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Abstract. The comparison between the optimal sequential and repeatedfixed size sample (FSS) strategies in the problem of
abrupt change detection and isolation is discussed. The general case of non-orthogonal Gaussian hypotheses is considered.
Each hypothesis is characterized by its mean vector (the change signature) and it is desirable to detect/isolate a change
subject to the constraints on a pre-assigned time between false alarm and a maximum probability of false isolation. It is
established that the performance of the proposed FSS algorithm is directly related to the mutual geometry between the
hypotheses through the Kullback-Leibler information. This algorithm is almost as efficient as an optimal sequential one but
in contrast to the sequential strategy, the FSS strategy canbe easily used for monitoring in the case of variable structure systems.
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1 Introduction and motivation

The problem of detecting and isolating abrupt changes in random signals has many important appli-
cations in system monitoring, namely fault detection and diagnosis, in quality control and automatic
control. Mathematically, it is the generalization of abrupt change detection to the case of multiple
(K ≥ 2) alternative hypotheses. After the pioneering papers by A.N. Shiryaev (see details in Shiryaev
(1963a,b)) the sequential change detection has been studied by many authors, see results and refer-
ences in Lorden (1971); Moustakides (1986); Basseville & Nikiforov (1993); Lai (1998). Several de-
tection/isolation criterion have been proposed in the literature : Nikiforov (1995); Malladi & Speyer
(1999); Lai (2000); Nikiforov (2003); Tartakovsky (2008).In this paper, we consider the “minimax”
criterion proposed in Nikiforov (2003). This criterion consists in minimizing the maximum mean delay
for detection/isolation subject to the mean time before a false alarm and the maximum probability of
false isolation. It seems that such a criterion is especially relevant to safety-critical applications when
the system monitoring takes place in a hostile environment.

In the literature, two different kinds of algorithms are considered to solve the problem of sequential
detection/isolation: the sequential algorithm and the repeated fixed size sample (FSS) one. The sequen-
tial algorithms are often theoretically optimal but, in practice, the FSS algorithms have also some advan-
tages. First of all, usually the FSS strategy is much simplerto obtain and to process subsequent blocks
of data for technical reasons (data transfer, sampling time, etc.). On the contrary, the sequential (point
by point) processing is technically more sophisticated andtime/resource-consuming. Second, often the
monitored (typically large-scale) systems have a variablestructure. This leads to an extremely compli-
cated sequential strategy : an optimal solution to such a problem is not found. It is worth to note that the
theory of sequential decision is only well-developed in thecase of stationary systems (in the pre-change
state). In contrast to the sequential strategy, the FSS one is easily applicable to systems with a variable
structure. A typical example of fault diagnosis in the case of structure variable systems is the volume
anomaly detection in an origin-destination flow’s traffic over a network (for example, due to denial-
of-service, viruses/worms, external routing reconfigurations, etc.). Modern networks, like Internet, are
systems with a highly variable structure. Hence, it is practically impossible to consider these systems as
stationary (see Fillatre et al. (2008); Casas et al. (2008)). Third, the FSS algorithms are much simpler
to study and to implement than the sequential ones. For this reason practical engineers often choose the
FSS algorithms for real life applications.

Nevertheless, the following problem should be solved before implementation of FSS algorithms : it is
necessary to choose the best possible tuning parameters of the FSS algorithm and to compare the optimal
(sequential) strategy and the FSS one in order to estimate the loss of optimality of the FSS strategy. The
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history of comparisons between sequential and FSS strategies in the theory of statistical hypotheses
testing and signal detection is quite long, some results andreferences can be found in Basseville &
Nikiforov (1993). The first comparison between optimal sequential and FSS strategies in the quickest
change detection was performed by A.N. Shiryaev in Shiryaev(1963a), Shiryaev (1963b) and next by
other authors in Pelkowitz & Schwartz (1987); Nikiforov (1997); Lai (2000).

2 Contribution

The contribution of the present paper is to compare optimal sequential and FSS strategies for the non-
Bayesian approach by using the minimax change detection/isolation criterion (see Nikiforov (2003)) in
the case of multiple (K ≥ 2) Gaussian alternative hypotheses. It is assumed that the covariance matrix
of the measurement vector is known, hence, a Gaussian hypothesis is completely defined by its mean
vector. In Nikiforov (1997), a special case of orthogonal alternative hypotheses has been considered.
This particular case corresponds to the detection/isolation of anomalies inK independent channels: the
anomaly appears in only one channel and the random noises in different channels are independent. Next,
the case of independent scalar channels has been generalized to the case ofK Gaussian independent
vectors with an unknown post-change mean vector in Lai (2000).

