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Abstract. A statistical method for change detection in autoregressive models is proposed. The model change is supposed
to be due to a parameter change. As it is often the case in practice, the value characterizing the change is unknown. The
proposed approach, called filtering detection rule, is derived from the well-known CUSUM rule and is based on a new class of
particle filters to estimate the unknown conditional likelihood in the change mode. The asymptotic optimality of the procedure
is obtained in the sense of Lorden (1971): the rule asymptotically minimizes the worst mean delay for detection under a
constraint on the mean time between two false alarms. Implementation is easy and computation time is rather short, making
the filtering detection rule an interesting alternative to the GLR rule, to which it is compared in simulations.
Keywords. Filtering-detection rule, GLR rule, Model change detection, Particle filtering

1 Introduction

In recent years, model change detection has become a crucial issue for various industrial fields: quality
control in agro-food industries, navigation system in aeronautics, fault detection in biotechnological
processes... Ensuring the safety of the installation or the quality of the production process requires thus
developing methods that allow early detection of abnormal situations.

Statistical methods are among the most widely used approaches for change detection. They were
introduced by Shewart (1931) and later, Page (1954) proposed the now well-known CUSUM rule (see
Basseville and Nikiforov (1993) for an overview). The CUSUM rule can detect a change in a dynamic
model describing the time evolution of a stochastic process, by using a conditional-likelihood ratio
between the two functioning modes (nominal and fault modes) as test statistics. This model change is
supposed to be due to a parameter change from a nominal valueθ0 (the process is “in control”, hypothesis
H0) to a valueθ1 (the process is “out of control”, hypothesisH1). This rule can be applied as soon as
the model and the two valuesθ0 andθ1 are known. But in practice, the valueθ1 characterizing the fault
mode is often unknown but lies in a known areaΘ1. The CUSUM rule can then no longer be used. To
address this problem, Lorden (1973) proposed the GLR detection rule which relies on the maximization
of the conditional-likelihood ratio overΘ1 as well as over all possible change times. The GLR rule is
efficient in practice and optimality results were obtained, in particular by Lai (1998). However, the non-
recursive writing and the maximization process of the likelihood ratio can cause too heavy computing
time in many applications.

The aim of this presentation is to propose an alternative to the GLR rule for the detection of a
parameter change in any autoregressive model when the parameter valueθ1 characterizing the out-of-
control mode is unknown. The new detection rule is an adaptation of the Filtering Detection Rule for
general nonlinear state-space models proposed by Verdier et al. (2008). A kernel convolution filter (Rossi
and Vila (2006)) is applied to a simple equivalent state-space model in order to estimate the valueθ1.
Optimality results are showed.

The paper is organized as follows. In section 2, the problem of model change detection is presented
and the GLR detection rule is reminded. In section 3, the filtering detection rule is detailed and finally, in
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section 4, simulation trials are performed in order to evaluate the performance of the new rule compared
to the GLR.

2 The change detection problem and the GLR rule

The objective of any model change detection rule is to detect a sudden change in the distribution of
process variables(Xi)i≥1, which could be represented as a parameter change in the dynamic model of
the process, and therefore, in the conditional density of the observations.

The models considered in this presentation are of the following form:

Xn = f(Xn−1, θ) + εn, (1)

whereXn ∈ Rd is the observation vector,εn a white noise andf a general function fromRd+1 to Rd.
The probability distribution function of the white noise,Lε, and the model functionf are supposed to
be known.θ is the parameter characterizing the change, moving at an unknown but not random change
time t0, from a known valueθ0 to an unknown valueθ1 lying in a compact setΘ1. We noteP (t0) the
probability measure of(Xi)i≥1 corresponding to a change at timet0 andPθ0 denotes the caset0 = ∞
(no change). The well-known CUSUM rule cannot be applied in this case. The GLR detection rule was
proposed as an alternative by Lorden (1973). The GLR test statistic is constructed from the conditional-
likelihood ratio between the two functioning modes and is defined as:

∀ n ≥ 1, gn = max
1≤j≤n

sup
θ∈Θ1

n∑
i=j

log
pθ(Xi|X1:i−1)
pθ0(Xi|X1:i−1)

, (2)

with pθ(Xi|X1:i−1) the conditional density ofXi given the pastX1, ..., Xi−1. Due to the likelihood
ratio, gn tends to be negative in average underH0 and positive and increasing underH1. The stopping
time is then:

ta = inf{n : gn ≥ h} ,

with h a given threshold satisfying a constraint, for example, on the false alarm rate. Lai (1998) obtained
optimality results for this detection rule: it minimizes the worst mean delay for detection (see section 3)
over all rules with a given time between two false alarms.

