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Abstract. The comparison between the optimal sequential and repé&aéeiisize sample (FSS) strategies in the problem of
abrupt change detection and isolation is discussed. Therglecase of non-orthogonal Gaussian hypotheses is coedide
Each hypothesis is characterized by its mean vector (thagehaignature) and it is desirable to detect/isolate a @&ang
subject to the constraints on a pre-assigned time betwdsa #arm and a maximum probability of false isolation. It is
established that the performance of the proposed FSS thlgois directly related to the mutual geometry between the
hypotheses through the Kullback-Leibler information. STkalgorithm is almost as efficient as an optimal sequential kart

in contrast to the sequential strategy, the FSS strategyeaasily used for monitoring in the case of variable stmectystems.
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1 Introduction and motivation

The problem of detecting and isolating abrupt changes idaansignals has many important appli-
cations in system monitoring, namely fault detection arabdosis, in quality control and automatic
control. Mathematically, it is the generalization of alrghange detection to the case of multiple
(K > 2) alternative hypotheses. After the pioneering papers Y. Shiryaev (see details in Shiryaev
(1963a,b)) the sequential change detection has been dthgienany authors, see results and refer-
ences in Lorden (1971); Moustakides (1986); Basseville &ifdiov (1993); Lai (1998). Several de-
tection/isolation criterion have been proposed in theditere : Nikiforov (1995); Malladi & Speyer
(1999); Lai (2000); Nikiforov (2003); Tartakovsky (2008h this paper, we consider the “minimax”
criterion proposed in Nikiforov (2003). This criterion csts in minimizing the maximum mean delay
for detection/isolation subject to the mean time beforelgefalarm and the maximum probability of
false isolation. It seems that such a criterion is espegcrialevant to safety-critical applications when
the system monitoring takes place in a hostile environment.

In the literature, two different kinds of algorithms are simtered to solve the problem of sequential
detection/isolation: the sequential algorithm and theatged fixed size sample (FSS) one. The sequen-
tial algorithms are often theoretically optimal but, in giee, the FSS algorithms have also some advan-
tages. First of all, usually the FSS strategy is much simplebtain and to process subsequent blocks
of data for technical reasons (data transfer, sampling, tet®e). On the contrary, the sequential (point
by point) processing is technically more sophisticated tand/resource-consuming. Second, often the
monitored (typically large-scale) systems have a variabigcture. This leads to an extremely compli-
cated sequential strategy : an optimal solution to such lbl@mois not found. It is worth to note that the
theory of sequential decision is only well-developed indhse of stationary systems (in the pre-change
state). In contrast to the sequential strategy, the FSSsomasily applicable to systems with a variable
structure. A typical example of fault diagnosis in the cabetructure variable systems is the volume
anomaly detection in an origin-destination flow’s trafficeoa network (for example, due to denial-
of-service, viruses/worms, external routing reconfigoret, etc.). Modern networks, like Internet, are
systems with a highly variable structure. Hence, it is peatly impossible to consider these systems as
stationary (see Fillatre et al. (2008); Casas et al. (2008)ixd, the FSS algorithms are much simpler
to study and to implement than the sequential ones. Forehison practical engineers often choose the
FSS algorithms for real life applications.

Nevertheless, the following problem should be solved leifoplementation of FSS algorithms : itis
necessary to choose the best possible tuning parametése$s algorithm and to compare the optimal
(sequential) strategy and the FSS one in order to estimateshk of optimality of the FSS strategy. The
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history of comparisons between sequential and FSS steat@githe theory of statistical hypotheses
testing and signal detection is quite long, some resultsrafetences can be found in Basseville &
Nikiforov (1993). The first comparison between optimal sagial and FSS strategies in the quickest
change detection was performed by A.N. Shiryaev in Shirfa®63a), Shiryaev (1963b) and next by
other authors in Pelkowitz & Schwartz (1987); Nikiforov @R; Lai (2000).