In contrast to Nikiforov (1997); Lai (2000), the general case ofK non-orthogonal alternative Gaus-
sian hypotheses is considered now. Often this general case corresponds to the linear model withK
channels andn nuisance parameters. By using the theory of invariance, it can be shown that the nui-
sance parameters rejection implies the projection ofK dimensional observations on a linear subspace of
dimensionK − n containing the maximal invariant statistics (see Fillatre& Nikiforov (2007)). Hence,
the dimension of the subspace is less thanK and the previously developed theory cannot be used. This
paper proposes three major extensions of the results obtained in Nikiforov (1997):

1. The relation between the dimensionp of observed vector and the number of alternative hypotheses
K is arbitrary.

2. The alternative hypotheses can be non-orthogonal. Obviously, some constraints of “hypotheses sep-
arability” should be respected to avoid the problem of detectability/isolability of changes.

3. The criterion of optimality used in this paper is more realistic because it considers the maximum
probability of false isolation.

The rest of the paper is organized as follows. Section 3 briefly presents the change detection/isolation
problem and the criterion of optimality. Section 4 is devoted to the optimal FSS algorithm. Section 5
includes the results of numerical calculation to show the efficiency of the proposed FSS test. Section 6
concludes the paper.

3 Problem statement

Let (Yt)t≥1 be an independent Gaussian random sequence observed sequentially. Firstly, it is assumed
thatL(Yt) = N (θ, Σ), whereΣ is a known (positive definite) covariance matrix. By using the change
of variablesg(X) = R−1X, where the symmetric matrixR is defined byΣ = RR, and the invariance
properties of the gaussian familyN (θ,Σ), the change detection/isolation can be reduced to the following
problem statement without loss of generality :

L(Yt) =

{
N (θ0, σ

2Ip) if t ≤ t0
N (θℓ, σ

2Ip) if t > t0
(1)

where the distribution ofYt is denoted byL(Yt), N (θ, σ2Ip) is the Gaussian distribution with mean
θ and covariance matrixσ2Ip , Yt ∈ R

p, θℓ ∈ R
p, 1 ≤ ℓ ≤ K, K ≥ 2, θ

T
0 = (0, . . . , 0) and

Ip is the identity matrix of orderp. The vectorsθℓ are known and have the same norm‖θℓ‖
2
2 = c2

for all ℓ. It is assumed thatθi 6= ±θj for all i 6= j. The change detection/isolation algorithm has to
compute a pair(N, ν) based on the observationsY1, Y2,· · · , whereN is the alarm time at which aν-

type change is detected/isolated andν ∈ {1, · · · ,K} is the final decision. LetP (t0+1)
ℓ be the distribution
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of observationsY1, Y2, . . . whent0 = 0, 1, 2, . . . andL(Yt) = N (θℓ, σ
2Ip) for t > t0, Pr

(t0+1)
ℓ (A) be

the probability of the eventA underP (t0+1)
ℓ andE

(t0+1)
ℓ be the expectation underP (t0+1)

ℓ . Note here

thatP (∞)
0 = P0 andE0(·) = E

(∞)
0 (·).

Let K(γ,b) be the class of all sequential detection/isolation algorithms(N, ν) which satisfy the fol-
lowing inequalities

T
def
= E0(N) ≥ γ and β

def
= max

1≤ℓ≤K
max

1≤j 6=ℓ≤K
sup
t0≥0

Pr
(t0+1)
ℓ (ν = j|N > t0) ≤ b. (2)

It is aimed to find an optimal FSS strategy within the classK(γ,b) which minimizes the maximum mean
delay for detection/isolation :

τ̄ = sup
t0≥0,1≤ℓ≤K

E
(t0+1)
ℓ (N − t0 | N > t0). (3)

4 Optimal FSS strategy

The repeated FSS strategy is based on the following rule : samples with fixed sizem are taken, and at
the end of each sample, a decision function is computed to test between the hypothesesH0, . . . ,HK

Hℓ : L(Yt) = N (θℓ, σ
2Ip), t = (n − 1)m + 1, . . . , nm, ℓ = 0, 1, . . . ,K (4)

whereY(n−1)m+1, . . . , Ynm is then-th sample. Sampling is stopped after the first sample of observations
for which the decision̄ν is taken in favor ofHν̄ : {θ = θν̄} with ν̄ > 0. The optimal solution of the
multiple hypotheses testing problem (4) for a Gaussian model with non-orthogonal channels is unknown.
It is proposed to use the Bayesian decision rule of levelα subject to the assumption that the alternative
hypothesesHi, i = 1, . . . ,K, are equally probable (see Ferguson (1967)). Hence, the decision function
ν̄ of the Bayesian algorithm is given by :