The implementation of this rule requires the maximization of the likelihood ratio over the setΘ1.
This maximization can lead to too large computing time even if a window-limited GLR rule is used (see
Lai (1998)) to reduce the complexity of the procedure.

3 The new filtering-detection rule

3.1 Description of the approach

The aim of this section is to present a new detection rule based on the ratio of two quantities: the ob-
servation conditional likelihood under hypothesisH0, pθ0(Xn|X1:n−1), which is known from model
(1) sinceθ0 is known, and a quantity which tends, underH1, to the unknown conditional likelihood
pθ1(Xn|X1:n−1). To address this problem, we used tools from the filtering theory. In recent years, par-
ticle filtering methods have been used to estimate the series of conditional likelihoods by sequential
Monte Carlo simulations in state-space models (Li and Kadirkamanathan (2004), Azimi-Sadjadi and
Krishnaprasad (2002)). A state-space modeling is generally used when the variablesXn of a dynamic
system are not observed directly but through observation variablesYn that are linked toXn by way of an
observation equation of the formYn = h(Xn) + νn. For this type of model, and whenθ1 is supposed to
be known, Verdier et al (2008) proposed the Filtering Detection Rule (FDR, based on a kernel convolu-
tion filter) and proved the asymptotic optimality of this procedure. In the present study, an adaptation of
the FDR rule is applied to model (1). Here the state variablesXn are directly measured, thus yielding the
simple observation equationYn = Xn. Furthermore, the parameterθ (unknown underH1) is considered
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as a constant state variable in order to be estimated through a particle filter. UnderH1, the model takes
then the following form: 

[
Xn

θn

]
=

[
f(Xn−1, θn−1) + εn

θn−1

]
Yn = Xn

(3)

The conditional likelihood for model (3) is decomposed as follows:

pH1(Xn|X1:n−1) =
∫

pH1(Xn|θn−1, X1:n−1).pH1(θn−1|X1:n−1) dθn−1,

and is estimated by Monte Carlo simulation as:

l̂N,m
n =

1
m

m∑
j=1

pH1(Xn|θN
n−1(j), X1:n−1), (4)

with a sample(θN
n−1(j))j=1,...,m generated from the densitȳpN

H1
(θn−1|X1:n−1): the normalized trunca-

tion overΘ1 of a convergent filter estimatêpN
H1

(θn−1|X1:n−1) of the densitypH1(θn−1|X1:n−1). This
estimatep̂N

H1
(θn−1|X1:n−1) is obtained with a new particle filtering method: the kernel convolution

filtering, introduced by Rossi and Vila (2006) who proved convergence results under conditions less
restrictive than that of most particle filters met in literature. In formula (4),N stands for the number of
particles used in the estimation.

Thereby, the stopping time of the proposed detection rule is defined as:

t̂ = inf

n : max
1≤j≤n

n∑
i=j

log
l̂N,m
i

pθ0(Xi|X1:i−1)
≥ h

 ,

whereh is a given threshold.

3.2 The filtering-detection algorithm

Initialization : n = 1
- Generation ofN simulatedθ̄0(i), i = 1, ..., N according to a given a priori distribution overΘ1.
- Generation ofN simulated noise realizationsε1(i), i = 1, ..., N according to the distributionsLε.
- Updating of theN particles through model (3):

θ̃1(i) = θ̄0(i) and Ỹ1(i) = X̃1(i) = f(X0, θ̄0(i)) + ε1(i)

- TheN particle couples(θ̃1(i), X̃1(i)) together with the first observationX1, are used to compute the
kernel estimatêpN

H1
(θ1|X1) of the conditional densitypH1(θ1|X1) (similarly to (5), see below).