2 Contribution

The contribution of the present paper is to compare optimquential and FSS strategies for the non-
Bayesian approach by using the minimax change detectitatfisn criterion (see Nikiforov (2003)) in
the case of multiple > 2) Gaussian alternative hypotheses. It is assumed that tfagiance matrix
of the measurement vector is known, hence, a Gaussian legmwtis completely defined by its mean
vector. In Nikiforov (1997), a special case of orthogonaémiative hypotheses has been considered.
This particular case corresponds to the detection/isslaif anomalies i< independent channels: the
anomaly appears in only one channel and the random noiséffeiredt channels are independent. Next,
the case of independent scalar channels has been gengtalitee case of{ Gaussian independent
vectors with an unknown post-change mean vector in Lai (2000

In contrast to Nikiforov (1997); Lai (2000), the general €@ i non-orthogonal alternative Gaus-
sian hypotheses is considered now. Often this general aasesponds to the linear model witki
channels and: nuisance parameters. By using the theory of invariancegntle shown that the nui-
sance parameters rejection implies the projectioR” aimensional observations on a linear subspace of
dimensionK — n containing the maximal invariant statistics (see Fill&rlikiforov (2007)). Hence,
the dimension of the subspace is less thaand the previously developed theory cannot be used. This
paper proposes three major extensions of the results eltairNikiforov (1997):

1. The relation between the dimensipof observed vector and the number of alternative hypotheses
K is arbitrary.

2. The alternative hypotheses can be non-orthogonal. @slyicssome constraints of “hypotheses sep-
arability” should be respected to avoid the problem of detatity/isolability of changes.

3. The criterion of optimality used in this paper is more istad because it considers the maximum
probability of false isolation.

The rest of the paper is organized as follows. Section 3 prgsents the change detection/isolation
problem and the criterion of optimality. Section 4 is dedote the optimal FSS algorithm. Section 5
includes the results of numerical calculation to show tliieieficy of the proposed FSS test. Section 6
concludes the paper.

3 Problem statement

Let (Y;):>1 be an independent Gaussian random sequence observedtsglyuéirstly, it is assumed
that £(Y;) = N (0, X)), whereX is a known (positive definite) covariance matrix. By using tfhange
of variablesg(X) = R~ X, where the symmetric matri is defined by> = RR, and the invariance
properties of the gaussian family(6, X'), the change detection/isolation can be reduced to thexfiiip

problem statement without loss of generality :

[ N(60,0%1) if t <ty
L) = {/\/(94,021;) if ¢t > o (1)

where the distribution o¥; is denoted byC(Y;), N'(0,0%1,) is the Gaussian distribution with mean
0 and covariance matrixr2lp Y, eRr, 0, e RP,1 < ¢ < K, K > 2,0 = 0,...,0) and

I, is the identity matrix of ordep. The vectors, are known and have the same nof#|5 = ¢

for all £. It is assumed thal; # +6; for all i # j. The change detection/isolation algorithm has to
compute a paif N, v) based on the observatioh3, Y, - -, where N is the alarm time at which a-

type change is detected/isolated and {1, -- - , K} is the final decision. LePZ(tOH) be the distribution
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of observationg, Ya, ... whenty = 0,1,2,... and£(Y;) = N (0y,0%1,) for t > t, Pr§t°+1)(A) be
the probability of the eventl under P\ " and E{*" be the expectation undé?™""). Note here
that P\* = Py and o () = ES ().

Let IC(, ) be the class of all sequential detection/isolation alporit (N, ) which satisfy the fol-
lowing inequalities

— def — def (to+1) .
= > = == < .
T=Ey(N)>~ and 1rgnza§)§( 15&21;;[(2112% Pr, (v=Jj|IN >ty) <b 2

Itis aimed to find an optimal FSS strategy within the cl&$s,;) which minimizes the maximum mean
delay for detection/isolation :

F= sup EPTV(N -t | N > tg). (3)
t0>0,1<t<K

4 Optimal FSSstrategy

The repeated FSS strategy is based on the following rule plgamwith fixed sizen are taken, and at

the end of each sample, a decision function is computed tbétsween the hypothesés, ..., Hg
He : L(Y?) :./\/'(04,02]1)), t=(mn—-1m+1,....,nm, £=0,1,..., K 4)
WhereY(,_1ym41, - - - » Ynm IS then-th sample. Sampling is stopped after the first sample ofrebens

for which the decisiorv is taken in favor ofH; : {6 = 65} with o > 0. The optimal solution of the
multiple hypotheses testing problem (4) for a Gaussian ineidle non-orthogonal channels is unknown.
It is proposed to use the Bayesian decision rule of lavelibject to the assumption that the alternative
hypothese$t;,i = 1,..., K, are equally probable (see Ferguson (1967)). Hence, theiaecunction

v of the Bayesian algorithm is given by :