ν̄
(
Y(n−1)m+1, . . . , Ynm

)
=

{
0 if S̄(n−1)m+1 < h,
d̄ if S̄(n−1)m+1 ≥ h,

(5)

d̄
(
Y(n−1)m+1, . . . , Ynm

)
= arg max

1≤ℓ≤K
S̄(n−1)m+1(ℓ) (6)

where

S̄(n−1)m+1 = max
1≤ℓ≤K

S̄(n−1)m+1(ℓ), (7)

S̄(n−1)m+1(ℓ) =

nm∑

t=(n−1)m+1

Y T
t θℓ. (8)

Therefore, the decision rule(N, ν̄) of the FSS change detection/isolation algorithm is given by:

N
def
= inf

n≥1

{
n m : S̄(n−1)m+1 ≥ h

}
, (9)

ν̄
def
= d̄(YN−m+1, . . . , YN ). (10)

When the vectorsθℓ are not orthogonal, the optimal FSS algorithm performance depends on the mutual
“geometry” of the hypotheses. So, let us introduce some notations to formulate these facts. Letδi,j =
1
2 ‖ei − ej‖

2
2 be the distance between two “unit alternatives”, whereei = θi/c andei 6= ±ej for all

1 ≤ i 6= j ≤ K. The real numbers{δi,j}1≤i6=j≤K describe the mutual “geometry” of the hypotheses.
Let δ̄d = min1≤j≤K δ0,j = 1/2, δ̄i = min1≤i6=j≤K δi,j (clearly,0 < δ̄i < 2) andω2 = c2/σ2. Finally,
let us defineρd = ω2 δ̄d andρi = ω2 δ̄i.

The following theorem gives the minimum achievable mean detection/isolation delay of the optimal
FSS change detection/isolation algorithm (9) - (10) and theassociated optimal parametersm∗ andh∗.
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Theorem 1. Let us consider model (1). Let (N, ν̄) be the FSS change detection/isolation algorithm (9)
- (10). Then, the minimum mean detection/isolation delay within the class K(γ,b) and the optimal tuning
parameters h∗,m∗ are given by :

τ̄∗ .
4 ln γ

ω2
=

2 ln γ

ρd
, (11)

h∗ ∼ 2 ln γ,

m∗ ∼
2 ln γ

ω2
=

ln γ

ρd

subject to min

{
δ̄2
i ;

δ̄i

2

}
ln γ &+ ln b−1 as b−1 → +∞ (12)

where x &+ y is equivalent to x ≥ y(1 + |o(1)|) when y → +∞.

By comparing the mean detection/isolation delay from Theorem 1 with the lower bounds given in Niki-
forov (2003), it is easy to see that the FSS strategy is almostas efficient as an optimal one in the case of
general non-orthogonal Gaussian hypotheses.

Let us continue our discussion of Theorem 1. The FSS algorithm defined by equation (5) - (10)
has two tuning parameters :m andh. By using only these parameters, it is impossible to respectany
given combination of the minimum mean time before a false alarm γ and the maximum probability of
false isolationb which define the classK(γ,b) and, simultaneously, to get the best possible maximum
mean delay for detection/isolation̄τ . To minimize the maximum mean delay for detection/isolation it is
assumed that an additional constraint is imposed on the relation betweenγ andb by the parameter̄δi > 0,
namelymin{δ̄2

i ; δ̄i
2 } ln γ &+ ln b−1 asb−1 → +∞. This condition means that the prescribed level of

false isolations must be fixed by taking into account the minimum Kullback-Leibler distancēδi between
the alternative hypotheses. If this distanceδ̄i is very small, it is natural to expect a high probability of
false isolation.