- Determination of the normalized truncationp̄N
H1

(θ1|X1) of p̂N
H1

(θ1|X1) overΘ1.

Time n : n > 1

Step 1:

- For i = 1, . . . , N let us simulate:
θ̄n−1(i) ∼ p̄N

H1
(θn−1|X1:n−1), εn(i) ∼ Lε

- Then
θ̃n(i) = θ̄n−1(i) and Ỹn(i) = X̃n(i) = f(Xn−1, θ̄n−1(i)) + εn(i)

Step 2:

- For j = 1, . . . ,m let us simulate:
θN
n−1(j) ∼ p̄N

H1
(θn−1|X1:n−1)
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- Then, from the observationXn, l̂N,m
n is computed according to (4).

Step 3:

- Frompθ0(Xn|X1:n−1) andl̂N,m
n , we compute

ĝn = max
1≤j≤n

n∑
i=j

Ẑi with Ẑi = log
l̂N,m
i

pθ0(Xn|X1:n−1)
.

An alarm is set up if the statisticŝgn exceeds the chosen thresholdh. Otherwise one goes to Step 4.

Step 4:

- From theN couples(θ̃n(i), X̃n(i)), i = 1, ..., N and the observationXn, one gets, following Rossi
and Vila (2006), a kernel estimate of the conditional state variable densitypH1(θn|X1:n):

p̂N
H1

(θn|X1:n) =

∑N
i=1 Kx

δx
(X̃n(i)−Xn).Kθ

δθ
(θ̃n(i)− θn)∑N

i=1 Kx
δx

(X̃n(i)−Xn)
, (5)

whereKx andKθ are two convolution kernels with bandwidth parametersδx andδθ respectively and
with the usual notation:Kδ(x) = K(x/δ)/δdim(x).
- Determination of the normalized truncationp̄N

H1
(θn|X1:n) of p̂N

H1
(θn|X1:n) overΘ1.

- n = n + 1 and go back to step 1

Remark 1.The test statistic can be equivalently written in a recursive manner :ĝn = (ĝn−1 + Ẑn)+ with
the notationm+ = m if m > 0 and 0 otherwise. This is a useful form in practice.

3.3 Properties of the rule

The aim of this section is to study the optimality properties of the Filtering Detection Rule applied to
detect a parameter change in model (1). The optimality of a rule is usually established by showing that it
minimizes a given criterion about the detection delay, among all the rules satisfying a constraint on the
false alarm rate. One of the first optimality results for dependent variables was obtained by Lai (1998),
who proved that the CUSUM rule asymptotically (asγ → ∞, see below) minimizes the worst mean
delay for detection (introduced by Lorden (1971)):

Ēθ1(T ) = sup
t0≥1

sup ess E(t0)[(T − t0 + 1)+|X1:t0−1] (6)

among all detection rulesT with an average time between false alarm such that, for a givenγ > 0

Eθ0(T ) ≥ γ (ARL constraint). (7)

(The essential supremum in (6) is taken with respect toX1, ..., Xt0−1). Lai established a lower bound
for the worst mean detection delay. Let us note:

Zi(θ) = log
pθ(Xi|X1:i−1)
pθ0(Xi|X1:i−1)

.

Theorem 1 (Lai (1998)).If there exists a constantI such that

lim
n→∞

sup
t0≥1

ess supP (t0)

{
max
t≤n

t0+t∑
i=t0

Zi(θ1) ≥ I(1 + δ)n|X1:t0−1

}
= 0, (8)

then, asγ →∞, it holds

inf{Ēθ1(T ) : Eθ0(T ) ≥ γ} ≥ (I−1 + o(1)) log γ. (9)
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Under some general assumptions, the Filtering Detection Rule reaches the lower bound (9) and
therefore is asymptotically optimal. Let us show how.

Suppose the following assumptions hold:

(A1) There exist two constantsc andC such that:

∀ xi, ∀θ ∈ Θ1, c ≤ pθ(xi|X1:i−1) ≤ C.