_ 0 Spymyr < by
v (Yv(nfl)erlv s 7Ynm) - {dlf 5(n—1)m+1 > h, (5)
d (Yv(nfl)erlv <o 7Ynm) = arg 1%3%)% S(nfl)erl (6) (6)
where
g(nfl)erl = 1?@?%{ g(nfl)erl(f)a (7)
Sw-vmu (0= > Y. (8)
t=(n—1)m+1

Therefore, the decision ruleV, ) of the FSS change detection/isolation algorithm is given by

def

- def . N
N rlzgfi {nm : S(n—l)m-‘,—l = h} ) 9)
_ def 7

Ed(Yy_ it Vi) (10)

When the vector§, are not orthogonal, the optimal FSS algorithm performarggedds on the mutual
“geometry” of the hypotheses. So, let us introduce sometiootato formulate these facts. L&t; =
e — eng be the distance between two “unit alternatives”, where= 0;/c ande; # +e; for all
1 <i# j < K. The real number$o; ; }1<i+j<x describe the mutual “geometry” of the hypotheses.
Let Sd = minlSjSK 507J’ = 1/2, gi = minlS#jSK 51'7]' (cIearIy,O < Si < 2) andw? = 62/0'2. FinaIIy,
let us definenq = w? 64 andp; = w? d;.

The following theorem gives the minimum achievable meaedt&in/isolation delay of the optimal
FSS change detection/isolation algorithm (9) - (10) andadsociated optimal parametens andh*.



4 Fillatre and Nikiforov

Theorem 1. Let usconsider model (1). Let (N, 7) be the FSS change detection/isolation algorithm (9)
- (10). Then, the minimum mean detection/isolation delay within the class £, ;) and the optimal tuning
parameters h*, m* are given by :

< 41n~y _ 2In~y

T 5 , (12)

w pd

h* ~ 2In~,

+ 2lny  Inxy

m ~ = —

w? Pa

: _—

subject to min {512; 5} Iny >TInb! as b7 — +o00 (12)

wherez 21 yisequivalent to z > y(1 + |o(1)|) when y — +o0.

By comparing the mean detection/isolation delay from TaeoLl with the lower bounds given in Niki-
forov (2003), it is easy to see that the FSS strategy is alawsfficient as an optimal one in the case of
general non-orthogonal Gaussian hypotheses.

Let us continue our discussion of Theorem 1. The FSS algoriefined by equation (5) - (10)
has two tuning parametersn and h. By using only these parameters, it is impossible to respegt
given combination of the minimum mean time before a falsenata and the maximum probability of
false isolationb which define the clask(, ;) and, simultaneously, to get the best possible maximum
mean delay for detection/isolatiah To minimize the maximum mean delay for detection/isolaitds
assumed that an additional constraint is imposed on thiéaelaetweeny andb by the parametef; > 0,
namelymin{é?; %}Iny >* Inb~! asb~! — +oc. This condition means that the prescribed level of
false isolations must be fixed by taking into account the mimm Kullback-Leibler distancé between
the alternative hypotheses. If this distargés very small, it is natural to expect a high probability of
false isolation.

The parametef; defines a solid angle around each veeigi.e. an “indifference zone”, forbidden
for the other vectorey, ¢ # i. This additional constraint permits us to avoid an unfabtaaituation
when there are two (or more) close hypotheses which seveeelglize the FSS algorithm. At first glance
this constraint seems to be too restrictive for the numbgroténtial alternativeds but in reality, if p
tends to infinity, it is not too restrictive. The following g@etric interpretation illustrates the impact of
&;. Let us defined (by;) a spherical cap on the unitsphere with apex angle < o < /2. According
to Weisstein (1999), if the dimensiartends to infinity then the numbéf of spherical caps, necessary
to recover the unit sphere, tends to infinity with an expoiaéispeed. Hence, an upper boukdfor
the numberK of potential alternative hypotheses goes to infinity witheaponential speed for any
0 < a < /2 (the casex = 7/2 corresponds to orthogonal vecterg. This geometric interpretation
shows that the above mentioned constraint imposed on taiorebetweeny andb is not too severe.

