have large gains if the sequential procedure is adopted.

We showed that, given a conventional MC test, there is a simple rule to finguasial MC test
with the same power but typically requiring a smaller number of simulations. Hawexe can trade
a slight power loss in exchange for a smaller number of Monte Carlo simulatfome want to adopt
a general sequential MC test rather than the fixed-size MC test, it is imptothate control over the
power loss we are subjected. The next section establishes boundis fosth

5 BOUNDSON THE POWER DIFFERENCES

Equations (3.1) and (4.1) give the null hypothesis rejection probability Mat'seq(n, h, «) and
MCconv(m, «) for a fixed realized p-valu® = p. Since it is wasteful to take larger tham/a + 1,
we assume that is equal to| 2/« | + 1. To obtain the power, we need to integrate (3.1) and (4.1) with
respect to the probability densifip (p) of P. Under the null hypothesigp(p) is the density of an uni-
form distribution in(0, 1). Under an alternative hypothesj(p) is concentrated towards the lower half
of the interval(0, 1).

Let D(P) be the random variable

am—1 h—1
— m—1 Y1 _ pym—y—1 Lh/OQJ -1 T (1 _ lh/ag]—z—1
D(P) ; ( y >P (1—P) ;( . )P (1—P) (5.1)

The power difference betweéd Cconv(m, a) andM Cseq(|h/a| + 1, h, «) is given by

E[D(P)] = /0 D(P) fo(p) dp (5.2)

A crude bound for the difference in power is obtained by finding reailmersa andb such that <
D(P) < b. Letb(m, a; h, a2) be the upper bound for the power difference betwgé@'conv(m, o)
andMCseq(|h/az2| + 1, h, asz), respectively. Note that we can obtain crude boundsifer as.

For example, The power difference betwed conv(1000,0.05) and M C'seq(801 = 40/0.05 +
1,40,0.05) is approximately 0.0296.

For smallh, the crude bound is too large. However, this bound decreases quiithly: wntil reach
zeroinh/a + 1.

6 DISCUSSION AND CONCLUSIONS

The sequential Monte Carlo test is a feasible and more economical wagltodeeisions in a hypothesis
testing under Monte Carlo sampling. We have shown that, for each convahlitonte Carlo test with
m simulations, there is a sequential Monte Carlo procedure with the same sigedfiexel, power and
execution time. The number of simulations is generally much smallerithesnen the null hypothesis
is true.

If execution time is crucial, the user can trade a small amount of power in theesgal test by
a large decrease in number of simulations. To guide this trade-off choeceewelop bounds for the
difference in power between the C'conv e M Cseq tests. Fom > h/a + 1, an usual situation, the
sequential MC test has a constant power and this leads to the suggestdwpthgn = h/a + 1.
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