(A2) The log-likelihood ratio satisfies:∃ I > 0 such that,

1
n

t0+n−1∑
i=t0

Zi(θ1) → I in probability underP (t0) whenn →∞,

and

∀δ > 0,∃Θδ ⊂ Θ1 ,∃n(δ) ≥ 1 such that : θ1 ∈ Θδ and

sup
n≥n(δ)

sup
k≥t0≥1

ess supP (t0)

{
inf

θ∈Θδ

k+n∑
i=k

Zi(θ) ≤ (I − δ)n|X1:k−1

}
≤ δ.

Remark 2.The first assumption is for example satisfied by model (1) with a bounded white noise, which
is quite realistic in practice.

The second assumption was used by Lai (1998) to obtain the optimality of the Mixture Likelihood
Ratio rule.

The optimality of the Filtering Detection Rule is stated in the following theorem:

Theorem 2. Suppose that (8) and assumptions (A1) and (A2) are satisfied. Under the assumptions re-
quired for the convergence of the kernel convolution filter (Rossi et Vila (2006)), it holds:
i-

Eθ0(t̂) ≥ eh.

ii- As h, N andm tend to infinity,
Ēθ1(t̂) ≤ (I−1 + o(1))h,

Therefore, withh = log γ, t̂ satisfies the Lorden’s constraint (by i-) and reaches the lower bound (9) (by
ii-).

Proof : The proof of this theorem (see Verdier (2007)) is an adaptation of the proof proposed by Lai for
the optimality of the Mixture Likelihood Ratio rule.

4 Simulation trials

We considered the following autoregressive linear model:

Xn = 0.5Xn−1 + θ + εn, (10)

with εn a truncated Gaussian white noise with varianceσ2 = 0.1. The two functioning modes are defined
by:

H0 : θ = θ0 = 0.71 and H1 : θ = θ1 ∈ Θ1 = [0.2; 0.65]

We compared the performances of the GLR and the Filtering Detection Rule on 2000 trajectories sim-
ulated according to model (10) with a change att0 = 50. For each trajectory the valueθ1 was sampled
from a uniform law onΘ1. The filtering-detection rule was applied withN = 500, m = 500 and using
a Gaussian kernel with a bandwidth parameter of the form :δx

N = 0.2N−1/5. The thresholds of the two
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rules were determined by simulation such that the mean time before the first false alarm equals 100, and
we obtained:hGLR = 3.2 andhFDR = 1.3. We consider as a non-detection a trajectory without alarm
until time stept = 150.

The mean detection delay of the Filtering Detection Rule was 7.03, and we recorded one non-
detection (theθ1 value corresponding to the non-detected change isθ1 = 0.6037). For the GLR rule,
there were four non-detections (corresponding toθ1 = 0.6236, 0.6085, 0.6173 and0.6418) and the
mean time before detection was 7.41.

This simulation with a simple model showed that these two rules have similar behavior with an ad-
vantage for the Filtering Detection Rule concerning the computation time. Other simulations, in which
the FDR was compared to Mixture Likelihood Ratio approaches (Lai(1998)), have also shown the ef-
fectiveness of our method. Indeed, the performances of MLR rules heavily depend on the choice of an
a priori law for the parameterθ1. This is not the case with our rule for which the “distribution” ofθ1 is
readjusted at each time step underH1.

5 Conclusions

We proposed in this paper an alternative to classical rules such as GLR and MLR rules for detecting
a parameter change in auto-regressive models when the value characterizing the out-of-control mode,
θ1, is unknown. Our approach is an adaptation of the Filtering Detection Rule (Verdier et al. (2008))
and is based on the application of a convolution kernel filter to an equivalent simple state-space model.
We proved the asymptotic optimality of the rule in the sense of Lorden, under classical assumptions in
change detection theory. The first simulations gave interesting results in terms of computation time and
efficiency in detecting changes, in comparison with more classical approaches applied in the case of
unknown parameter after a change, such as GLR and MLR rules.
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proćed́es de d́epollution biologique.PhD thesis, Université Montpellier 2, France.
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