5 Numerical results

The optimization of the FSS tuning parameterandh is reduced to the following minimization prob-
lem with constraint :

~

(7, h) = argmin 7(m,h) subjectto T(m,h) = . (13)
As it has been mentioned before, a simultaneous minimisatidhe mean detection delay under two
constraintsy andb is impossible. For this reason the following method has lzetmpted for this paper :
in the optimisation problem given by equation (13), theva&ctionstraint isy. The probability of false
isolation 3 = ((h, ) is calculated as a function ¢fir, 2) obtained from (13).

Let us now compare the asymptotic equation for the mean titmtésolation delay with the results
of non-asymptotic numerical optimization (13) of the FS§oathm and with the numerical results
obtained in Nikiforov (1997). This comparison is preseniteéigure 1 (left), resp. (right), for the fol-
lowing set of parametersw? = ¢ = 1,0 = 1, p = 25 and K = 1, resp.K = 10. In the first case,
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10'®{[— Asymptotic lower bound = 1e-8
-o- Asymptotic FSS maximum mean|delay

—- “Exact” FSS maximum mean del
== “Exact” FSS worst case mean defay

Mean time before false alarm
Mean time before false alarm

—- Asymptotic lower bound ~
-6~ Asymptotic FSS maximum mean dela f=0.1
- “Exact” FSS maximum mean delay 5 -

-=- “Exact” FSS worst case mean delay 7 107 - p=08

10° 10' 10° 10* 10° 10' 10° 10*

10° 10°
Mean detection/isolation delay Mean detection/isolation delay

Fig. 1. Comparison between the results of numerical optimizatiothe FSS algorithm and the asymptotic equations in the
case of K = 1 (left) and K = 10 (right) : asymptotic lower bound (cross marks); asympt&t&S maximum mean delay
(circles); “exact” FSS maximum mean delay (stars); “ex&3S worst case mean delay (squares).

K =1, the alternative hypothesis is given B§ = (¢,0,...,0) and in the second casg, = 10, the
alternatives hypothese&{ = (0,...,0,¢,0,...,0) are orthogonal : i.e. the only non-zero element is
¢-th, 1 < ¢ < 10. The maximum mean dela§(rn(v), h()) obtained by numerical optimization (13),
as a function ofy, is called the “exact” FSS maximum mean delay. The expressidche “exact” FSS
maximum mean delay is omitted due to its complexity. The t€XBSS worst case mean delay (with
ess sup) is obtained by numerical optimization in Nikiforov (1997his curve is only applicable when
the alternatives hypotheses are orthogonal (see Figuiéek}, the asymptotic lower bound presented
in Nikiforov (2003) and the optimal FSS asymptotic maximuraan delay™™ given by equation (11)
as functions ofy are also shown in Figures 1. In the case/0f= 10 alternative hypotheses, the con-
servative bound’ for the maximum probability of false isolation (not giventive paper due to the lack
of place) is also shown in Figure 1 (right). This figure con8rthe following : the “exact” FSS curves
are close to the asymptotic one and the obtained resultekreant to the results previously published
in Nikiforov (1997). Naturally, the “exact” FSS worst caseeam delay obtained in Nikiforov (1997)
corresponds to a more pessimistic criterion (withsup), for this reason the curve of the “exact” FSS
maximum mean delay (13) is shifted left from the curve of teedtt’” FSS worst case mean delay given
in Nikiforov (1997).

Let us now consider the non-orthogonal alternative hyssgel et us assume that the SNRfs=
1,0 = 1,p = 25 and K = 10. The vectorsd, are the same as in the previous case exé¢pt=
(0.4472,0.8944,0,...,0) and o7 = (0,0,0.2873,0.9568, 0, . .. ,0) which leads tay; = 0.5528. The
results are presented in Figure 2. This figure shows thewoilp : first, the “exact” FSS curve is close
to the asymptotic one and, second, the conservative bourtddanaximum probability of false alarm
remains relatively important (even for large valuespflue to the impact of non-orthogonal alternatives.

6 Conclusion

This paper studies the asymptotic performances of the R8S&digtection/isolation strategy. It is shown
that the FSS strategy is almost optimal in the case of generabrthogonal Gaussian hypotheses. The
performance of the proposed algorithm is directly relatethe mutual geometry (in term of Kullback-
Leibler information) between the hypotheses.
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