The parameter̄δi defines a solid angle around each vectorei, i.e. an “indifference zone”, forbidden
for the other vectorseℓ, ℓ 6= i. This additional constraint permits us to avoid an unfavorable situation
when there are two (or more) close hypotheses which severelypenalize the FSS algorithm. At first glance
this constraint seems to be too restrictive for the number ofpotential alternativesK but in reality, if p
tends to infinity, it is not too restrictive. The following geometric interpretation illustrates the impact of
δ̄i. Let us defined (bȳδi) a spherical cap on the unitp-sphere with apex angle0 < α < π/2. According
to Weisstein (1999), if the dimensionp tends to infinity then the numberK of spherical caps, necessary
to recover the unit sphere, tends to infinity with an exponential speed. Hence, an upper boundK for
the numberK of potential alternative hypotheses goes to infinity with anexponential speed for any
0 < α < π/2 (the caseα = π/2 corresponds to orthogonal vectorseℓ). This geometric interpretation
shows that the above mentioned constraint imposed on the relation betweenγ andb is not too severe.

5 Numerical results

The optimization of the FSS tuning parametersm andh is reduced to the following minimization prob-
lem with constraint :

(m̂, ĥ) = arg min
m,h

τ̄(m,h) subject to T (m,h) = γ. (13)

As it has been mentioned before, a simultaneous minimisation of the mean detection delay under two
constraintsγ andb is impossible. For this reason the following method has beenadopted for this paper :
in the optimisation problem given by equation (13), the active constraint isγ. The probability of false
isolationβ = β(ĥ, m̂) is calculated as a function of(m̂, ĥ) obtained from (13).

Let us now compare the asymptotic equation for the mean detection/isolation delay with the results
of non-asymptotic numerical optimization (13) of the FSS algorithm and with the numerical results
obtained in Nikiforov (1997). This comparison is presentedin Figure 1 (left), resp. (right), for the fol-
lowing set of parameters :ω2 = c2 = 1, σ = 1, p = 25 andK = 1, resp.K = 10. In the first case,
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Fig. 1. Comparison between the results of numerical optimization of the FSS algorithm and the asymptotic equations in the
case ofK = 1 (left) andK = 10 (right) : asymptotic lower bound (cross marks); asymptoticFSS maximum mean delay
(circles); “exact” FSS maximum mean delay (stars); “exact”FSS worst case mean delay (squares).

K = 1, the alternative hypothesis is given byθ
T
1 = (c, 0, . . . , 0) and in the second case,K = 10, the

alternatives hypothesesθT
ℓ = (0, . . . , 0, c, 0, . . . , 0) are orthogonal : i.e. the only non-zero element is

ℓ-th, 1 ≤ ℓ ≤ 10. The maximum mean delaȳτ(m̂(γ), ĥ(γ)) obtained by numerical optimization (13),
as a function ofγ, is called the “exact” FSS maximum mean delay. The expression of the “exact” FSS
maximum mean delay is omitted due to its complexity. The “exact” FSS worst case mean delay (with
ess sup) is obtained by numerical optimization in Nikiforov (1997). This curve is only applicable when
the alternatives hypotheses are orthogonal (see Figure 1).Next, the asymptotic lower bound presented
in Nikiforov (2003) and the optimal FSS asymptotic maximum mean delaȳτ∗ given by equation (11)
as functions ofγ are also shown in Figures 1. In the case ofK = 10 alternative hypotheses, the con-
servative bound̃β for the maximum probability of false isolation (not given inthe paper due to the lack
of place) is also shown in Figure 1 (right). This figure confirms the following : the “exact” FSS curves
are close to the asymptotic one and the obtained results are relevant to the results previously published
in Nikiforov (1997). Naturally, the “exact” FSS worst case mean delay obtained in Nikiforov (1997)
corresponds to a more pessimistic criterion (withess sup), for this reason the curve of the “exact” FSS
maximum mean delay (13) is shifted left from the curve of the “exact” FSS worst case mean delay given
in Nikiforov (1997).

Let us now consider the non-orthogonal alternative hypotheses. Let us assume that the SNR isω2 =
1, σ = 1, p = 25 andK = 10. The vectorsθℓ are the same as in the previous case exceptθ

T
2 =

(0.4472, 0.8944, 0, . . . , 0) andθ
T
4 = (0, 0, 0.2873, 0.9568, 0, . . . , 0) which leads tōδi = 0.5528. The

results are presented in Figure 2. This figure shows the following : first, the “exact” FSS curve is close
to the asymptotic one and, second, the conservative bound for the maximum probability of false alarm
remains relatively important (even for large values ofγ) due to the impact of non-orthogonal alternatives.

6 Conclusion

This paper studies the asymptotic performances of the FSS fault detection/isolation strategy. It is shown
that the FSS strategy is almost optimal in the case of generalnon-orthogonal Gaussian hypotheses. The
performance of the proposed algorithm is directly related to the mutual geometry (in term of Kullback-
Leibler information) between the hypotheses.
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